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Summary 18 

The convergent evolution of the fly and mouse olfactory system led us to ask whether the 19 

anatomic connectivity and functional logic in vivo would evolve in artificial neural networks 20 

constructed to perform olfactory tasks. Artificial networks trained to classify odor identity 21 

recapitulate the connectivity inherent in the olfactory system. Input units are driven by a single 22 

receptor type, and units driven by the same receptor converge to form a glomerulus. Glomeruli 23 

exhibit sparse, unstructured connectivity to a larger, expansion layer. When trained to both 24 

classify odor and impart innate valence on odors, the network develops independent pathways 25 

for innate output and odor classification. Thus, artificial networks evolve even without the 26 

biological mechanisms necessary to build these systems in vivo, providing a rationale for the 27 

convergent evolution of olfactory circuits. 28 

 29 

Introduction 30 

The anatomic organization and functional logic of the olfactory systems of flies and mice are 31 

remarkably similar despite the 500 million years of evolution separating the two organisms. Flies 32 

and mice have evolved odorant receptors from different gene families and employ distinct 33 

developmental pathways to construct a similar neural architecture for olfaction, suggesting that 34 

the homology between the two olfactory systems emerged by convergent evolution. The 35 

sensory neurons in each organism express only one of multiple odor receptors. This singularity 36 

is maintained with the convergence of like neurons to form glomeruli so that mixing of olfactory 37 

information occurs only later in the processing pathway. Convergent evolution of the olfactory 38 

system may reflect the independent acquisition of an efficient solution to the problems of 39 

olfactory perception. We asked whether networks constructed by machine learning to perform 40 

olfactory tasks converge to the organizational principles of biological olfactory systems. 41 

 42 
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Artificial neural networks (ANNs) (Lecun, Bengio, & Hinton, 2015) capable of performing 43 

complex tasks provide a novel approach to modeling neural circuits (Mante, Sussillo, Shenoy, & 44 

Newsome, 2013; Yamins & DiCarlo, 2016). Neural activity patterns from higher visual areas of 45 

monkeys viewing natural images resemble activity patterns from neural networks trained to 46 

classify large numbers of visual images (Yamins & DiCarlo, 2016). These results reveal a 47 

correspondence between the artificial and biological visually driven responses. However, it has 48 

been difficult to determine to what extent the connectivity of ANNs recapitulates the connectivity 49 

of the visual brain. Multiple circuit architectures can be constructed by machine-learning 50 

methods to achieve similar task performance, and details of connectivity that might resolve this 51 

ambiguity remain unknown for most mammalian neural circuits. In contrast, the precise 52 

knowledge of the connectivity of the fly olfactory circuit affords a unique opportunity to 53 

determine whether ANNs and biological circuits converge to the same neural architecture for 54 

solving olfactory tasks. In essence, we have used machine learning to 'replay' evolution, to 55 

explore the rationale for the evolutionary convergence of biological olfactory circuits. 56 

 57 

In fruit flies, olfactory perception is initiated by the binding of odorants to olfactory receptors on 58 

the surface of sensory neurons on the antennae (Figure 1a). Individual olfactory receptor 59 

neurons (ORNs) express one of 50 different olfactory receptors (ORs), and all receptor neurons 60 

that express the same receptor converge onto an anatomically invariant locus, a glomerulus 61 

within the antennal lobe of the fly brain (Vosshall, Amrein, Morozov, Rzhetsky, & Axel, 1999; 62 

Vosshall, Wong, & Axel, 2000a). Most projection neurons (PNs) innervate a single glomerulus 63 

and send axons to neurons in the lateral horn of the protocerebrum (LHNs) and to Kenyon cells 64 

(KCs) in the mushroom body (MB) (Jefferis et al., 2007; Marin, Jefferis, Komiyama, Zhu, & Luo, 65 

2002; Wong, Wang, & Axel, 2002). The invariant circuitry of the lateral horn mediates innate 66 

behaviors (Datta et al., 2008; Jefferis et al., 2007; Tanaka, Awasaki, Shimada, & Ito, 2004), 67 

whereas the MB translates olfactory sensory information into associative memories and learned 68 
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behaviors (De Belle & Heisenberg, 1994; Dubnau, Grady, Kitamoto, & Tully, 2001; Heisenberg, 69 

Borst, Wagner, & Byers, 1985; McGuire, Le, & Davis, 2001). 70 

 71 

Individual Kenyon cells, the intrinsic neurons of the MB, receive unstructured input from ~4-10 72 

PNs (Caron, Ruta, Abbott, & Axel, 2013; Li et al., 2020; Zheng et al., 2018) and densely 73 

innervate MBONs, the extrinsic output neurons of the mushroom body (Aso et al., 2014b; Caron 74 

et al., 2013; Chia & Scott, 2019; Hattori et al., 2017; Li et al., 2020; Tanaka et al., 2004; Zheng 75 

et al., 2018). Synaptic plasticity at the KC-MBON synapse results in olfactory conditioning and 76 

mediates learned behaviors (Cohn, Morantte, & Ruta, 2015; Felsenberg et al., 2018; Handler et 77 

al., 2019; Hige, Aso, Rubin, & Turner, 2015). The mouse olfactory system is far larger than that 78 

of the fly but exhibits a similar architecture. 79 

 80 

The convergent evolution of the fly and mouse olfactory systems led us to ask whether the 81 

anatomic connectivity and functional logic in vivo would evolve in artificial neural networks 82 

constructed to perform olfactory tasks. We used stochastic gradient descent (Kingma & Ba, 83 

2014; Lecun et al., 2015; Rumelhart, Hinton, & Williams, 1986) to construct artificial neural 84 

networks that classify odors. We found singularity of receptor expression, convergence to form 85 

glomeruli, and divergence to generate sparse unstructured connectivity that recapitulate the 86 

circuit organization in flies and mice. We also trained neural networks to classify both odor class 87 

and odor valence. After training, an initially homogeneous population of neurons segregated into 88 

two populations with distinct input and output connections, resembling learned and innate 89 

pathways. These studies provide logic for the functional connectivity of the olfactory systems in 90 

evolutionarily distant organisms. 91 
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 92 

Fig. 1 | Artificial neural network evolves the connectivity of the fly olfactory system. 93 

a. The fly olfactory system. b. Illustration of the task. Every odor (a million in total, 100 shown) is 94 

a point in the space of ORN activity (50 dimensions, 2 dimensions shown) and is classified 95 

based on the closest prototype odor (triangles, 100 in total, 4 shown). Each class is defined by 96 

two prototype odors. c. Architecture of the artificial neural network. The expression profile of 97 

ORs in every ORN as well as all other connection weights are trained. d. OR-ORN expression 98 

profile after training. ORNs are sorted by the strongest projecting OR. e. ORN-PN mapping after 99 

training. Each PN type is sorted by the strongest projecting ORN. f. Effective connectivity from 100 

OR to PN type, produced by multiplying the matrices in (d) and (e). g. PN-KC connectivity after 101 

training, only showing 20 KCs (2500 total). h. Distribution of PN-KC connection weights after 102 

training showing the split into strong and weak groups. Connections weaker than a set threshold 103 

(dotted gray line) are pruned to zero. i. Distribution of KC input degree after training. Text near 104 

peak shows mean and standard deviation. j. Average cosine similarity between the weights of 105 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.439917doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.439917
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

6 

all pairs of KCs during training. At every epoch, the cosine similarity was also computed after 106 

shuffling the PN-KC connectivity matrix. This shuffling preserves the number of connections 107 

each KC receives but eliminates any potential structured PN inputs onto individual KCs. 108 

k,l. Investigating the impact of a recurrent inhibitory neuron in the KC layer. k, Schematics of a 109 

network with a recurrent inhibitory neuron at the KC layer, modeling the Anterior Paired Lateral 110 

(APL) neuron. The recurrent inhibitory neuron receives uniform excitation from all KC neurons, 111 

and inhibits all KC neurons uniformly in return.  l. (Top to bottom) Accuracy, GloScore, and KC 112 

input degree for networks with different strengths of KC recurrent inhibition. Stronger KC 113 

recurrent inhibition moderately increases KC input degree while having no clear impact on 114 

accuracy and GloScore. 𝐾 value is not shown for the network where KC input degree cannot be 115 

reliably inferred (Methods). 116 

  117 
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Artificial neural networks converge to biological structures  118 

We designed a family of odor classification tasks that mimic the ability of animals to distinguish 119 

between odor classes and to generalize within classes. In the model, each odor elicits a unique 120 

pattern of activation across the ORs. Odors are assigned to 100 classes that are defined by 121 

odor prototypes.  Specifically, each odor belongs to the class of its nearest prototype, measured 122 

by the Euclidean distance between receptor activations (Figure 1b).  Using only a single 123 

prototype to define each class results in a relatively simple olfactory task that can be solved 124 

without using the layers of olfactory processing that we wish to explore (Figure S2a-d). Thus, we 125 

consider classes that are defined by multiple prototypes, predominantly using two prototypes 126 

per class. This means that an odor class corresponds to an association involving multiple 127 

different types of odors.  We used a training set of a million randomly sampled odors to 128 

construct the networks and assessed generalization performance with a test set of 8192 = 213 129 

additional odors. 130 

 131 

We first modeled the olfactory pathway as a feedforward network with layers representing 50 132 

