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A B S T R A C T

Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can
reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in
sampling neural activity. This poses the question to which degree such measurement differences consistently bias
the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a
concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate
classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI
data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-
temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we
found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components
emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we
found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual
cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and
complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and
EEG research.
1. Introduction

Multivariate pattern analysis of magnetoencephalography (MEG)
and electroencephalography (EEG) data provide a fine-grained char-
acterization of the temporal dynamics of neural activity. Recent
research efforts have applied multivariate analyses, such as pattern
classification and representational similarity analysis (RSA) (Krie-
geskorte and Kievit, 2013), in a rapidly expanding range of studies,
demonstrating that MEG and EEG signals contain information about a
diverse array of sensory and cognitive processes (e.g. see Bar et al.,
2006; Groen et al., 2013; Cichy et al., 2014; Clarke et al., 2014; Isik
et al., 2014; King and Dehaene, 2014; Kaneshiro et al., 2015; Myers
et al., 2015; Kietzmann et al., 2016).

While in principle MEG and EEG signals arise from the same neuronal
sources, typically postsynaptic currents from apical dendrites of pyra-
midal cells in cortex, there are consistent physical differences in the
generated magnetic and electric fields (Cohen and Hosaka, 1976; Cohen
and Cuffin, 1983; H€am€al€ainen et al., 1993) for several reasons. Radially-
oriented sources are prominent in EEG but nearly silent in MEG,
Psychology, Free University Berlin, J
hy).
suggesting the existence of unique information coded in EEG signals.
Further, the MEG and EEG spatial patterns of tangentially-oriented
sources are 90� relative to each other, leading to differential spatial
sampling of neural activation. Also, EEG has higher sensitivity to deep
sources than MEG. Unlike MEG, though, volume currents measured by
EEG are deflected and smeared by the inhomogeneity of the tissues
comprising the head.

These differences suggest that MEG and EEG are sensitive to partly
common, and partly unique aspects of neural representations. This has
been asserted by a large body of previous research encompassing theo-
retical argument as well as practical and experimental investigations
mainly in the context of source localization and epilepsy research (e.g.,
Leahy et al., 1998; Henson et al., 2003; Sharon et al., 2007; Molins et al.,
2008; Fokas, 2009). However, the relation of MEG and EEG in the context
of multivariate analysis methods such as classification and RSA has not
been investigated. Thus, two open questions remain: how comparable are
the results of multivariate analyses when applied to either MEG or EEG,
and to which extent do they resolve common or unique aspects of visual
representations?
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To address these open questions, we conducted an experiment with
concurrent recording of MEG and EEG signals while participants
viewed images of objects of different categories. We then applied
equivalent multivariate pattern analyses to data from each modality
and compared results in the time domain by 1) assessing the time
courses with which objects and categories were discriminable by
pattern classification, and 2) characterizing common vs. unique as-
pects of visual representations using representational similarity anal-
ysis. In space, we compared MEG and EEG by assessing the fusion of
the temporally-informed MEG and EEG representations with spatially-
informed fMRI representations using representational similarity anal-
ysis (Cichy et al., 2014, 2016c).

2. Methods

2.1. Participants

16 healthy human volunteers (7 female, age: mean ± s.d.¼ 24.1 ± 4.5
years, recruited from a participant pool at Massachusetts Institute of
Technology) participated in the experiment. Written informed consent
was obtained from all subjects. The study was approved by the local
ethics committee (Institutional Review Board of the Massachusetts
Institute of Technology) and conducted according to the principles of the
Declaration of Helsinki.

2.2. Visual stimulus set and experimental design

he stimulus set consisted of 92 color photographs (Kiani et al., 2007;
Kriegeskorte et al., 2008b; Cichy et al., 2014, 2016b) of human and non-
human faces and bodies, as well as natural and artificial objects isolated
on a gray background (Fig. 1a). Participants viewed images presented at
the center of the screen (4� visual angle) for 500 ms and overlaid with a
light gray fixation cross. Each participant completed 15 runs of 290 s
duration each. Every image was presented twice in each run in random
order, and the inter-trial interval (ITI) was set randomly to 1.0 or 1.1 s
with equal probability. Participants were asked to maintain fixation and
to press a button and blink their eyes in response to a paper clip image
shown randomly every 3 to 5 trials (average 4). The paper clip image was
not part of the 92 image set, and paper clip trials were excluded from
further analysis.

2.3. MEG and EEG acquisition and preprocessing

MEG and EEG signals were acquired simultaneously. We recorded
MEG signals from 306 sensors (204 planar gradiometers, 102 mag-
netometers, Elekta Neuromag TRIUX, Elekta, Stockholm), and EEG
signals from 74 sensors (custom-made cap with MEG compatible Ag/
AgCl sensors; Easycap, Germany; sensor layout in Supplementary
Fig. 1). Acquisition was continuous with a sampling rate of 1000 Hz,
and MEG/EEG data was filtered online between 0.03 and 330 Hz. Raw
MEG data was preprocessed using Maxfilter software (Elekta, Stock-
holm) to perform noise reduction with spatiotemporal filters and head
movement compensation (Taulu et al., 2004; Taulu and Simola, 2006).
We applied default parameters (harmonic expansion origin in head
frame ¼ [0 0 40] mm; expansion limit for internal multipole base ¼ 8;
expansion limit for external multipole base ¼ 3; bad sensors auto-
matically excluded from harmonic expansions ¼ 7 s.d. above average;
temporal correlation limit ¼ 0.98; buffer length ¼ 10 s). Further
preprocessing was carried out using Brainstorm (Tadel et al., 2011). In
detail, we extracted the peri-stimulus MEG/EEG data of each trial from
�100 to þ900 ms with respect to stimulus onset, removed baseline
mean, smoothed data with a 30 Hz low-pass filter and divided the data
of each sensor by the standard deviation of the pre-stimulus baseline
signal of that sensor. This procedure yielded 30 preprocessed trials for
each of the 92 images per participant. The data set is available
upon request.
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2.4. Multivariate analysis

As the basis for multivariate pattern classification and subsequent
comparison of MEG and EEG-based results in representational space, we
sampled MEG and EEG data by sensors in four different ways: i) all 74
EEG sensors, ii) all 306 MEG sensors, iii) a random subset of 74 MEG
sensors, thus equal to the number of EEG sensors, and iv) the combina-
tion of all 380 MEG and EEG sensors. In supplementary analyses (as re-
ported in Supplementary Figures 2–6 & Supplementary Tables 1-8) we
further report on other samplings of MEG and EEG data: i) 32 EEG sensors
to determine whether basic EEG setups also enable multivariate analysis,
ii) all magnetometers and iii) all gradiometers to investigate both types of
MEG sensors separately, and iv) 74 magnetometers and v) 74 gradiom-
eters to equate the number of sensors to EEG. We use the labels MEG,
EEG, MEG&EEG for the full sensor arrays (306 MEG sensors, 74 EEG
sensors, 380 MEG/EEG sensors), and provide the number of sensors in
brackets only for reduced data sets, e.g. MEG (74), EEG (32), etc. All
reduced data sets were constructed with equiprobable random samplings
of the corresponding full sensor arrays (see next section).

Note that for clarity we do not reference Supplementary Figures and
Tables with supplementary sensor samplings each time in the main
manuscript. The main manuscript focuses on the four main sensor sam-
plings, with supplementary results shortly introduced in the beginning,
and referenced in the main figure table captions, since there is a direct
correspondence in formatting and content.