ORs, 500 ORNs, 50 PN types, and 2,500 KCs (Figure 1c, Methods). The model also included a 133 

set of 100 output units that allow us to read out the class assigned by the model to a given odor 134 

(instead of directly modeling MBONs). The strengths of model connections between the OR and 135 

ORN layers represent the levels of expression of the 50 different receptor types in each ORN. 136 

ORN-to-PN and PN-to-KC connections represent excitatory synapses between these cell types 137 

and are therefore constrained to be non-negative. We chose to represent the ~150 PNs in the 138 

antennal lobe as 50 PN types because the ~3 homotypical ‘sibling’ PNs that converge onto the 139 

same glomerulus show almost identical activity patterns (Kazama & Wilson, 2009; Masuda-140 

Nakagawa, Tanaka, & O’Kane, 2005). We hereafter refer to PN types as PNs. Initially, all 141 

connections were all-to-all and random (Figure 1c), meaning that every ORN expressed every 142 

OR at some level and connected to every PN. Similarly, each PN initially connected to all the 143 
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KCs. Neural responses were rectified linear functions of the total synaptic input. The network 144 

was trained by altering its connection weights and bias currents with the goal of minimizing 145 

classification loss. This occurs when there is high activity only in the readout unit representing 146 

the correct class associated which each odor. This process can be thought of as evolving a 147 

circuit architecture in silico.  148 

 149 

Following training of the network, classification was ~75% accurate (chance is ~1%). The initial 150 

random, all-to-all connectivity changed dramatically during the training process. After training, all 151 

but one of the OR-to-ORN coupling strengths for each OR are close to zero (Figure 1d). This 152 

corresponds to the expression of a single OR in each ORN. Similarly, all but ~10 of the ORN 153 

connections to each PN approach zero (Figure 1e; Movie 1 in Methods) and, for each PN, all of 154 

these connections arise from ORNs expressing the same OR type (Figure 1e). This 155 

recapitulates the convergence of like ORNs onto a single glomerulus and the innervation of 156 

single glomeruli by individual PNs (Mombaerts et al., 1996; Vosshall, Wong, & Axel, 2000b). 157 

The extent that PNs receive input from a single OR type was quantified by a GloScore which, 158 

for each PN, is the difference in magnitude between the strongest two connections it receives 159 

from the OR types divided by their sum (Methods). A GloScore of 1 indicates that each PN 160 

receives all its inputs from a single OR type, recapitulating fruit fly connectivity. During training 161 

of the network, the GloScore of ORN-PN connectivity quickly approached values close to 1 162 

(Figure S1b). Thus, the model recapitulates both the singularity of OR expression in the ORNs 163 

and the existence of glomeruli in which ORNs expressing the same OR converge and connect a 164 

glomerulus innervated by a single PN. 165 

 166 

The model also recapitulated distinctive features of PN-to-KC connectivity. Each KC initially 167 

received connections from all 50 PNs but, during training, connections from PNs to KCs became 168 

sparser (Figure 1g). To quantify the number of PN inputs that each KC receives, weak PN-to-169 
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KC connections were pruned to zero during training (Figure S1d-e). Results are insensitive to 170 

the precise value of the pruning threshold, and pruning did not reduce classification 171 

performance (Figure S1d). Furthermore, we found that the average number of PNs per KCs 172 

plateaued during training, with a sparse ~3-7 PN inputs for each KC (Figure S1b). Importantly, 173 

this sparse connectivity can also be obtained without pruning (Figure S1d, Methods). In some 174 

cases, no distinct gap separated weak from strong synapses, making an estimate of connection 175 

sparsity ambiguous; we identify these instances when they occur and exclude them from further 176 

analysis (Figure 1l, Figure S1a). 177 

 178 

The sparsity and lack of structure in the PN-to-KC connections of the model recapitulate the 179 

properties of these connections in the fly (Caron et al., 2013; Li et al., 2020; Zheng et al., 2018). 180 

The sparse KC input had no discernable structure (Figure 1g; Figure S3); the average 181 

correlation between the input connections of all pairs of KCs is similar to the correlations 182 

obtained by randomly shuffled connectivity at every training epoch (Figure 1j). Thus, from ORs 183 

to KCs, the ANNs we have constructed to classify odors exhibit connectivity that mirrors the 184 

layered circuitry of the fly olfactory system, with individual ORs expressing only 1 of 50 185 

receptors, similar ORNs converging onto single glomeruli, and individual PNs that receive input 186 

from only 1 glomerulus making sparse and unstructured connections to KCs. These results 187 

were invariant to model hyper-parameters such as training rate and input noise (Figure S1). 188 

Moreover, they were also independent of non-zero activity correlations between different ORs 189 

(Figure S4). In all subsequent modelling experiments, we did not include the OR-to-ORN 190 

connectivity; instead, every ORN was constructed to express a single OR. 191 

 192 

KCs in the fly are inhibited largely through feedback from a non-spiking interneuron, APL (Aso 193 

et al., 2014a; Lin, Bygrave, De Calignon, Lee, & Miesenböck, 2014; Tanaka, Tanimoto, & Ito, 194 

2008). We modeled the APL assuming that it receives excitatory input from all KCs and 195 
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iteratively provides subtractive feedback inhibition onto every KC (Figure 1k). Feedback 196 

inhibition did not strongly influence the number of PN inputs per KC, the formation of glomeruli, 197 

or task performance (Figure 1I).  198 

  199 
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 200 

Fig. 2 | Dependence of results on biological features 201 

(a) (From top to bottom) Accuracy, GloScore, and KC input degree as a function of training for 202 

networks with and without the non-negativity constraint for ORN-PN connections. (b,c) 203 

Summary of accuracy, GloScore and KC input degree for trained networks while varying the 204 

number of KCs (b), and varying the number of PNs (c). When the number of PNs is high, the 205 

KC input degree cannot be reliably inferred. (d) Schematics of two concentration-invariant tasks. 206 

The odor prototypes (triangles) lie on the unit sphere, making classification boundaries radiate 207 

outwards from the origin. The class that each odor belongs to therefore depends only on its 208 

normalized activity and not on its concentration (i.e., magnitude), unlike in the standard task 209 

(Figure 1b). (Left) A dataset where each OR’s activity is uniformly distributed across odors. 210 

(Right) A dataset where weak and strong odors are more common. The proportion of odors with 211 

extreme concentration values is proportional to the “spread”, a parameter between 0 and 1 (see 212 

Methods). (e) Biological implementations of activity normalization (divisive normalization) 213 

rescues classification performance in a concentration-invariant classification task when odor 214 

concentration is highly variable. In contrast, a normalization method widely used in machine 215 

learning, Batch Normalization (Ioffe & Szegedy, 2015), does not improve performance. 216 

 217 

  218 
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Dependence of results on model features 219 

We next investigated how our results depend on key biological features in the models. The most 220 

critical element for the results we have reported is the restriction to non-negative OR-ORN, 221 

ORN-to-PN and PN-to-KC connections. Convergence of ORNs expressing the same OR onto 222 

PNs does not occur if connections are not sign constrained. Gloscores drop if ORN-PN 223 

connections are not sign constrained, although classification accuracy is maintained (Figure 2a). 224 

In this case, PNs receive a dense array of inhibitory and excitatory connections from ORN 225 

inputs, with the ORN connection patterns received by PNs largely uncorrelated (Figure S5a-d).   226 

 227 

To explore the effect of varying cell numbers, we first trained networks with different numbers of 228 

KCs, with ORNs and PNs fixed at 500 and 50, respectively. As the number of KCs was 229 

decreased, PNs sampled from multiple ORs, decreasing the GloScore and classification 230 

performance (Figure 2b, Figure S5f, S6g-h). Thus, a large expansion layer of KCs is necessary 231 

for high classification performance but, with reduced numbers of KCs, some compensatory 232 

mixing occurs at the PN level. 233 

 234 

We also varied the number of PNs while keeping the numbers of ORNs and KCs fixed at 500 235 

and 2,500, respectively. When the number of PNs is less than the number of unique OR types 236 

(50), the PN layer acts as bottleneck and mixing occurs to ensure that all ORs are represented 237 

(Figure 2c, Figure S5e, S6a), but performance suffers. When the number of PNs is greater than 238 

50, we observed some PN mixing of ORN input, although this did not improve classification 239 

accuracy, which saturates at 50 PNs (Figure 2c, Figure S5e, S6b). A closer examination 240 

revealed that PNs segregate into two distinct populations, a population of uni-glomerular PNs 241 

receiving a single type of OR and multi-glomerular PNs receiving multiple types of ORs (Figure 242 

S6c-f). Moreover, the connection strengths from uni-glomerular PNs to KCs were strong and 243 

crucial for classification performance. In contrast, connection strengths from multi-glomerular 244 
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PNs to KCs were weak, and silencing them minimally impaired classification performance 245 

(Figure S6d-e). 246 

 247 

Why does a PN layer exist if glomerular connectivity simply copies ORN activity forward to the 248 

PNs? Experimental work has shown that the PN layer normalizes odor-evoked responses 249 

(Olsen, Bhandawat, & Wilson, 2010), which is likely to be important for classification of odors 250 

across a range of concentrations. We trained a feedforward network (Figure 1c) to perform 251 

concentration-invariant classification with and without PN normalization while systematically 252 

varying the range of odor concentrations in the task dataset (Figure 2d; Methods).  We 253 

normalized PN activity using a divisive normalization model inspired by the experimental studies 254 

(Luo, Axel, & Abbott, 2010; Olsen et al., 2010). As the range of odor concentrations increased, 255 

divisive normalization allowed the network to perform concentration-invariant classification 256 

(Figure 2e).  257 

 258 

Recurrent neural networks converge to biological structures 259 

By varying the numbers of PNs and KCs, we found that performance plateaus when the number 260 

of PNs (50) matches the number of ORs, and marginal performance gains were observed when 261 

the number of KCs was increased past 2500. However, in the models we have considered thus 262 

far, the number of neurons in each layer and the number of layers are fixed. We next asked 263 

what structure emerges from a neural network that is not only capable of modifying connection 264 

strengths, but also capable of allocating the number of neurons per layer. 265 

 266 

To remove constraints on the numbers of neurons at each layer, we constructed a recurrent 267 

neural network model (RNN) in which 'layers' are represented by network processing steps 268 

(Figure 3a). This allowed us to explore how the network allocates its resources – neurons and 269 

their connections – during each step and infer from this a particular layered network 270 
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architecture. The RNN model contained 2,500 neurons and was initialized with random, all-to-271 

all, non-negative connectivity between all neurons. At the first processing step, 500 of the 2,500 272 

recurrently connected neurons were provided with OR inputs, and the remainder of the neurons 273 

were silent. Thus, this first step of processing represents the ORN layer. 274 

 275 

We first considered an RNN in which odor classes were read out after three processing steps 276 

(Figure 3a). After training, this RNN reaches 67% accuracy, slightly lower than that of the 277 

feedforward network. To test whether the RNN self-organized into a compression-expansion 278 

structure like the feedforward network, we quantified how many neurons were active at each 279 

processing step. Because we did not regularize for activity in the RNN units, a significant 280 

number of neurons have non-zero but weak activations to odors (Figure S7a).  These levels of 281 

activity were bimodally separate from units possessing high levels of activity and were counted 282 

as inactive (Figure S7a, Methods). Although the RNN could have used all 2,500 neurons at 283 

each processing step, odor-evoked activity from the 500 neurons initialized with ORN 284 

activations propagated strongly to only ~50 neurons after the second processing step (Figure 285 

3d). This resulted from the convergence of ORNs onto single neurons (Figure 3b). In contrast, 286 

nearly all neurons of the RNN at the third processing step had average activities (across odors) 287 

above the threshold (Figure 3c). These neurons were driven by sparse, unstructured 288 

connections from ~5-10 PN-like neurons to the remaining ~2,500 RNN neurons (Figure 3c, 289 

Figure S7b-d).  290 

 291 

We next examined the consequence of allowing the RNN to perform four processing steps, 292 

which is equivalent to forcing an additional feedforward layer prior to classification of odors 293 

(Figure 3e). Interestingly, this network did not use the extra layer to perform additional 294 

computations. Rather, it simply copied the activity of the 50-55 PN-like neurons at the second 295 

processing step to another similar set of ~100 neurons at the third processing step, only 296 
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activating the bulk of the 2,500 neurons at the fourth processing step (Figure 3f-i, Figure S7e-h). 297 

Thus, the RNN recapitulated known features of the olfactory circuitry even when the numbers of 298 

neurons available at each level was unconstrained.   299 
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 300 

Fig. 3 | a. Schematic of recurrent neural network using recurrent connections (WREC) (left), and 301 

the equivalent “unrolled” network diagram (right). b, c, Network connectivity between neurons 302 

that are on-average active above a threshold at different steps. b, Connectivity from neurons 303 

active at step 1 to neurons active at step 2. Connections are sorted. c, Connectivity from 304 

neurons active at step 2 to neurons active at step 3, only showing the first 20 active neurons at 305 

step 3. d. Number of active neurons at each step of computation. At step 1, only the first 500 306 

units in the recurrent network are activated by odors. Classification performance is assessed 307 

after step 3.  e-i, Similar to (a-d), but for networks unrolled for 4 steps instead of 3. Classification 308 
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readout occurs at step 4. Effective step 2-4 connectivity is the matrix product of the step 2-3 (g) 309 

and step 3-4 connectivity (not shown).   310 
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Network models with ongoing plasticity 311 

We have shown thus far that biological connectivity emerges from both feedforward and 312 

recurrent network models when trained on an odor classification task with fixed odor-class 313 

mappings. However, the fly olfactory circuit must accommodate the learning of novel odor 314 

associations for the fly to adapt successfully to new environments. Evidence strongly suggests 315 

that plasticity in synaptic connections from KCs to MBONs underlies olfactory learning (Cohn et 316 

al., 2015; Felsenberg et al., 2018; Handler et al., 2019; Hige et al., 2015), whereas PN-KC 317 

connection strengths are thought to be fixed (Gruntman & Turner, 2013; Wilson, 2013). We 318 

therefore introduced Hebbian plasticity between KCs and class neurons and sought to 319 

understand how the KC representation can support ongoing learning. To focus on the PN-KC 320 

representation, we eliminated the ORN layer in these studies (Figure 4a). 321 

 322 

Up to this point, networks were trained to assign odors to a fixed set of classes. Now, we 323 

construct networks that, after training, can continue to learn new odor classes.  This is possible 324 

because the networks are expanded to include ongoing plasticity at the synapses between the 325 

KCs and output units (Methods). During the training process used to construct these networks, 326 

the feedforward network (Figure 4a) learns a new odor-class mapping during each episode on 327 

the basis of this synaptic plasticity (Figure 4b) (Finn, Abbeel, & Levine, 2017). On each episode, 328 

we randomly select 16 odors from each of 5 odor classes drawn from the dataset described 329 

previously (Figure 1b). Following training, the KC-output synapses undergo plastic updates 330 

whereas the remaining network weights are fixed (Methods).   331 

 332 

After the update of the plastic synapses, performance for each training episode is assessed by 333 

a set of odors drawn from each one of the 5 odor classes used on that episode, and the non-334 

plastic network weights are adjusted by backpropagation to minimize errors. This encourages 335 

the network to generalize to new odors on the basis of a limited set of sampled odors (16-shot 336 
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learning). At the start of each episode, non-plastic network weights are retained but plastic 337 

weights are reset. We asked what connectivity evolved between PNs and KCs to support rapid, 338 

flexible learning at the output synapses. 339 

 340 

We found that, after training, networks with KC-output plasticity were capable of learning new 341 

odor categories. These networks reached up to 80% accuracy in the 16-shot learning task 342 

(Figure S8a). Sparse, unstructured connectivity emerged in plastic network models, with an 343 

average of ~5 PNs per KC (Figure 4d-e). These results did not depend strongly on hyper-344 

parameters such as the addition of trainable ORN-PN weights, the number of classes per 345 

episode, or the number of training odors per class (Figure S8a-c). We conclude that PN-KC 346 

connectivity supporting rapid, flexible learning is similar to that observed in the original odor 347 

classification task. 348 

  349 
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 350 

 351 

 352 

Fig. 4 | Network models with ongoing plasticity. 353 

a. Schematic of a meta-trained network. The PN-KC architecture is evolved to support flexible 354 

odor learning at the KC-output synapse (WOUT). b. Multiple datasets are sequentially presented 355 

to the network. Each dataset contains a small number of classes and 16 samples from each 356 

class. During the presentation of each dataset, KC-output connections undergo rapid plasticity 357 

to learn the classes. After fast KC-output learning, generalization performance to a new test set 358 

of odors is assessed and then used to update, i.e. meta-train, the weights of the network. c. PN-359 

KC connectivity after training, showing 20 KCs. d. Distribution of PN-KC connection weights 360 

after training. e. Distribution of KC input degree after training. 361 

  362 
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Predicting connection sparsity for different species 363 

The anatomic organization and functional logic of the fly olfactory system is shared with the 364 

mouse despite the large evolutionary distance separating the two species. In both mouse and 365 

fly, ORNs converge onto a glomerular compression layer, which then projects sparsely to an 366 

expansion layer (KCs in the fly, piriform cortex neurons in the mouse). Unlike in the fly, the input 367 

degree to the expansion layer in mouse (or any other species) can only been inferred from 368 

existing data as 𝐾~40 − 100 (Davison & Ehlers, 2011; Miyamichi et al., 2011) (Figure 5, 369 