2.4.1. Time-resolved single image classification
We first determined the time course with which single experimental

conditions, i.e. images, are discriminated by MEG and EEG activation
patterns (Fig. 1B). Discrimination was assessed using linear support
vector machine (SVM) classification (Müller et al., 2001), as imple-
mented in the libsvm software (Chang and Lin, 2011) with a fixed reg-
ularization parameter C ¼ 1. The classification approach was
time-resolved, with pattern vectors created from MEG and EEG sensor
measurements separately for every millisecond. In particular, for each
time point t (from �100 to þ900 ms in 1 ms steps), condition-specific
sensor activation values for each trial (M ¼ 30) were concatenated to
pattern vectors, resulting in 30 raw pattern vectors. To reduce compu-
tational load and improve the signal-to-noise ratio, we sub-averaged the
M vectors in groups of k¼ 5 with random assignment, obtainingM/k¼ 6
averaged pattern vectors. For all pair-wise combinations of conditions,
we trained and tested the SVM classifier on the averaged pattern vectors.
In detail,M/k-1 pattern vectors were assigned to a training set to train the
SVM. The withheld pattern vectors were assigned to a testing set and
used to assess the performance of the trained SVM (% decoding accu-
racy). The training and testing procedure was repeated 100 times with
random assignment of raw pattern vectors to averaged pattern vectors.
For the case of reduced sensor data sets, this also involved resampling the
sensors for each iteration to obtain an unbiased estimate of decoding
accuracy. For each time point, we stored the classification result aver-
aged across iterations in matrices of 92 � 92 size, indexed in rows and
columns by the classified conditions. This decoding matrix is symmetric
and has an undefined diagonal (no classification within condition).

2.4.2. Time-resolved object category discrimination
We evaluated when MEG and EEG activation patterns allow

discrimination of five different object categorizations at the super-
ordinate (animate vs. inanimate, natural vs. artificial), ordinate (bodies
vs. faces) and sub-ordinate category level (human vs. animal bodies and
faces). For this, we partitioned the 92 � 92 decoding matrices into
within- and between-category segments for the relevant categorization
according to the pairs of conditions indexed by each matrix element.
(Fig. 2A). The average of between minus within-category decoding ac-
curacy values is a measure of clustering by category, indicating infor-
mation about category membership over and above the discriminability
of single images.
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2.5. Common and unique aspects of visual representations in MEG and
EEG data

To reveal the common versus unique aspects of visual representations
captured by multivariate pattern analysis of MEG and EEG data, we used
representational similarity analysis (RSA) (Fig. 3A). We interpret
decoding accuracy as a dissimilarity measure (Cichy et al., 2014, 2016a,
2017): the higher the decoding accuracy, the more dissimilar the acti-
vation patterns are for the classified conditions. The use of decoding
accuracy determined by a linear SVM as a distance measure has the ad-
vantages that i) it automatically selects sensors that contain discrimina-
tive information, thus obviating the need for human-based selection that
risks introducing a bias, ii) it might be less sensitive to very noisy
channels than a measure that would weigh the contribution of all
channels equally, such as correlation. Interpreted as representational
dissimilarity matrices (RDMs), MEG and EEG decoding matrices allow a
direct comparison between the two modalities. The basic idea is that if
EEG and MEG measure similar signals, two objects that evoke similar
patterns in EEG should evoke similar patterns in MEG, too.

A valid comparison of RDMs requires they are constructed from in-
dependent data (Henriksson et al., 2015). Otherwise, trial-by-trial signal
fluctuations unrelated to experimental conditions, such as cognitive
states (attention, vigilance) or external noise (movement, electromag-
netic noise) will inflate, distort, and bias the similarity between EEG and
MEG. For an independent construction of MEG and EEG RDMs we split
the data in half by assigning even and odd trials to different sets. We then
compared (Spearman's R) the RDMs from split half 1 vs. split half 2 both
within and across MEG and EEG measurement modalities using RSA
(Fig. 3A). Importantly, as MEG and EEG data for the same trials were
grouped together in each split, the comparisons within and across MEG
and EEG measurement modalities were equally affected by trial-by-trial
fluctuations and thus well comparable (which would not have been the
case if MEG and EEG had been recorded in separate sessions). Comparing
RDMs across imaging modalities (MEG vs. EEG) revealed only the com-
mon aspects of visual representations. Comparing RDMs within imaging
modalities (MEG vs. MEG and EEG vs. EEG; across data splits) resulted in
a reliability estimate that includes both common and unique aspects. The
difference of within-modality minus across-modality similarities thus
revealed the unique aspects of visual representations measured with
either MEG or EEG. For this analysis, the time-resolved classification was
performed similarly to single image classification described above, but
the sub-averaged pattern vectors were constructed by averaging k ¼ 3
pattern vectors given the reduced number of trials.

2.6. fMRI stimulation protocol, acquisition, preprocessing and processing

We reanalyzed an existing fMRI data set reported in Cichy et al.
(2014). Here we summarize the key points in fMRI data acquisition,
preprocessing and processing for RSA-based fusion between fMRI and
MEG/EEG data.

2.6.1. Experimental paradigm
15 participants viewed the same 92 image set while fMRI data was

recorded. Each participant completed two sessions on two separate days,
where each session consisted of 10–14 runs of 384 s duration each.
During each run every image was presented once, and image order was
randomized. On each trial the image was shown for 500 ms. The inter
trial interval was 3 s. 25% of all trials were null trials during which only a
gray background was presented, and the fixation cross turned darker for
100 ms. Participants were instructed to report the change in fixation
cross luminance with a button press.

2.6.2. fMRI acquisition
We acquired MRI data on a 3 T Trio scanner (Siemens, Erlangen,

Germany) with a 32-channel head coil. Structural images were acquired
in each session using a standard T1-weighted sequence (192 sagittal
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slices, FOV ¼ 256 mm2, TR ¼ 1900 ms, TE ¼ 2.52 ms, flip angle ¼ 9�).
Functional data were acquired with a gradient-echo EPI sequence
(192 vol, TR ¼ 2000 ms, TE ¼ 31 ms, flip angle ¼ 80�, FOV
read ¼ 192 mm, FOV phase ¼ 100%, ascending acquisition, gap ¼ 10%,
resolution ¼ 2 mm isotropic, slices ¼ 25). The acquisition volume was
partial and covered the ventral visual pathway.

2.6.3. fMRI activation estimation
SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) was used to process fMRI

data. For each participant, we realigned fMRI data and co-registered it to
the T1 structural scan acquired in the first MRI session. This formed the
basis for the subsequent region-of-interest analysis. For the searchlight
analysis (see below), fMRI data was additionally normalized to an MNI
template. The subsequent processing was equivalent for both unnor-
malized and normalized data. To estimate the fMRI response to the 92
image conditions we used a general linear model (GLM). Onsets of image
presentation entered the GLM as regressors and were convolved with the
standard hemodynamic response function. Additional nuisance re-
gressors were movement parameters and two regressors modelling ses-
sion (1 for each volume of a session, 0 otherwise). Condition-specific
GLM parameters (beta-values) were converted into t-values by contrast-
ing each condition estimate against the implicitly modeled baseline. In
addition, wemodeled the overall effect of visual stimulation as a separate
t-contrast of parameter estimates for all 92 conditions against baseline.