Methods). 370 

 371 

We hypothesize that this input degree depends on a variety of parameters, but most heavily on 372 

the number of OR types (~1,000 in mouse compared to ~50 in fly). Therefore, in our neural 373 

network we asked how the expansion layer input degree (𝐾) scales with the number of ORs (𝑁), 374 

termed 𝐾 − 𝑁 scaling. We have presented networks trained to perform two different tasks, one 375 

with a fixed set of odor classes, supervised training and non-plastic synapses, and the other 376 

with changing odor classes, meta-training and plastic synapses (Figure 4). Both of these led to 377 

similarly sparse PN-KC connectivity in fly-sized networks. We now quantify the 𝐾 − 𝑁 scaling for 378 

each of them. 379 

 380 

We constructed network models with different numbers of ORs to examine how their 381 

connectivity scales with OR number (Figure S9). Over the range we considered, connection 382 

number, 𝐾, always increases as a power law function, of 𝑁. However, the 𝐾 − 𝑁	scaling is 383 

substantially different across the two tasks. We found that 𝐾 ≈ 0.37𝑁!.#$ for networks trained 384 

with fixed classes, while 𝐾 ≈ 2.84𝑁!.%$ for networks with plasticity (Figure 5, blue line). The 385 

shallower scaling found in plastic networks (Figure 5, red line) is broadly consistent with that 386 

predicted by previous theoretical work based on determining the wiring that maximizes 387 
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dimensionality (Figure 5, gray line, Litwin-Kumar et al. 2017). The connectivity that maximizes 388 

dimensionality gives rise to 𝐾 ≈ 1.16𝑁!.&% (Methods).  389 

 390 

Although both the fixed and plastic tasks we used to construct networks result in quantitatively 391 

similar sparse PN-KC connectivity in fly-sized networks, they make different predictions for 392 

mouse-sized networks and only fixed-category training appears to produce a result consistent 393 

with the mouse data.  394 

  395 
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 396 

Fig. 5 | Sparsity for different species. 397 

a. The connectivity 𝐾 for networks with different numbers of ORs (𝑁). 𝐾 predicted by various 398 

methods (boxes and dots) and corresponding power-law fits (lines). Cyan: Training for the fixed 399 

odor categorization task; Red: Training for the plastic odor categorization task; Gray: Optimal 𝐾 400 

predicted by maximum dimensionality KC representation (Litwin-Kumar et al. 2017); Crosses: 401 

Experimental estimates. [2]: Miyamichi et al., 2011; [3]: (Davison & Ehlers, 2011). For each 𝑁, 402 

we include results from networks trained with different learning rates. 403 

  404 
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The emergence of an innate pathway 405 

The repertoire of odorant receptors supports the detection of a vast number of odors in the 406 

environment, but a smaller number of receptors exhibit specificity for odors that elicit innate 407 

behaviors (Dweck et al., 2015; Ebrahim et al., 2015; Kurtovic, Widmer, & Dickson, 2007; Min, 408 

Ai, Shin, & Suh, 2013; Stensmyr et al., 2012; Suh et al., 2004). In flies, PNs activated by these 409 

odors project to topographically restricted regions of the LH to drive innate responses (Datta et 410 

al., 2008; Jefferis et al., 2007; Ruta et al., 2010; Varela, Gaspar, Dias, & Vasconcelos, 2019). 411 

We asked whether an artificial network could evolve segregated pathways for innate and 412 

learned responses.  413 

 414 

We trained neural networks to classify both odor class and odor valence. Odor class was 415 

determined as in our original models. To add an innate component, each odor was assigned to 416 

one of 3 categories, 'appetitive', 'aversive', or 'neutral'. Of the 50 ORs, 5 were assigned innately 417 

appetitive responses, another 5 innately aversive responses. Neutral odors activate all ORs as 418 

in our previous networks, with activations drawn from a uniform distribution between 0 and 1 419 

(Figure 6a, left). The 40 ORs with no innate selectivity are activated in this way by non-neutral 420 

valence odors as well. However, each odor bearing a non-neutral valence also activates a 421 

single innate OR especially strongly (on average 3 times stronger than other ORs) (Figure 6a, 422 

right). We used a feedforward architecture with 500 ORNs, 50 PNs, and 2,500 third-order 423 

neurons that project to both class and innate valence output units (Figure 6b). In this case, there 424 

are two sets of output units, one set to report odor class and another to report innate valence. 425 

The 2,500 third-order model neurons represent a mixture of LHN and KC neurons, allowing us 426 

to investigate whether the segregation into two distinct populations is recapitulated by the 427 

model.  428 

 429 
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The network successfully performed both odor classification and valence determination. 430 

Glomeruli emerged for neutral, appetitive, and aversive ORs (Figure S10a). The network also 431 

generated two segregated clusters of third-order neurons (Figure 6c-d, Figure S10b; Methods). 432 

These clusters were segregated based on both input and output connectivity profiles. Cluster 1 433 

typically contains ~2,000 neurons (Figure S10c-d). Cluster 1 neurons are analogous to KCs and 434 

project strongly to class read-out neurons but weakly to valence read-out neurons (Figure 6c, 435 

d). They receive ~5-7 strong inputs from random subsets of PNs (Figure 6e, f, Figure S10e-f). In 436 

contrast, cluster 2 is smaller, containing ~50-200 neurons. Cluster 2 neurons, analogous to 437 

LHNs, project strongly to valence read-out neurons (Figure 6c, d), and typically only receive a 438 

single strong PN input (Figure 6e, f). Thus, the inputs to the KCs are unstructured whereas the 439 

connections to LHN encoding innate valence are valence-specific (Figure 6f).  440 

 441 

We lesioned each cluster of KC/LHN neurons separately to assess its contribution to odor and 442 

valence classification. Lesioning the putative KC cluster (group 1) led to a dramatic impairment 443 

in odor classification performance (Figure 6g) but left the determination of valence intact (Figure 444 

6h). In contrast, lesioning the putative LH cluster (group 2) substantially impaired valence 445 

determination (Figure 6h) but had little effect on classification performance (Figure 6g). These 446 

results demonstrate that the model network can evolve two segregated pathways analogous to 447 

those in the fly.  448 
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 449 

Fig. 6 | Emergence of separate innate and learned pathways. 450 

a. Illustration of the class (left) and valence (right) tasks. Non-neutral odors (right, appetitive in 451 

blue or aversive in red) each strongly activates one non-neutral OR. The network is trained to 452 

identify odor class (left) as previously described (Figure 1b) and also to classify odors into 3 453 

valences (right). b, Schematic of a neural network that is trained to identify both odor class and 454 

odor valence using separate class and valence read-out weights. c. Distribution of third-layer 455 

neurons based on output connection strengths to valence read-out neurons against connection 456 

strengths to class read-outs. K-means clustering revealed that the third layer can be segregated 457 

into two clusters. The density of each cluster is normalized to the same peak value. d, The 458 

connectivity matrix from the first 10 third-layer neurons from each cluster to output units, the first 459 

10 from identity output and all 3 from valence output. e, Distribution of third-layer neurons based 460 

on output connection strengths to valence read-out neurons against input degrees. The 461 

distribution of cluster 2 neurons is difficult to see because almost all of them have the same 462 
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input degree value of 1. f, The connectivity matrix from PNs to first 10 third-layer neurons from 463 

each cluster. g, h. Lesioning the KC-like cluster (group 1) leads to a dramatic drop in odor class 464 

performance. (g) Lesioning the LH-like cluster (group 2) substantially impaired odor valence 465 

performance (h).  466 

 467 

 468 

Discussion  469 

 470 

Network models constructed from machine learning approaches have been used to study the 471 

responses of neural circuits and their relationship to circuit function by comparing the activities 472 

of network units and recorded neurons (Mante et al., 2013; Masse, Yang, Song, Wang, & 473 

Freedman, 2019; Yamins & DiCarlo, 2016; Yamins et al., 2014; Yang, Joglekar, Song, 474 

Newsome, & Wang, 2019). Machine-learning models generate unit responses and perform the 475 

tasks they are trained to do by developing specific patterns of connectivity. It is difficult to 476 

perform a detailed comparison of these connectivity patterns with biological connectomes 477 

(Cueva, Wang, Chin, & Wei, 2019; Uria et al., 2020) given the limited connectomic data. The 478 

current availability of connectome data from flies (Li et al., 2020; Zheng et al., 2018) and the 479 

promise of more connectome results in the future make this an opportune time to explore links 480 

between biological connectomes and machine learning architectures. 481 

 482 

We found that important features of synaptic connectivity shared by the fly and mouse olfactory 483 

systems also evolved in artificial neural networks trained to perform olfactory tasks. The 484 

observation that machine learning evolves an olfactory system with striking parallels to 485 

biological olfactory pathways implies a functional logic to the successful accomplishment of 486 

olfactory tasks. Importantly, the artificial network evolves without the biological mechanisms 487 

necessary to build these systems in vivo. This implies that convergent evolution reflects an 488 
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underlying logic rather than shared developmental principles. Stochastic gradient descent and 489 

mutation and natural selection have evolved a similar solution to olfactory processing.   490 

 491 

We constructed feedforward and recurrent networks using stochastic gradient descent. When 492 

the feedforward networks were initialized with each ORN expressing all 50 receptors, each ORN 493 

evolved to express a single receptor type, recapitulating the expression pattern of ORs in flies 494 

and mice. Further, ORNs expressing a given receptor converge on a single PN and PNs 495 

connect with like ORNs to create a glomerular structure. This convergence, observed in both 496 

flies and mice, assures that mixing of information across ORs does not occur at early 497 

processing layers.  498 

 499 

In the network models we studied, each KC initially received input from all 50 PNs but these 500 

connections become sparse during training, with each KC ultimately receiving information from 501 

~4-10 PNs, in agreement with the fly circuitry. Although most of our machine modeling was 502 

based on the olfactory system in flies, we extrapolated our networks to olfactory systems of far 503 

greater size.  The results of this extrapolation depended on the task and training procedure. For 504 

fixed odor classes, the original task we considered, we obtained an estimate of the number of 505 

inputs to piriform neurons from the olfactory bulb, in rough agreement with data from the mouse 506 

(40-100).  507 

 508 

The architecture of olfactory systems, in vivo and in silica, is based upon two essential features: 509 

converge of a large number of ORNs onto a small number of glomeruli followed by an 510 

expansion onto much larger number of third order neurons. Previous theoretical work suggests 511 

that a goal of the olfactory system may be to construct a high-dimensional representation in the 512 

expansion layer (KCs in the mushroom body or pyramidal cells in the piriform cortex) to support 513 
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inference about the behavioral relevance of odors (Babadi & Sompolinsky, 2014; Litwin-514 

Kumar,et al., 2017). This hypothesis has two important implications for our results. 515 

 516 

One results of this previous work is that task performance is proportional to dimensionality when 517 

odor classes are learned through synaptic plasticity of a Hebbian form (Litwin-Kumar et al., 518 

2017).  In the learning task that we considered, new odor classes were learned through synaptic 519 

plasticity that fits into the Hebbian category, so the resulting network should maximize the 520 

dimension of the expansion layer odor representation to optimize performance.  Indeed, we 521 

found that the sparsity of the connections in the resulting networks has a power-law 522 

dependence on the number of olfactory receptor types that roughly agrees with the scaling that 523 

follows from maximizing dimensionality.  However, we obtained a quite different scaling when 524 

we trained non-plastic networks on the fixed-class task.  Because these networks do not involve 525 

Hebbian plasticity, it is not surprising that they exhibit a different degree of sparsity, but we do 526 

not currently know of an underlying theoretical principle that can explain the sparsity and scaling 527 

we found in the non-plastic case.  Interestingly, it is this case that agrees with existing data on 528 

the connectivity in the mouse (Davison & Ehlers, 2011; Miyamichi et al., 2011). 529 

 530 

Another requirement for achieving maximimum dimensionality is that the representation of odors 531 

by the PNs should be uncorrelated (Litwin-Kumar et al., 2017).  This provides an explanation for 532 

the formation of glomeruli in our network models.  The OR activations we used were 533 

uncorrelated and, to maximize dimensionality, the transformation from ORs to ORNs and then 534 

to PNs must not introduce any correlation. When the weights along this pathway are 535 

constrained to be non-negative, the only connectivity pattern that does not induce PN-PN 536 

correlations is an identity mapping from OR types to PN output.  This is precisely what singular 537 

OR expression and OR-specific projection through olfactory glomeruli provides.  Interestingly, 538 

the results we found suggest that these ubiquitous features of biological olfactory pathways are 539 
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not simply a consequence of noise robustness, as has been conjectured, but rather arise as the 540 

unique solution to eliminating correlations in the glomerular layer to maximize the dimension of 541 

the expansion layer.  542 
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METHODS 730 

 731 

Datasets 732 

To generate the standard dataset, we first generated 𝑁'()*) = 200 odor prototypes. Each 733 

prototype 𝒙2(,) activates 𝑁./ = 50 ORN types or ORs, and the activation of each ORN type is 734 

sampled independently from a uniform distribution between 0 and 1, 𝑥50
(,)~𝑈(0, 1). The 200 735 

prototypes are randomly assigned to 𝑁12344 = 100 behavioral classes, each class containing two 736 

prototypes. A given odor  𝒙2 is a vector in the 50-dimensional ORN-type space, sampled the 737 

same way as the prototypes. When the network’s input layer corresponds to ORNs, each ORN 738 

receives the activation of its OR plus an independent Gaussian noise 𝜖~𝑁(0, 𝜎./5$ ), where 739 

𝜎./5 = 0 by default (no noise). Its associated ground-truth class 𝑐 is set to be the class of its 740 

closest prototype, as measured by Euclidean distance in the ORN-type space. The training set 741 

consists of 1 million odors. The validation set consists of 8192 odors. 742 

 743 

Besides the standard dataset, we also considered several other datasets based on the standard 744 

dataset, as detailed below. 745 

 746 

Concentration dataset. In this dataset (Figure 2), the prototypes 𝒙21)6
(,)  are the normalized 747 

version of the prototypes in the standard dataset 𝒙2(,), so 𝒙21)6
(,) = 𝒙8(")

9𝒙8(")9
. The concentration of each 748 

odor is explicitly varied while the average ORN activation across all odors is preserved. For 749 

each odor, the activation of each ORN type is sampled from a uniform distribution as described 750 

above, and is then multiplied by a concentration scale factor. This scale factor, 𝑠, is determined 751 

by a single parameter, 𝜖, in which: 752 

𝑠 = (1 − 𝜖) + 2 𝜖 Beta(1 − 𝜖, 1 − 𝜖) 753 
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 754 

A value of 𝜖 = 0 produces a dataset with no additional spread, whereas 𝜖 = 1 produces a 755 

dataset exhibiting maximal spread with scale factors densely clustered around 0 and 2. 756 

 757 

Relabel datasets. For the family of relabel datasets (Figure S2), we vary the number of 758 

prototypes 𝑁'()*)=100, 200, 500, 1000 while keeping the number of classes 𝑁12344= 100 fixed. 759 

We refer to these datasets as relabel datasets, because 𝑁'()*) prototypes are relabeled to 𝑁12344 760 

classes. The standard dataset uses relabeling as well. The ratio between 𝑁'()*) and 𝑁12344 is the 761 

odor prototypes per class. 762 

 763 

Meta-learning dataset. This dataset is organized into episodes. Each episode includes a small 764 

amount of training data and validation data. In each episode, we randomly select 𝑁:'4,12344 = 2 765 

classes from the original 𝑁12344 = 100 classes in the standard dataset. For each of the 𝑁:'4,12344 766 

classes chosen, we randomly select 𝑁:'4,43<'2: = 16 odors for training and validation 767 

respectively. Importantly, within each episode, we re-map each of the 𝑁:'4,12344 = 2 selected 768 

classes to 𝑁<:*3 = 2 output classes. Intuitively, the network is always doing a (𝑁<:*3 =) 2-way 769 

classification task. However, the classification boundaries associated with each output class is 770 

different in every episode. There is no fixed relationship between the original class label and the 771 

new label in each episode, so the network has to learn the new class labels based on the 772 

𝑁:'4,43<'2: data points per class. In total, for each episode, there are 𝑁:'4,43<'2:𝑁:'4,12344 data 773 

points in the training set, and the same amount in the validation set. 774 

 775 

Valence dataset. In the valence dataset, we replaced 𝑁4':1=32 = 10 prototypes from the original 776 

𝑁'()*) prototypes with special prototypes that each lies along one axis in the ORN-type space. 777 

In other words, each special prototype activates strongly a single ORN type (a special OR), at 778 
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activity level 1.0. Of the 𝑁4':1=32 special prototypes, 𝑁4':1=32/2 = 5 are set to be appetitive or 779 

“good” odors, and the other 5 to be aversive or “bad” odors. The rest of the 𝑁'()*) −𝑁4':1=32 780 

prototypes and associated odors are set to be neutral and are sampled the same way as the 781 

standard dataset. The task is both to classify the odors, as in the standard dataset, and to 782 

classify the valence (appetitive, aversive, neutral). In both the training and the validation 783 

dataset, we have 10% of the overall odors be appetitive, another 10% be aversive, and the rest 784 

80% be neutral. Therefore, if a network classifies all odors to neutral, the chance level 785 

performance for valence classification is 80%. The neutral odors are sampled in the same way 786 

as the standard dataset. Each appetitive or aversive odor is sampled by adding the activity level 787 

of one special prototype (1.0 for the special OR and 0.0 otherwise) with an activity pattern 788 

sampled from a uniform distribution between 0 and 1. In other words, the activity level of an 789 

appetitive or aversive odor is sampled randomly from 𝑈(1, 2) for the special OR, and from 790 