2.6.4. fMRI region-of-interest definition
We assessed two regions-of-interest (ROIs): primary visual area V1

and inferior temporal cortex (IT). V1 was defined separately for each
participant based on an anatomical eccentricity template, and contained
all voxels assigned to the central 3 degrees of visual angle (Benson et al.,
2012). IT was defined based on a mask consisting of bilateral fusiform
and inferior temporal cortex (WFU PickAtlas, IBASPM116 Atlas (Mald-
jian et al., 2003)). To match V1 and IT ROIs in average size, we chose the
361 most activated voxels in the t-contrast of all image conditions
vs. baseline.

2.6.5. Region-of-interest-based fMRI representational similarity analysis
We constructed fMRI RDMs for each participant independently using

a correlation-based dissimilarity measure. For each ROI we extracted and
concatenated the fMRI voxel activation values for each image condition.
We then calculated all pair-wise correlation coefficients (Pearson's R)
between the pattern vectors for each pair of image conditions and stored
the result in a 92� 92 symmetric matrix indexed in rows and columns by
the compared conditions. We transformed the correlation similarity
measure into a dissimilarity measure by subtracting the correlations
coefficients from 1 (i.e., 1 – R). The reasons to select this distance mea-
sure are that it is a common choice in fMRI analysis (Kriegeskorte and
Kievit, 2013; Walther et al., 2016); has been shown to enable successful
fusion with MEG data (Cichy et al., 2014, 2017, 2016b, a); is fast to
compute; and allows direct comparison of results based on the same fMRI
data (Cichy et al., 2014, 2017, 2016b, a).

For further analyses, we averaged the resulting dissimilarity measures
across sessions resulting in one RDM for each subject and ROI.

2.7. Spatial localization of MEG and EEG visual representations using
fMRI-MEG/EEG fusion

To identify the spatial sources of the temporal dynamics observed in
MEG and EEG, and to compare them to each other, we used a RSA-based
MEG/EEG-fMRI fusion approach (Cichy et al., 2014, 2017, 2016b, a). In
short, the goal is to combine MEG/EEG and fMRI such as to reveal neural
dynamics resolved in both space and time by combining the techniques’
respective advantages, i.e. high temporal resolution for MEG/EEG and
high spatial resolution in fMRI, while not being limited by their respec-
tive disadvantages, i.e. low temporal resolution for fMRI and low spatial
resolution in MEG/EEG. The rationale to achieve this aim is bind specific

http://www.fil.ion.ucl.ac.uk/spm/
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(time-less) points in space from fMRI to (space-less) points in time from
MEG/EEG by representational similarity: if conditions evoke similar
patterns in fMRI and MEG signal spaces, the points in time and space are
linked. The success of this approach crucially depends on representa-
tional geometry rapidly changing in space and time during object vision,
such that space-resolved fMRI RDMs can be uniquely linked to time-
resolved MEG RDMs. For an in-depth discussion of the promises and
limitations of the fusion technique please refer to Cichy et al. (2016a).

Finally, to compare the fusion results based on different MEG and EEG
data sets, we subtracted subject-specific fusion results based on one
sensor sampling from the results based on the other sensor sampling.

2.7.1. Region-of-interest-based fMRI-MEG/EEG fusion
For each ROI and subject we calculated the similarity (Spearman's R)

between the subject-specific fMRI RDM and the subject-averaged MEG or
EEG RDM for each time point, yielding time courses (n ¼ 15) of MEG-
fMRI or EEG-fMRI representational similarity for each ROI and sub-
ject (Fig. 4A).

To assess unique MEG or EEG contributions in V1 or IT, we used
partial correlation analysis (Fig. 5A). We partialled out the effect of the
EEG RDM before calculating the similarity (Spearman's R) between the
subject-specific ROI-based fMRI RDM (for V1 or IT) and the subject-
averaged MEG RDM. We computed the unique fMRI-EEG representa-
tional similarity analogously, but by partialling out the effect of the MEG
RDM. This yielded time courses (n¼ 15) of representational similarity for
each subject and each ROI between fMRI and either MEG or
EEG uniquely.

2.7.2. Spatially unbiased searchlight fMRI-MEG/EEG fusion
For spatially unbiased analysis beyond the ROI-based approach, we

used a searchlight-based approach (Haynes and Rees, 2005; Kriegeskorte
et al., 2008a, b) to fuse fMRI with MEG and EEG (Cichy et al., 2017,
2016b, a) (Fig. 5a). We conducted the searchlight analysis separately for
each fMRI subject (n¼ 15) and time point from�100 toþ500 ms in 5 ms
steps. For each voxel v, we extracted condition-specific t-value patterns in
a sphere centered at v with a radius of 4 voxels (searchlight at v) and
arranged them into pattern vectors. We calculated the pairwise dissimi-
larity between pattern vectors by 1 minus Pearson's R for each pair of
conditions, resulting in a fMRI RDM. We then calculated the similarity
(Spearman's R) between the searchlight-specific fMRI RDM and the
subject-averaged MEG or EEG RDMs. Repeating this analysis for every
voxel in the brain, we obtained a 3D map of representational similarities
between fMRI and MEG or EEG at each time point. Repeating the same
approach for all time points, we obtained a series of 3D maps revealing
the spatio-temporal activation of the human brain during object
perception as captured with MEG and EEG respectively.

2.8. Statistical testing

We used permutation tests for cluster-mass inference, and bootstrap
tests to determine confidence intervals of peak latencies (Nichols and
Holmes, 2002; Pantazis et al., 2005; Maris and Oostenveld, 2007).

The null hypothesis of no experimental effect was dependent on the
particular analysis conducted, and was equal to: 50% chance level for
classification time series; 0% for between-subdivision minus within-
subdivision measures (category membership decoding); 0 for correla-
tion comparisons (MEG/EEG comparison by RSA, and ROI-based fMRI-
MEG/EEG fusion analysis). In all cases, under the null hypothesis the
condition labels of the data could be permuted, corresponding to a sign
permutation test that randomly multiplies participant-specific data with
þ1 or �1. To obtain an empirical distribution of the data under the null
hypothesis, we thus randomly shuffled the sign of participant-specific
data points 10,000 times. This allowed us to convert our statistics of
interest into p-value maps and to determine significant data points at a
threshold of P < 0.05, two sided.

To correct for multiple comparisons across voxels (fMRI) or time
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points (MEG/EEG), we used cluster-mass inference (i.e. number of sig-
nificant elements weighed by the value of those elements) with a cluster
extent threshold of P < 0.05). In detail, the previously computed per-
mutation samples were converted into P-value maps based on the same
empirical distribution as the original data, and equally thresholded to
define resampled versions of clusters above threshold. These clusters
were used to construct an empirical statistic of maximum cluster size and
to estimate a threshold at 5% of the right tail of the distribution. This
corresponds to a cluster extent threshold of P < 0.05. In addition, for
multiple tests of the same hypothesis (as reported in the same figure
subpanel) we further Bonferroni corrected the cluster extent threshold.