𝑈(0,1) for other ORs. 791 

 792 

Correlated dataset. In Figure S4, we introduce correlation between responses of different ORN 793 

types. The correlation is independently controlled between 0 and 0.9, while maintaining the 794 

marginal distribution of each ORN type to be uniform between 0 and 1. We used a previously 795 

proposed method (Cario & Nelson, 1997) for generating such correlated random variables while 796 

maintaining their marginal distributions. 797 

 798 

Network architecture 799 

We train networks of various architectures. The ORN-PN-KC network architecture consists of 800 

an input layer of 500 model ORNs, 50 PNs, 2500 KCs, and 100 output units. The 500 ORNs are 801 

made of 10 ORNs per type for all 50 types of ORNs. The activation of each ORN is the sum of 802 

the activation of the corresponding ORN-type 𝑥50 and an independent noise 𝜖~𝑁(0, 𝜎./5$ ), where 803 
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𝜎./5 = 0 by default (no noise). The ORN-PN, PN-KC, and KC-output connections are all fully-804 

connected at initialization. The ORN-PN and PN-KC connectivity are initialized with a uniform 805 

distribution of between 1/𝑁 and 4/𝑁, where 𝑁 is the number of input neurons (500 for ORN-PN, 806 

and 50 for PN-KC). The KC-output connectivity is initialized with the standard Glorot uniform 807 

initialization. The ORN-PN and PN-KC connections are constrained to be non-negative using an 808 

absolute function. All neurons use a rectified-linear activation function (ReLU).  809 

 810 

In the OR-ORN-PN-KC network, we add an additional layer of OR-ORN connections. Here, the 811 

inputs are 50 ORs, activated similarly to the ORNs from the ORN-PN-KC network. The OR-812 

ORN connections are non-negative as well and initialized similarly to ORN-PN and PN-KC 813 

connectivity. 814 

 815 

For the identity/valence classification task, we used a network with two output heads. One 816 

containing 100 output neurons as usual. The other contains 3 output neurons for neutral, 817 

appetitive, and aversive valence. 818 

 819 

We briefly considered an ORN-Output network (Figure S2) that has the output directly read out 820 

from the ORNs. 821 

 822 

Optionally, we include dropout on the KC layer, which at training time, but not testing time, set 823 

a certain proportion 𝑝>()')?* of neurons to zero. The default dropout rate is 𝑝>()')?* = 0 (no 824 

dropout). 825 

 826 

The recurrent network used in Figure 3 is a discrete-time vanilla recurrent network, 827 

𝒓@A% = 𝑓(𝑊B𝒓@ +𝑊C𝒖@ + 𝒃),				𝑡 = 1, 2, … 828 
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The network consists of 2,500 units. The recurrent connection is initialized uniformly between 0 829 

and 4./2500, the input connection is initialized using Glorot uniform initialization. The recurrent 830 

connection is constrained to be non-negative. Out of 2,500 units, 500 receive odor inputs at 𝑡 =831 

1 in the same way as the ORNs in the feedforward network. The classification output is read-out 832 

with at step 𝑇 with connections that are not sign-constrained. By default, we have 𝑇 = 3, which 833 

means the network unrolled in time would have 3 layers (𝑡 = 1, 2, 3) and an output layer. 834 

 835 

The KC recurrent inhibition mediated by a single APL neuron (Figure 1) is implemented by an 836 

inhibitory neuron interacting with the KCs iteratively. The single inhibitory neuron has a neural 837 

response equal to the mean KC activation level at each time step. This neuron then sends 838 

subtractive inhibitory inputs to all KCs with a connection weight 𝛾 (KC recurrent inhibition 839 

strength in Figure 1). Therefore, the KCs at each time step 𝑡 are activated as 840 

𝑟,(𝑡) = 𝑓L𝑢,(𝑡) − 𝛾 ⋅
1
𝑁DE

O𝑟0
0

(𝑡 − 1)P. 841 

Here 𝑓(⋅) is the ReLU activation function. 𝑢,(𝑡) = 𝑢, is the feedforward input to the 𝑖-th unit. 𝑟,(𝑡) 842 

is the activation level of the 𝑖-th unit at time step 𝑡. We run this recurrent inhibition for 10 time 843 

steps. 844 

 845 

The divisive normalization used on the PN layer in Figure 2 is implemented in the following 846 

way. Neuron 𝑖 in this layer receives input 𝑢,, and the final activation of this neuron, 𝑟, follows, 847 

𝑟, = 𝑟FGH ⋅
𝑢,

𝑢, + 𝜌 +𝑚∑ 𝑟00
 848 

Here, 𝑟FGH , 𝜌, 𝑚 are parameters that are trained with gradient descent alongside other trainable 849 

parameters. In initialization, we have 𝑟FGH = 𝑁/2, 𝜌 = 0, 𝑚 = 0.99, where 𝑁 is the number of 850 
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neurons in this layer. For stability during training, we clamped 𝑁/10 ≤ 𝑟FGH ≤ 𝑁, 0 ≤ 𝜌 ≤ 3, 851 

0.05 ≤ 𝑚 ≤ 2. 852 

 853 

Training 854 

The output of the network is linearly read out with trainable weights from the final layer (KC layer 855 

in feedforward networks, or the recurrent layer). The loss is softmax cross-entropy loss. The 856 

default training method is the adaptive stochastic gradient descent method Adam with learning 857 

rate 5e-4, and exponential decay rates for first and second moments 0.9 and 0.999 respectively 858 

(the Pytorch default hyperparameter values). The training batch size is 256. By default, we used 859 

batch-normalization on the PN layer to prevent individual neurons from being active or silent for 860 

all odors. The network is typically trained for 100 epochs, each epoch would expose the network 861 

to all of the one million odors from the training set.  862 

 863 

Ongoing Plasticity 864 

For the ongoing plasticity results in Figure 4, we use the delta rule to simulate ongoing plasticity 865 

in the readout connections (KC-output weights for the model fly network) [Cite Dayan & Abbott 866 

book]. The delta rule is more biologically plausible than the general gradient descent algorithm 867 

because it relies on local information. However, it is not intended to model with high fidelity the 868 

biological plasticity rules at the KC-MBON synapses. The delta rule is used here to encourage a 869 

KC representation that supports rapid, flexible learning. The default delta rule learning rate is 870 

5e-4. 871 

 872 

During each learning episode (see Meta-learning dataset section), the network is presented with 873 

a small amount of training and validation data from the meta-learning dataset. The network 874 

takes a single delta rule step based on the training data, and the loss is evaluated based on the 875 

validation data. The objective of meta-training is to minimize the expected validation loss of the 876 

inner training. Meta-training updates all weights and biases in the network at the end of each 877 
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learning episode using the gradient descent variant, Adam. This meta-training method is a 878 

special case of a more general method called MAML, or Model-Agnostic Meta-Learning (Finn, 879 

Abbeel, & Levine, 2017a). This method aims at finding (meta-training) parameter values 880 

(connection weights and biases) that allow rapid few-step gradient descent learning using a 881 

small amount of new training data. We largely adhered to the method detailed in Finn et al., with 882 

a few notable exceptions. First, the inner training only performs gradient descent on the KC-883 

output connection. Gradient descent applied only to the last layer reduces to the delta rule. 884 

Second, the learning rate of the inner training is allowed to be adjusted by the meta-training 885 

process. The latter assumption does not substantially impact our results. 886 
 887 

GloScore 888 

The glomeruli score (GloScore) of a PN-ORN connectivity matrix 𝑊I5→./5 is computed by first 889 

averaging all connections from ORNs of the same type. For each PN, we find the strongest 890 

connection weight 𝑤% and the second strongest connection weight 𝑤$ from the averaged ORNs. 891 

For non-sign-constrained weights, we use the absolute values of weights. Then GloScore for 892 

each unit is computed as, 893 

GloScore = (𝑤% −𝑤$)/(𝑤% +𝑤$). 894 

Final GloScore of the entire connection matrix is the average GloScore of all PNs. 895 

 896 

Weight pruning and connection sparsity estimation 897 

By default, we have synaptic weight pruning during training. Weights below a certain threshold 𝜃 898 

are permanently set to zero during and after training. The threshold is set to be 𝜃 = 1/𝑁, where 899 

𝑁 is the number of input neurons for each connectivity matrix. Weight pruning provides a less 900 

ambiguous quantitative estimate of connection sparsity. 901 

 902 

We observe that in some networks, the distribution of weights has a clear, single peak away 903 

from the pruning threshold, and the weight distribution approaches 0 towards the threshold (see 904 
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Figure S1c for examples). In these cases, the connection sparsity (or density) can be easily 905 

inferred by simply quantifying the proportion of connection weights above threshold. However, 906 

we found that in some networks (some hyperparameter settings), the distribution of weights has 907 

a peak very close to the threshold, making it difficult to count the above-threshold weights. 908 

Therefore, we employ a simple heuristic to check if there is a clear peak in the weight 909 

distribution far from the pruning threshold. Our heuristic requires the peak of the above-910 

threshold weight distribution be at least 2./𝑁 larger than the threshold itself, which by default is 911 

at 1./𝑁. Networks that do not satisfy this “clear peak” criteria are not used to compute the input 912 

degree, and their 𝐾 values not shown in plots (e.g. Figure S1a). 913 

 914 

When the network does not undergo pruning of weak weights as in some control experiments 915 

and for the RNN results, it is necessary to try inferring a threshold separating weak and strong 916 

weights. We fit a mixture of two Gaussians model to the log-distribution of weights. The 917 

weak/strong weight threshold is where the probability density of the two Gaussian modes cross. 918 

In this case, the inferred threshold is used, instead of the pruning threshold, in the above 919 

heuristics for determining whether the strong weights have a clear peak in its distribution. 920 

 921 

We have done extensive comparisons between networks with and without pruning across 922 

various hyperparameter values (many results not shown in figures). For the feedforward 923 

network architectures, pruning almost always leads to clearer above-threshold peak in the 924 

weight distribution. Importantly, the sparsity result is not a result of pruning per se. When there 925 

is no pruning, and the weights clearly separate into weak and strong peaks (for example when 926 

𝑁'()*) = 𝑁12344 = 100), the inferred connection sparsity is quantitatively very close to that 927 

obtained from networks with pruning. In addition, the network performance is generally identical 928 

with or without pruning. 929 
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 930 

Inferring connection sparsity from experimental data in mouse 931 

Two previous publications used different approaches to estimate the input degree, K, in mice. 932 

The first experiment (Miyamichi et al., 2011) used retrograde anatomic tracing to derive a 933 

convergence index of number of mitral/tufted cells (equivalent of PNs) over the number of 934 

piriform neurons (equivalent of KCs), and found values ranging from 3-20. The transfection 935 

efficiency of retrograde labeling was estimated to be roughly 10% (Reardon et al., 2016), so the 936 

input degree may vary from 30-200 M/T inputs per piriform neuron. The second experiment 937 

(Davison & Ehlers, 2011) used optical glutamate uncaging to activate defined points on the 938 

olfactory bulb while recording piriform responses, and found that most cells responded to >15 939 

uncaging sites. The authors estimate that 2-3 glomeruli are activated per uncaging site, 940 

providing a lower bound of K=40 for input degree.  941 

 942 

Randomness 943 

To determine whether the frequency of PN input onto KCs is significantly above or below 944 

chance expectations, PN-KC connections in the trained network were shuffled while maintaining 945 

the number of connections each KC receives and the identity of PN inputs. We generated the 946 

shuffled data by making a list of PNs that contributed to each PN-KC connection. We then 947 

randomly permuted this list and drew from it sequentially to construct a new set of connections 948 

for each of the 2500 KCs, drawing as many random connections for each KC as it receives in 949 

the trained network. This shuffling eliminates any potential, non-random PN inputs onto 950 

individual KCs, and is used to analyze whether KCs are connected to any preferential pair of 951 

glomeruli (Figure S3).  952 

 953 
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To determine whether the distribution of PN inputs onto KCs is binomial, the probability of a 954 

connection between each PN with each KC is sampled independently from a Bernoulli 955 

distribution with the overall PN-KC connection probability, 𝑝, of a trained network. 956 

 957 

Analysis of RNNs 958 

In Figure 3, we analyzed a recurrent neural network, which unlike traditional recurrent networks, 959 

is not running in time. Instead we use it as a way to force a limited budget on the total number of 960 

neurons, without specifying the exact number of neurons to be used at each processing step. 961 

 962 

The key analysis is to infer how many neurons are assigned by the network to each processing 963 

step (the same neuron may be used at multiple steps). For each neuron, we computed its 964 

average activity at each processing step in response to all odors shown the network. If its 965 

average activity at a processing step exceeds a certain threshold, we deem this neuron active at 966 

this step. Note that by this definition, an “active neuron” may not be active for each odor. All we 967 

ask is that it is sufficiently active for some odors. We used the same threshold of 0.2 across all 968 

processing steps, manually chosen after inspecting the distribution of activity (Figure S7). We 969 

did not use a threshold of 0 because many neurons are activated very weakly but above zero on 970 

average. With positive connection weights used in our networks, it is generally more difficult to 971 

have a neuron be activated at 0 across all odors at a given processing step. 972 

 973 

Analyzing networks of different numbers of OR types 974 

For Figure 5, we trained networks with different numbers of OR types (𝑁), ranging from 25 to 975 

200. For simplicity, we focused on the connections from the compression to the expansion 976 

layer, while ignoring the connections from ORNs to the compression layer. Therefore, all 977 

networks consist of 𝑁 input neurons representing ORN activity, which in turn project to 𝑀 978 

expansion layer neurons. For each value of 𝑁, the number of expansion layer numbers 𝑀 is set 979 
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as 𝑁$. For each number of OR, we trained networks with different levels of learning rate 1e-3, 980 

5e-4, 2e-4, 1e-4. We include in our summary plot (Figure 5) only networks that contain a clear 981 

peak in the weight distribution, using the criteria established above. 982 

 983 

To obtain the maximum dimensionality curve in Figure 5, for each number of OR, we first 984 

computed the representation dimensionality (Litwin-Kumar et al. 2017) in response to the 985 

training odors when the third-layer input degree is fixed at different values. Then we identified 986 

the input degree corresponding to the maximum dimensionality. Finally, we repeat this process 987 

for networks with different numbers of ORs. Importantly, we did not use feedforward inhibition 988 

that sets the overall mean input to be zero. When mean-canceling feedforward inhibition is 989 

used, the maximum dimensionality is achieved at 𝐾 = 𝑁/2. When introducing an additional 990 

constraint on the total number of connections, the optimal 𝐾 becomes substantially lower, 991 

around 7 for 𝑁 = 50. However, since we do not constrain the total number of connections for 992 

each network, we did not include feedforward inhibition in Figure 5, leading to a 𝐾 that is around 993 

3 for 𝑁 = 50.  994 

 995 

Analysis of identity/valence two-task networks 996 

For the two-task networks, we used all combinations of the following hyperparameter values: 997 

PN normalization (None or Batch Normalization), learning rate (1e-3, 5e-4, 2e-4, 1e-4), KC 998 

dropout rate (0, 0.25, 0.5), resulting in 24 networks trained. 999 

 1000 

To assess whether the expansion layer neurons break into multiple types when analyzing the 1001 

two-task networks, we represent each third-layer (expansion layer) neuron with three variables: 1002 

(1) its input degree (the number of above-threshold connections from the previous layer), (2) the 1003 

norm of its connection weights to the identity classification head, (2) the connection weight norm 1004 
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to the valence classification head. Since these variables are of different scales, we z-scored 1005 

them (mean subtract then divide by standard deviation). We then obtained a 3-dimensional 1006 

depicture of each third layer neuron. 1007 

 1008 

Next we did k-means clustering on the normalized data with 𝑘 (the pre-determined number of 1009 

clusters) ranging from 2 to 10. We quantified the quality of each clustering result with its 1010 

silhouette score (the higher the better), which intuitively compares the inter-cluster distance with 1011 

the intra-cluster distance. We found that the optimal number of clusters is generally 2 or 3. We 1012 

analyzed all networks with 2 optimal clusters. We named the cluster of neurons with stronger 1013 

connections to the identity readout head as cluster 1, the other as cluster 2. 1014 

 1015 

In Figure 6c, e, we computed the density of neurons in these data spaces separately for each 1016 

cluster, before adding the densities together. This visualization allows for a clearer depiction of 1017 

the density peak of each cluster. 1018 

 1019 

When lesioning either cluster 1 or 2 in Figure 6g, h, we set the outbound weights from the 1020 

lesioned neurons to 0, equivalent to setting their activity to 0.  1021 

  1022 
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Figure S1 1023 

  1024 
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Figure S1 | Robust formation of glomeruli and sparse connectivity, Related to Figure 1 1025 

a. Accuracy (top), GloScore (middle), and KC input degree (K, bottom) as a function of 1026 

hyperparameters. From left to right, learning rate, noise level, PN normalization, KC dropout 1027 

rate, and initial PN-KC weights. K values are not shown for networks where the PN-KC 1028 

connectivity does not contain a single peak well separated from the pruning threshold (see 1029 

Methods). When a single peak can be inferred (blue dots), GloScore remains high, and KC input 1030 

degree remains around 5 to 10.  1031 

b. Accuracy (top), GloScore (middle), and KC input degree (K, bottom) during training. For each 1032 

plot, one hyperparameter is varied, from left or right: learning rate, noise level, and KC dropout 1033 

rate. Networks of different hyperparameter values converge to the same GloScore and KC input 1034 

degree during training, as long as PN-KC connectivity is well separated (solid lines). 1035 

c. Distribution of PN-KC connection weights for networks of different hyperparameter values. 1036 

Left to right: Learning rate, PN normalization, noise level, and KC dropout rate. Having no PN 1037 

normalization leads to PN-KC weights poorly separated from the threshold, explaining why in (a) 1038 

the K value is not shown for the network with no PN normalization. 1039 

d, e. The effect of pruning weak PN-KC weights. Pruning weak PN-KC weights does not affect 1040 

performance (d), but it allows a cleanly separated distribution of PN-KC weights from the 1041 

threshold (e). The lack of a clean separation without pruning (e) leads to unreliable estimation of 1042 

the PN-KC input degree (d).  1043 
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Figure S2 1044 