The statistical assessment of the fMRI-MEG/EEG searchlight fusion
analysis was as follows. To determine a cluster-defining threshold, we
averaged the subject-specific fusion results (4-dimensional, i.e., 3
spatial � 1 temporal dimension) across subjects, and aggregated voxel
values across space and time points from �100 to 0 ms to form an
empirical baseline voxel distribution. When comparing representational
similarity between fMRI and MEG/EEG, we determined the right-sided
99.99% threshold of the distribution, constituting a baseline-based
cluster defining threshold at P < 0.001, one-sided. For comparison of
results for different sensor samplings ((e.g. MEG-vs. EEG-based fMRI
fusion), we subtracted the fusion results based on one sensor sampling
from another sensor sampling for each participant (e.g. MEGminus EEG).
We then conducted the statistical assessment as detailed above with the
difference that we used a two-sided test procedure at P < 0.001 to test for
both positive and negative differences.

To obtain a permutation distribution of maximal cluster mass, we
randomly shuffled the sign of subject-specific data (1000 permutation
samples). For each sample, we averaged data across subjects, and
determined 4-dimensional mass of clusters (i.e. number of significant
spatially and temporally connected elements weighed by their absolute
value) exceeding the right-sided cluster threshold. We then determined
the maximal cluster size. This yielded a distribution of maximal cluster
sizes under the null hypothesis. We report clusters as significant if they
were larger than the 95% threshold of the maximal cluster size distri-
bution, corresponding to a P ¼ 0.05 one-sided threshold. For two-sided
tests, two distributions of maximal cluster size under the null were
created, and clusters are reported as significant if they passed the 97.5%
threshold, corresponding to a P ¼ 0.05 two-sided threshold.

3. Results

3.1. Commonalities and differences in the time courses of single image
classification from MEG and EEG data

We first investigated whether MEG/EEG signals allow for time-
resolved discrimination of individual object images. For every time
point, we averaged across all elements of the decoding matrices, yielding
a grand average time course of condition-specific decoding accuracy
across all experimental conditions (Fig. 1C). We observed significant
effects for all four main sensor samplings of MEG/EEG sensors (for peak
latencies see Table 1; results based on supplementary sensor samplings
are reported in Supplementary Tables and Supplementary Figures, and
referenced in the main figures and table captions). This demonstrates
that in principle both MEG and EEG signals lend themselves to the same
kind of multivariate analysis, and reproduced the MEG-based results of
Cichy et al. (2014).

We observed several differences in the EEG- and MEG-based time
courses. First, classification accuracy for MEG was consistently higher
than for EEG for most post-stimulus period. To quantify this effect, we
subtracted the EEG from the MEG time course (Fig. 1D). Note that the
higher number of sensors in the MEG analysis did not trivially explain
this difference, as the reduced MEG (74) sensor data set yielded equiv-
alent results (Fig. 1C and D; for details see Table 1). A second aspect in
which MEG and EEG differed was peak latency: MEG-based time courses
peaked significantly earlier than the EEG-based time course (P < 0.001,



Fig. 1. Classification of single images from EEG and MEG signals. A) The image set consisted of 92 silhouette images of everyday objects belonging to different categories. B) Multivariate
pattern classification procedure, here shown for EEG data. C) Grand average time courses of single condition decoding for different samplings of MEG and EEG sensors. D) Difference curves
for the results shown in C. Lines above curves (same color-code) indicate significant time points (n ¼ 15, cluster-defining threshold P < 0.05, corrected significance level P < 0.05
Bonferroni-corrected by number of plots for each subpanel, both two-sided). The gray vertical line indicates image onset. For equivalent results based on additional sensor samplings see
Supplementary Fig. 2.
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for details see Table 2, also independent of sensor number).
In combination, the differences in grand average decoding and peak

latency suggest that MEG and EEG may reflect partially different aspects
of emerging visual representations. One prediction of this hypothesis is
that combining MEG and EEG before multivariate pattern classification
should yield higher decoding accuracy than MEG alone. We found this to
be the case: the grand average decoding accuracy time course for com-
bined MEG&EEG data was significantly higher than for MEG alone
Table 1
Peak latency of single image classification time courses for several
samplings of MEG and EEG sensor data A), and differences therein B).
Numbers in brackets indicate 95% confidence intervals. For equivalent
results based on additional sensor samplings see Supplementary
Table 1.

Sensor Sampling Peak latency (ms)

A) Decoding results
MEG 112 (109–124)
EEG 181 (131–195)
MEG (74) 114 (109–125)
MEG&EEG 114 (10–134)
B) Differences in decoding results
MEG – EEG 107 (99–115)
MEG (74) – EEG 107 (96–115)
MEG&EEG – MEG 197 (177–201)

445
(Fig. 1C and D).
In sum, we found that both MEG and EEG signals carry information at

the level of single object images, but with differing temporal evolution
suggesting sensitivity to partly different aspects of visual representations.

3.2. Time courses of visual category membership resolved with MEG and
EEG are similar

Given the MEG and EEG qualitative and quantitative differences in
decoding single images, we investigated whether MEG and EEG also
differ in revealing information about object category processing at
different levels of categorical abstraction. Following the same approach
as in Cichy et al. (2014), we partitioned the decoding accuracy matrix
into two subdivisions (Fig. 2A–E, left panel): images belonging to the
Table 2
Comparison of peak latencies between single image classification time courses for different
samplings of MEG and EEG sensor data. Significance was determined by bootstrapping the
participant pool (n¼ 15, 10,000 bootstraps). Numbers in brackets indicate 95% confidence
intervals. For equivalent results based on additional sensor samplings see Supplementary
Table 2.

Comparison Latency difference (ms) Significance (P -value)

MEG vs. EEG 69 (18–83) 0.001
MEG (74) vs. EEG 67 (15–83) 0.001
MEG&EEG vs. EEG 67 (12–82) 0.015



Fig. 2. Time course of category membership from EEG and MEG data. Object category membership was assessed by representational clustering analysis for A) animacy, B) naturalness, C)
faces vs. bodies, D) human versus nonhuman bodies and E) human versus nonhuman faces. For this, we partitioned the decoding matrix (left panels) in regions containing pairwise
decoding accuracies within (dark gray) and between (light gray) the relevant categorical subdivisions (for peak latencies see Table 3). Right panels report the difference curves for results
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obtained from different samplings of MEG and EEG sensors (for peak latencies see Table 4). Lines above curves indicate significant time points (n ¼ 15, cluster-defining threshold P < 0.05,
corrected significance level P < 0.05 Bonferroni-corrected by number of plots for each subpanel, both two-sided). The gray vertical line indicates onset of image presentation. For
equivalent results based on additional sensor samplings see Supplementary Fig. 3.
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same (light gray) and to different (dark gray) subdivisions with respect to
a particular categorization. The comparison of within and between
average subdivision decoding accuracies served as a measure of clus-
tering by category membership. The rationale is that to reveal category
information over and above information about single images, informa-
tion that indicates differences between single images only (same subdi-
vision) must be subtracted from information that indicates differences
between both single images and categories (different subdivisions). This
yields a measure of the explicitness of a representation, in the sense that
category membership could be read out from it in linear fashion (DiCarlo
and Cox, 2007).

We conducted this analysis for five different categorical subdivisions:
at the super-ordinate category level for animacy (Fig. 2A) and naturalness
(Fig. 2B), at the ordinate category level for faces vs. bodies (Fig. 2C) and
at the sub-ordinate category level for human bodies vs. non-human
bodies (Fig. 2D) and human faces vs. non-human faces (Fig. 2E). We
found significant signals for category membership for all five sub-
divisions in all four samplings of MEG and EEG sensors (Fig. 2A–E,
middle panel, except naturalness in EEG (for details see Table 3). This
result reinforces the point that multivariate pattern classification is
similarly powerful when applied to EEG as when applied to MEG.

Analogous to the investigation of the grand average time courses
above, we investigated differences between MEG and EEG based results
in decoding accuracy, differences in peak latency, and whether
combining MEG&EEG signals yielded higher decoding accuracy than
MEG alone. Concerning the difference between category-specific curves
derived from MEG and EEG data (Fig. 2, right panels), we found only
minor and transient statistical differences (for details see Table 4).
Comparing peak latency differences, we found no significant effects (all
P > 0.12). Finally, the comparison of the results based on sampling
MEG&EEG vs. MEG revealed a difference in all cases, except for natu-
ralness (Fig. 2A–E).

In sum, the analysis of grand average decoding showed that MEG and
Table 3
Peak latency of category membership time courses for A) animacy, B)
naturalness, C) face vs. body, D) human vs. animal face, and E) human
vs. animal body. Numbers in brackets indicate 95% confidence in-
tervals. For equivalent results based on additional sensor samplings
see Supplementary Table 3.

Sensor Sampling Peak latency (ms)

A) animacy
EEG 159 (145–174)
MEG 151 (146–292)
MEG&EEG 157 (148–246)
MEG (74) 152 (146–290)
B) body vs. face
EEG 146 (127–171)
MEG 132 (129–161)
MEG&EEG 140 (132–162)
MEG (74) 134 (128–159)
C) human vs. animal body
EEG 239 (127–270)
MEG 121 (114–359)
MEG&EEG 241 (121–333)
MEG (74) 123 (113–366)
D) human vs. animal face
EEG 133 (128–202)
MEG 128 (125–211)
MEG&EEG 200 (126–210)
MEG (74) 128 (124–212)
E) natural vs. artificial
EEG 248 (133–585)
MEG 202 (116–307)
MEG&EEG 203 (125–638)
MEG (74) 204 (115–303)

447
EEG signals carry information at the level of single object images, but
with differing temporal evolution suggesting sensitivity to partly
different aspects of visual representations. For a discussion of the time
courses of category membership processing in the light of previous
research, and a discussion of the nature of the sources confer Supple-
mentary Discussion 1.
3.3. Comparison of MEG and EEG data by representational similarity
analysis revealed both common and unique aspects of neural
representations

Grand average single image decoding accuracy and category-specific
signals are summary statistics that only partially reflect the rich multi-
variate information in MEG and EEG data. How do MEG and EEG
compare if the entire structure of representational space captured by the
decoding matrices is considered?

To investigate, we used representational similarity analysis (RSA)
(Kriegeskorte, 2008a, b; Kriegeskorte and Kievit, 2013) on the full
decoding matrix. The idea is that decoding accuracy can be seen as a
dissimilarity measure: condition pairs that have similar representations
yield low decoding accuracy, and condition pairs that have dissimilar
representations yield high decoding accuracies (Cichy et al., 2014,
2017). The decoding matrices for MEG and EEG can be thus interpreted
as representational dissimilarity matrices (RDMs), summarizing simi-
larity relations between sensor activation patterns related to experi-
mental conditions. MEG and EEG decoding matrices can then be
compared directly for similarity. Importantly, to yield an unbiased
measure of similarity, RDMs must be based on brain data recorded
independently, i.e. for different trials (Henriksson et al., 2015). We thus
split the MEG and EEG data in half (even versus odd trials), and con-
ducted multivariate pattern classification based on each split half data
set, equivalently to the analysis of the full data as explicated above. All
RDM comparisons (Spearman's R) were then conducted across split
halves (Fig. 3A).

Comparing RDMs across imaging modalities (RMEG,EEG) revealed the
common aspects of visual representations (Fig. 3B, blue line, for peak
Table 4
Peak latency of differences of category membership time courses for A)
animacy, B) naturalness, C) face vs. body, D) human vs. animal face)
and E) human vs. animal body. For equivalent results based on addi-
tional sensor samplings see Supplementary Table 4.

Sensor Sampling Peak latency (ms)

A) animacy
MEG – EEG 240 (145–296)
MEG&EEG – MEG 163 (157–615)
MEG (74) – EEG 242 (133–298)
B) body vs. face
MEG – EEG 129 (104–301)
MEG&EEG – MEG 150 (142–328)
MEG (74) – EEG 128 (58–816)
C) human vs. animal body
MEG – EEG 445 (76–837)
MEG&EEG – MEG 243 (-22–268)
MEG (74) – EEG 442 (76–837)
D) human vs. animal face
MEG – EEG 111 (102–625)
MEG&EEG – MEG 201 (139–349)
MEG (74) – EEG 111 (75–632)
E) natural vs. artificial
MEG – EEG 199 (-50–851)
MEG&EEG – MEG 631 (-100–638)
MEG(74) – EEG 118 (-50–856)



Fig. 3. Time course of common and unique aspects of visual representations as resolved with MEG and EEG A) Procedure. We split the MEG and EEG data in half (even and odd trials) to
conduct two independent multivariate pattern classification analyses, yielding split-half specific RDMs. We then calculated representational similarity (Spearman's R) across splits for the
same measurement modality (MEG and EEG color-coded gray and red) and across modalities (color-coded blue). Comparing RDMs within imaging modalities resulted in a reliability
estimate that includes both common and unique aspects of visual representations. Comparing RDMs across imaging modalities revealed the common aspects of visual representations. Thus
the difference within-modality minus across-modality indicated the aspects of visual representations unique to each measurement modality (color-coded dark gray striped for MEG, and
light gray striped for EEG. Within and across technique similarities are reported for B,C) EEG and MEG and D,E) EEG and MEG (74). Lines above curves indicate significant time points
(n ¼ 15, cluster-defining threshold P < 0.05, corrected significance level P < 0.05 Bonferroni-corrected by number of plots for each subpanel, both two-sided). The gray vertical line
indicates image onset. For equivalent results based on additional sensor samplings see Supplementary Fig. 4.
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latencies see Table 5A). We found a positive and significant representa-
tional similarity time course, indicating aspects of visual representations
resolved by both modalities. Comparing RDMs within imaging modal-
ities (RMEG,MEG and REEG,EEG) resulted in a reliability estimate that in-
cludes both common and unique aspects of visual representations
(Fig. 3B, gray and red line respectively). These were also significant, and
notably, higher than the across-modality representational similarities,
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indicating that MEG and EEG resolve partly unique aspects of visual
representations. The difference of within-modality minus across-
modality similarity curves, a measure that quantifies the unique infor-
mation in each modality, statistically ascertained this result (Fig. 3C, for
details see Table 5A).

The time course of MEG- and EEG-unique signals was different: the
peak latency was significantly earlier for MEG than for EEG (Δ ¼ 91 ms;



Fig. 4. Relating fMRI to MEG/EEG signals using a ROI-based fusion approach. A) Procedure.
(fMRI RDMs) based on fMRI activation patterns to the same image set as in the MEG and EEG d
fMRI and MEG or EEG RDMs. This resulted in time courses of representational correspondence
with representational correspondence emerging earlier in time for V1 than for IT. C,E) Differ
between fMRI and MEG than between fMRI and EEG. Lines above curves indicate significant tim
Bonferroni-corrected by number of plots for each subpanel, both two-sided). The gray vertical li
samplings see Supplementary Fig. 5.