 1045 

Figure S2 | Effect of having multiple odors associated with each class, Related to Figure 1046 

1 1047 

a, Schematics of two datasets. (Top) Illustrating a dataset where only one odor prototype 1048 

(triangle) is associated with each class. Each class then corresponds to a contiguous area in the 1049 

input activity space, and the dataset is linearly separable. (Bottom) Illustrating a dataset where 1050 

each class is associated with two odor prototypes residing in segregated locations in OR activity 1051 

space. b, From top to bottom, accuracy, GloScore, KC input degree, and KC activity sparsity 1052 

(percentage of KCs active on average) for networks trained on datasets with different numbers 1053 

of odor prototypes per class. Having more odor prototypes per class promotes KC activity 1054 

sparsity, while keeping GloScore high and KC input degree almost constant. Having KC dropout 1055 

has a similar impact. c, d, Comparing accuracy between the full ORN-PN-KC-Output network 1056 

(c) and a simple ORN-Output network (d). The ORN-Output network has classification readout 1057 

directly from the ORN input layer. This shallow network performs well on the dataset with 1 odor 1058 

prototype per class (linearly separable), but much worse than the full network on more complex 1059 

datasets.  1060 
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 Figure S3  1061 

 1062 
Figure S3 | Random sampling of PN inputs from KCs and the impact of KC recurrent 1063 

inhibition, Related to Figure 1 1064 

a, Average probability of connection from all KCs (n=2500) to each individual PN (n=50). KCs 1065 

sample uniformly from all PNs.  1066 

b, Plotting the distribution of number of KCs that receive each of the 1225 (=50x49/2) unique 1067 

pairs of glomeruli. Data derived from training is shown in blue, and shuffled connections are in 1068 

orange. Shuffling maintains the frequency of glomerular connections and the distribution of KC 1069 

input degrees, but eliminates non-random patterns of inputs onto individual KCs. KCs are not 1070 

preferentially connected to any specific pair of PNs.  1071 

c, Plotting the distribution of KC input degrees for all KCs (n=2500). Data derived from training 1072 

is in blue, and random connections are in orange (probability of connections is the same for all 1073 

PN-KC connections). Here, shuffling was Bernoulli, thus every PN-KC connection had an equal 1074 

probability of being non-zero. Training leads to a distribution that is more centered around 7 1075 

than a random model. 1076 

 1077 

  1078 
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Figure S4 1079 

 1080 

Figure S4 | The impact of input correlation, Related to Figure 1 1081 

a, Illustration of a dataset with 0.8 correlation coefficient between activity of different ORs. b, 1082 

(Top to bottom) Accuracy, GloScore, and KC input degree for networks trained on datasets with 1083 

different OR correlations. OR correlation level has no clear impact on GloScore and KC input 1084 

degree.  1085 
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Figure S5 1086 

 1087 

Figure S5 | Impact of key network hyperparameters, Related to Figure 2 1088 

a, b, ORN-PN connectivity (a) and PN-KC connectivity (b) in a network without non-negative 1089 

ORN-PN connections. c, d, Training decorrelates ORN-PN connections in networks with (c) and 1090 

without (d) non-negative ORN-PN connections. Each PN unit receives connections from 500 1091 

ORNs, their weights summarized by a 500-dimensional vector. For two PN units, we compute 1092 

the cosine similarity (cosine of angle) between each of their input weight vectors. The 1093 

distribution of cosine similarities between all pairs of PN units in trained networks (blue), and in 1094 

random networks (orange). If ORN-PN connections are non-negative, the random weights are 1095 

drawn from a uniform distribution between 0 and 1, otherwise drawn from a random Gaussian 1096 

distribution. These results show that training reduces the cosine similarity between input weights 1097 

to pairs of PNs, decorrelating PNs. 1098 

e, f, Accuracy, GloScore, KC input degree for networks with different numbers of PNs (e) and 1099 

KCs (f), and for different levels of KC dropout rate.1100 
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Figure S6 1101 

 1102 

Figure S6 | Impact of varying the number of neurons each layer, Related to Figure 2 1103 

a, ORN-PN connectivity (left) and PN-KC connectivity (right) for a network with 30 PNs. b, 1104 

Similar to (a), but for a network with 200 PNs. In neither case does ORN-PN connections form 1105 

clean glomeruli. 1106 

c-f, Analysis of a network with 200 PNs. c, The distribution of GloScore computed for each PN 1107 

unit. A proportion of PNs have close to 1 GloScore. The threshold separates UniGlo units and 1108 

MultiGlo units. d, UniGlo units tend to make stronger connections to KCs. e, Lesioning UniGlo 1109 

units has a far stronger impact on accuracy. f, Connections from ORNs to PN with highest 1110 

GloScore (left) and lowest GloScore (right). 1111 

g-h, Similar to (a, b), but for networks with 50 and 10,000 KCs.  1112 
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Figure S7  1113 

 1114 
Figure S7 | Additional analyses of the recurrent neural network model, Related to Figure 1115 

3 1116 

a-d. Analysis of a RNN unrolled for 3 steps. (a) Distribution of neuron’s mean activity level, 1117 

computed at different processing steps. Left to right, step 1 to 3. For each neuron, we compute 1118 

the average activity across all odors. Each dash line corresponds to the threshold used to define 1119 

active neurons. The same value of 0.2 used for all distributions. (b,c) Distribution of step 1 to 1120 

step 2 (‘PN-KC’) connection weights after training, in linear space (b) and log space (c). No 1121 

weight pruning is used for RNNs. In log space, the distribution is fit by a bi-modal Gaussian 1122 

distribution. Strong PN-KC weights refer to the connections above the threshold separating 1123 

these two modes. c, The distribution of strong “PN inputs to KC”. Here PN neurons refer to 1124 

neurons active at step 1, while KC neurons refer to those active at step 2. 1125 
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e-h, Similar to (a-d), but for networks unrolled for 4 steps instead of 3. Classification readout 1126 

occurs at step 4. Here “PN-KC weights” refers to the effective step 2-4 connectivity, which is the 1127 

matrix product of the step 2-3 and step 3-4 connectivity. 1128 
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Figure S8 1129 

 1130 

Figure S8 | Formation of sparse connectivity during meta-learning, Related to Figure 4 1131 

a, Accuracy and KC input degree for networks meta-trained with different hyperparameter 1132 

values. From left to right, meta learning rate, whether weak PN-KC weights are pruned, whether 1133 

to include a trainable ORN-PN layer, KC dropout rate, number of classes within each meta 1134 

learning episode (see Methods), number of samples per class within each episode. By default, 1135 

the PN layer forms exact glomeruli (each PN unit receives connections only from the same type 1136 

of ORNs), and the ORN-PN connections are fixed. Although PN-KC connectivity remains 1137 

sparse, KC input degree is moderately affected by hyperparameter choices. Convention is the 1138 

same as Figure S1. 1139 

b, Accuracy and KC input degree during meta-training for networks with different 1140 

hyperparameter values. 1141 

c, Distribution of PN-KC weights after meta-training for different networks.  1142 
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Figure S9 1143 

 1144 

Figure S9 | Impact of changing the number of olfactory receptors (ORs), Related to 1145 

Figure 5 1146 

a, Accuracy and KC input degree for networks trained with different learning rates. From top to 1147 

bottom, networks with different number of ORs (25, 100, 150). ORN-PN connectivity is fixed and 1148 

PNs form exact glomeruli. Here we use PN to refer to the second compression layer in the 1149 

network, and KC as the third expansion layer. 1150 

b, Accuracy and KC input degree across training. When the distribution PN-KC connectivity 1151 

shows a clear separated peak from the pruning threshold (solid lines), KC input degrees 1152 

converge to the same value across learning rate values. 1153 

c, The distributions of PN-KC weights for different learning rate values.  1154 
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Figure S10 1155 

 1156 

Figure S10 | Additional analyses for the emergence of innate and learned pathways, 1157 

Related to Figure 6  1158 

a, b, Connectivity of an example network. ORN-PN connectivity (a) and PN-Third layer 1159 

connectivity (b). (b) is the same as Figure 3d. 1160 

c, Silhouette score as a function of the number of clusters used for K-means clustering 1161 

algorithm. Silhouette score rates how well the clusters segregate by comparing intra-cluster 1162 

distance with inter-cluster distance. Across networks with different hyperparameter 1163 

combinations (see Methods), Silhouette score peaks at number of cluster equals to 2 or, less 1164 

commonly, 3. 1165 

d, Across models, cluster 1 has around 2,000 neurons while cluster 2 has less than 200 1166 

neurons. Clusters are sorted according to their average connection strength to the valence 1167 

classification head. So cluster 1 neurons has on average weaker connections to the valence 1168 

output than cluster 2 neurons. Only analyzing networks where Silhouette score peaks at two 1169 

clusters (c). 1170 

e, f, Accuracy, GloScore, KC input degree during training for different values of learning rates 1171 

(e) and KC dropout rate (f). 1172 
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