Table 5
Peak latency of representational similarity time courses within and across measurement
modalities (EEG and MEG) (left half) and differences of across-modality minus within-
modality similarities (right half) for A) full sensor set, and B) MEG (74). Numbers in
brackets indicate 95% confidence intervals. For equivalent results based on additional
sensor samplings see Supplementary Table 5.

Representational similarity across
split-halves for

Across-modality minus within-modality
difference

Sensor sampling Peak latency (ms) Sensor sampling Peak latency (ms)

A) EEG & MEG
REEG,EEG 139 (123–193) RMEG,EEG - REEG,EEG 193 (124–206)
RMEG,MEG 102 (99–132) RMEG,EEG - RMEG,MEG 102 (100–109)
RMEG,EEG 134 (121–201)
B) EEG & MEG (74)
REEG,EEG 139 (123–193) RMEG(74),EEG - REEG,EEG 192 (124–209)
RMEG(74),MEG(74) 101 (99–133) RMEG(74),EEG - RMEG(74),MEG(74) 101 (100–109)
RMEG(74),EEG 134 (122–187)
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P ¼ 0.0003). Importantly, this result was not dependent on sensor
number differences, as equivalent results were obtained when equating
the number of MEG and EEG sensors (Δ¼ 91 ms; P¼ 0.0001; Fig. 3D and
E, Table 5B).

Together, the results of the representational structure indicated that
both MEG and EEG resolve partially common, and partially unique as-
pects of visual representations in the brain, with differentiable temporal
dynamics for unique.
3.4. Fusion with fMRI revealed the locus of unique and common aspects of
visual representations resolved with MEG and EEG

To investigate the cortical locus of the unique and common aspects
of neural representations resolved by MEG and EEG as identified
above, we used the fMRI-MEG/EEG fusion approach proposed in Cichy
For two regions-of-interest (V1, IT) we calculated representational dissimilarity matrices
ata. In detail, for every time point t, we calculated the similarity (Spearman's R) between
between MEG/EEG and fMRI in B) V1 and D) IT. MEG and EEG had similar time courses,
ence curves for results reported in B and D, revealing higher representational similarity
e points (n ¼ 15, cluster-defining threshold P < 0.05, corrected significance level P < 0.05
ne indicates onset of image presentation. For equivalent results based on additional sensor
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et al. (2014). By objectively evaluating MEG and EEG data against an
independent data set of fMRI, fusion bypasses the inherent
ambiguities of spatial localization methods relying on
MEG/EEG alone.

We first investigated the source of EEG andMEG signals in the ventral
visual stream per se. For this, we compared the representational simi-
larity between the time-resolved RDMs for MEG and EEG respectively,
and fMRI-based RDMs for two cortical regions – early visual cortex (V1)
and inferior temporal cortex (IT) – recorded in a separate set of partici-
pants (Fig. 4A).

We found significant fMRI and MEG/EEG representational similar-
ities in both V1 and IT for all the investigated sensor samplings of MEG
and EEG (Fig. 4B,D, for details see Table 6). Consistent with the view of
visual processing as a spatio-temporal cascade along the ventral visual
stream, representational similarities between fMRI and MEG/EEG sig-
nals peaked earlier for V1 than for IT (for all sensor samplings, P < 0.01,
Bonferroni-corrected for multiple comparisons). This reproduces pre-
vious results from MEG-fMRI fusion (Cichy et al., 2014), extends them
to EEG, and reinforces the view of visual processing as a
spatio-temporal cascade from posterior to anterior visual regions
over time.

We next investigated whether the representational similarity be-
tween MEG/EEG and fMRI patterns in V1 and IT is due to unique or
common aspects in MEG or EEG in three analyses. First, we compared
peak latency differences for the different samplings of MEG and EEG
data. We found no significant differences (all P > 0.14 bootstrap across
participants, 10,000 iterations), suggesting that potential differences
between MEG and EEG are not to be found in the shape of the
time courses.

Second, we subtracted EEG-from MEG-based fusion results (Fig. 4C
and E) to determine which modality bore closer similarity to the fMRI
patterns. Overall, we found MEG-based fusion consistently stronger than
EEG-based fusion. However, comparison of MEG&EEG versus MEG alone
produced inconsistent results with opposite sign for V1 and IT (for details
see Table 6). Thus, this analysis did not reveal consistent differ-
ence either.

Third, for a particularly strong and sensitive test, we used a partial
correlation analysis to investigate the relation between fMRI and
MEG/EEG when the effect of either modality is partialled out (Fig. 5A,
example of fMRI-EEG fusion in V1 when partialling out the MEG
RDM). Such analysis should reveal representational similarities spe-
cific to a modality, by controlling for the effects of the other modality.
We found that for V1, partialling out MEG from EEG abolished the
significant representational correspondence to fMRI, whereas partial-
ling out EEG from MEG did not (for details see Table 7). This suggests
that MEG is sensitive to unique sources in V1 as compared to EEG. For
IT, we found stable and significant representational correspondence
for both MEG and EEG with fMRI when the effect of either EEG or
MEG was accounted for. This shows that MEG and EEG both resolve
Fig. 5. Relating fMRI to MEG/EEG signals using a ROI-based fusion approach and partial
correlation analysis. A) Procedure. For every time point t, we calculated the similarity
(Spearman's R) between fMRI and EEG RDMs while partialling out the MEG RDMs.
Equivalent Analyses were conducted for different MEG/EEG sensor samplings. Results of
the partial correlation analysis are reported for B) V1 and C) IT. Lines above curves
indicate significant time points (n ¼ 15, cluster-defining threshold P < 0.05, corrected
significance level P < 0.05 Bonferroni-corrected by number of plots for each subpanel,
both two-sided). The gray vertical line indicates image onset. For equivalent results based
on additional sensor samplings see Supplementary Fig. 6.

Table 6
Peak latency for A) ROI-based fMRI-MEG/EEG fusion results for V1 and IT, and B) dif-
ference curves for different sensor samplings. Numbers in brackets indicate 95% confidence
intervals. For equivalent results based on additional sensor samplings see Supplementary
Table 6.

Sensor Samplings V1 IT

A) fMRI fusion results with
EEG 89 (87–125) 387 (145–388)
MEG 109 (81–245) 262 (250–306)
MEG&EEG 109 (78–247) 283 (250–286)
MEG(74) 109 (78–246) 262 (259–282)
B) Differences in fMRI-MEG/EEG fusion results
MEG – EEG 525 (-25–770) 318 (-50–321)
MEG(74) – EEG 525 (-26–769) 261 (-50–321)
MEG&EEG – MEG �17 (-17–734) 733 (-18–733)
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unique aspects of representations in IT.
Overall, these results demonstrate that both MEG and EEG are well

suited for RSA-based fusion analysis with fMRI. While both MEG and
EEG are sensitive to unique aspects of visual representations in
IT, only MEG is sensitive to unique aspects of visual representations
in V1.



Table 7
Peak latency of the ROI-based fMRI-MEG/EEG fusion results after partialling out the effects
of the other modality. For equivalent results based on additional sensor samplings see
Supplementary Table 8.

Fusion analysis V1 IT

EEG (partial out MEG) – 371 (371–572)
EEG (partial out MEG(74)) – 371 (371–572)
MEG (partial out EEG) 133 (80–253) 262 (242–318)
MEG(74) (partial out EEG) 108 (78–251) 261 (241–282)
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3.5. MEG and EEG equally resolved the spatiotemporal dynamics of the
ventral pathway as revealed by searchlight-based fusion with fMRI

What are the sources of MEG/EEG activity beyond the two investi-
gated ROIs V1 and IT? To create a spatially unbiased view of the
spatiotemporal dynamics in the ventral pathway, we used a searchlight-
based fusion analysis (Fig. 6A). In particular, we investigated whether the
fusion of fMRI with MEG, introduced in Cichy et al. (2017, 2016b, a), can
be directly extended to EEG, and whether such approach can reveal MEG
and EEG differences beyond V1 and IT.

Supplementary video related to this article can be found at http://dx.
doi.org/10.1016/j.neuroimage.2017.07.023

Both MEG and EEG-based fusion with fMRI data revealed a feed-
forward cascade of representational similarity in the ventral visual
stream (Fig. 6B): early representational relations were similar in the
occipital pole, rapidly spreading along the ventral visual stream with
comparable dynamics. This reproduced previous findings with MEG, and
demonstrated the feasibility of the spatially unbiased searchlight-based
fusion approach with EEG. Equivalent results were found for the
reduced 74-sensor MEG data set, as well as combiningMEG and EEG data
prior to fusion (Fig. 6B).

We next compared the fusion results across the different MEG and
Fig. 6. Spatially unbiased fusion analysis of fMRI with MEG and EEG. A) Procedure. Time-resol
with searchlight analysis. In particular, for each voxel v in the brain we extracted fMRI activa
patterns. Repeating for each voxel in the brain, this yielded a map of fMRI RDMs across the who
produced the spatiotemporal dynamics of representational correspondence. B) Snapshots at 75,
spatio-temporal dynamics during object vision in the ventral visual stream: representational corr
ventral visual pathway. Red voxels indicate statistical significance (n ¼ 15, cluster-definition th
available (Supplementary movie 1). Inset axis indicate orientation of transparent brains (L/R ¼
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EEG data sets. For this, we subtracted subject-specific fusion results based
on one sensor sampling from another sensor sampling. There were no
significant effects for MEG versus EEG, irrespective of whether we
assessed the complete or the reduced 74-sensor MEG array (P < 0.001,
two-sided baseline-based cluster threshold). Similarly, comparison of
MEG versus MEG&EEG fusion-based analysis did not yield signifi-
cant results.

Together, the results demonstrate that both MEG and EEG are well
suited for RSA-based fusion with fMRI data to reveal cortical information
flow, but did not reveal further sources of sensitivity of MEG/EEG to
unique aspects of visual representations.
3.6. Summary of supplementary results based on supplementary sensor
samplings

Beyond the four main sensor samplings as reported in the main
manuscript, we further analyzed data based on supplementary sensor
samplings i) 32 EEG sensors to determine whether basic EEG setups also
enable multivariate analysis, ii) all magnetometers and iii) all gradiom-
eters to investigate both types of MEG sensors separately, and iv) 74
magnetometers and v) 74 gradiometers to equate the number of sensors
to EEG. Supplementary results follow a structure corresponding to the
main figures and tables, and are thus directly referenced in the main
figure and table captions. Here we shortly summarize findings, and refer
the reader for details to the Supplementary Material. First, in all sup-
plementary sensor samplings MEG and EEG signals allow for time-
resolved discrimination of individual object images, with qualitatively
equivalent differences between MEG and EEG as reported in the main
manuscript (Supplementary Fig. 2). Second, in all supplementary sensor
samplings, MEG and EEG resolved category-specific representations with
similar time courses (Supplementary Fig. 3). Third, comparison of com-
bined MEG&EEG with MEG and EEG alone by representational similarity
ved MEG/EEG RDMs were compared (Spearman's R) to space-resolved fMRI RDMs derived
tion patterns in the local vicinity of the voxel and calculated fMRI RDMs based on these
le brain. Fusion of the time-resolved MEG/EEG RDMs with the space-resolved fMRI RDMs
120 and 165 ms for EEG, MEG, MEG(74) and MEG&EEG. All analyses revealed comparable
espondence emerged first at the occipital pole, before extending rapidly anterior along the
reshold P < 0.001, cluster threshold P < 0.05, both two-sided). A time-resolved movie is
left/right; P/A ¼ posterior/anterior; I/S ¼ inferior/superior).

http://dx.doi.org/10.1016/j.neuroimage.2017.07.023
http://dx.doi.org/10.1016/j.neuroimage.2017.07.023
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analysis revealed that combined MEG&EEG data captures more repre-
sentational structure than either technique alone (Supplementary Fig. 4).
Fourth, fusion with fMRI revealed results qualitatively similar as the
main sensor samplings, reinforcing the point that both MEG and EEG are
sensitive to unique aspects of visual representations in IT, while MEG is
sensitive to unique aspects of visual representations in V1 (Supplemen-
tary Figure 5,6). Fifth, while effects for 32 EEG sensors were lower than
for 74 sensors, they were qualitatively similar (Supplemen-
tary Figs. 2,3,5).

4. Discussion

4.1. Summary

To investigate how relative sampling differences of neural activity
inherent to MEG and EEG impact multivariate pattern analysis, we
compared concurrently acquired MEG and EEG data. We found that
nearly all analyses yielding significant results in one measurement mo-
dality yielded significant results in the other modality, too (with the
single exception of naturalness classification for EEG). Comparison of
MEG and EEG by classification-based time courses, as well as directly by
representational similarity analysis yielded evidence for sensitivity to
both common as well as unique aspects of neural representations. Fusion
of MEG and EEG with fMRI localized the unique aspects: both modalities
captured unique aspects of representations in high-level visual cortex,
and MEG also in low-level visual cortex.

4.2. Both EEG and MEG are well suited for multivariate analyses methods
to reveal human cortical dynamics

A recently and rapidly emerging range of research efforts have
applied multivariate analyses to both EEG and MEG, demonstrating that
both modalities resolve information about a diverse array of sensory and
cognitive processes. These include discrimination of visual stimuli during
passive viewing (Carlson et al., 2013; Cichy et al., 2014; Clarke et al.,
2014; Kaneshiro et al., 2015) and visual detection (Myers et al., 2015).
Together, these studies show that both MEG and EEG data contain rich
spatial information that can be used to decode neural states, and that
even information encoded at the spatial level of cortical columns might
be available as shown empirically and bymodelling for MEG (Cichy et al.,
2017, 2016b, a; Nasiotis et al., 2017) and EEG (Stokes et al., 2015). Thus,
while necessarily MEG and EEG sensor patterns reflect signals from
several neural sources juxtaposed, and the signals with respect to sources
might be more distorted and harder to localize directly for EEG than for
MEG, multivariate methods can harvest the rich information encoded in
sensor patterns by considering multiple sensors simultaneously. This is
also the case for moderate numbers of sensors: most effects were robustly
detectable when even only 32 EEG electrodes were sampled (Supple-
mentary Figs. 2,3,5,6). This is so as successful multivariate analysis does
not require identification of independent sources, but only that different
conditions yield different patterns in the sensor array.

While the successful application of multivariate methods to EEG and
MEG in isolation demonstrates the potential of both modalities, it leaves
open how the two relate, i.e. whether one modality is better suited for a
particular analysis, and whether the results obtained from MEG and EEG
measurements are comparable. Here we have shown in direct compari-
son of MEG and EEG for a large range of analyses, ranging from single
image classification to fusion with fMRI data based on representational
similarity analysis, they yield largely convergent results.

Our results have several practical implications for the application of
multivariate analysis methods to MEG and MEG. As the availability and
number of EEG devices vastly surpasses the number of MEG facilities, we
hope that the observed comparability in results greatly increases the
reach of this methodology. Moreover, most effects were robustly
detectable when even only 32 EEG electrodes were sampled (Supple-
mentary Figs 2,3,5,6). This shows that multivariate pattern analysis
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methods are suitable tools even when only a low numbers of sensors are
recorded, e.g. in clinical settings. Further, in most analyses the effect size
was smaller for EEG than MEG. This suggests that if MEG and EEG are
equally accessible and time is a hard constraint, MEGmight be preferred.
However, if time is not a constraint, can long EEG recording times
possibly offset the MEG advantage? A supplementary analysis of grand-
average decoding curves based on sub-samples of trials to simulate
shorter recording times in MEG (Supplementary Fig. 7) revealed the
advantage of MEG over EEG. Considering peak decoding accuracy, EEG
had similar values when decoding was based on 50–67% of the recorded
data; considering decoding in later stages of visual processing (>150 ms),
similar decoding accuracy was reached with 67–83% of the data. Note
however that the results reported are from a single experiment, for one
particular experimental paradigm, and for one sensory modality only,
and might not generalize to every situation. Thus, further studies are
needed to quantify the respective advantages of MEG and EEG for
multivariate pattern classification, systematically exploring factors such
as experimental design, sensory modality, preprocessing choices and
classifier types. While this is beyond the scope of this paper, we will make
the data available to any researcher upon request to help speed the
process. Last, differences in hardware may also be important factors. It is
conceivable that modern high-density EEG electrode arrays, reaching a
few hundred sensors, offer considerably improved results than our 74
passive electrode setup.

We hope that our results will motivate further researchers to widely
use multivariate methods such as classification and RSA on both EEG and
MEG data to shed further insight into the spatial and temporal neural
dynamics underlying human cognition.

4.3. Multivariate analysis of MEG and EEG reveals both common and
unique aspects of neural representations

Previous studies have yielded qualitatively comparable results for
several kinds of multivariate analyses in MEG and EEG independently
(Carlson et al., 2012; Cichy et al., 2014; Kaneshiro et al., 2015), thus
suggesting sensitivity to common aspects of neural representations for
MEG and EEG. However, for quantitative comparison and isolation of
common and unique components it is important to establish correspon-
dence in the same subjects recorded under the same experimental con-
ditions. Otherwise, factors that differ across subjects or recording times
may bias the comparison, including internal factors such as attention,
vigilance, movement, cortical folding patterns, as well as differences in
external conditions, such as noise and visual stimulation conditions.

Using multivariate analyses methods on concurrently recorded MEG
and EEG data, we avoided those pitfalls, and presented corroborating
evidence that MEG and EEG capture common and unique aspects of
neural representations. Strongest evidence for both common and unique
aspects was provided by direct comparison of MEG and EEG split-half
data through RSA, which reveal within- and across-modality represen-
tational similarities millisecond by millisecond.

Further evidence specifically for unique aspects were differences in
the time course of single image decoding and MEG/EEG-fMRI fusion,
with later peaks for EEG than for MEG. Fusion of MEG/EEG with fMRI
suggested that differential sensitivity to unique aspects of neural repre-
sentations in low-high-level visual areas might explain this pattern. Only
MEG revealed unique aspects in low-level visual areas, whereas both
measurement modalities did so for high-level visual areas. As low-level
visual areas are superficial sources and high-level visual areas are deep
sources, this suggests that the earlier peak in MEG is explainable by
higher sensitivity of MEG to superficial sources. As neuronal activity in
low-level visual areas emerges earlier than in high-level visual areas, and
MEG is more sensitive to superficial low-level visual areas than EEG, the
earlier peak in MEGmight be due to MEG being more influenced by early
activity in low-level superficial visual cortex.

Last, the observation that effect sizes were larger when MEG and EEG
data were combined, rather than used in separation, is consistent with
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the hypothesis that MEG and EEG are sensitive to unique aspects. How-
ever, an alternative possibility is that the gain in effect size was due to an
increase of signal-to-noise ratio by combining measurements of common
aspects with partially independent noise. Future in-depth quantitative
evaluation and modelling efforts to equate noise levels across sensor sets
are necessary to rule out this alternative explanation.

What are the reasons for the observed differences between MEG and
EEG, and how do our findings relate to previous research? While MEG
and EEG signals have the same underlying neural generators, there are
well known and systematically explored differences in the literature
(Cuffin and Cohen, 1979; Cohen and Cuffin, 1983; H€am€al€ainen et al.,
1993). Prominently, radially-oriented sources are prominent in EEG but
nearly silent in MEG, suggesting unique sensitivity of EEG to neural
representations that are radially oriented. Additionally, EEG has higher
sensitivity to deep sources than MEG, thus suggesting unique sensitivity
to representations in cortical regions far away from the sensors. In
contrast, volume currents measured by EEG are deflected and smeared by
the inhomogeneity of resistance of the skull, scalp, and the different
tissues of the human brain, potentially mixing signals from different
sources more than MEG. Together, those differences make plausible the
reasons for differential sensitivity of MEG and EEG in multivariate
pattern classification, too.

In particular, a large body of theoretical, practical, and experimental
investigations exploring the complementary nature of MEG and EEG data
agrees with our observation that combining MEG and EEG increases ef-
fect size. Theoretical investigations predict the benefits of MEG/EEG data
integration (Fokas, 2009). Practical and experimental investigations
showed that combining MEG and EEG improves source reconstruction
(Fuchs et al., 1998; Baillet et al., 1999; Pflieger et al., 2000; Liu et al.,
2002, 2003; Yoshinaga et al., 2002; Babiloni et al., 2004; Huang et al.,
2007; Sharon et al., 2007; Molins et al., 2008; Fokas, 2009; Henson
et al., 2009).

Finally, our results suggest a potential future venue for the study of
the complementarity of MEG and EEG responses. One pertinent predic-
tion of the selective sensitivity of EEG to radial sources is that in a fusion-
based comparison to fMRI, representations in cortical areas oriented
radially should show stronger representational similarity to EEG than to
MEG. Fusion-based analysis with custom designed fMRI RDMs selective
of voxel patterns with preference to radial or tangential sources could
improve localization and highlight the differential sensitivity of MEG and
EEG signals to tangential and radial sources. Note, this is beyond the
scope of this study, as fMRI was recorded in different subjects than EEG/
MEG, making such and individualized analysis based on cortical folding
patterns impossible.

Note that the results presented here might have methodological
limitations due to particular analysis choices. For one, we evaluated only
a single classifier (SVM) for multivariate MEG/EEG analysis. While pre-
vious research shows that different classifiers yield qualitatively similar
decoding curves (Isik et al., 2014; Grootswagers et al., 2016), what is
needed is a systematic and comprehensive evaluation and comparison of
the performance of different common classifiers applied to MEG and EEG
data. Second, for RSA we made particular choices for distance measures
in fMRI (correlation-based) and MEG/EEG (linear SVM decoding accu-
racy) analysis. Future studies are needed to assess the relevance of the
choice of particular distance measures for MEG/EEG analysis in general,
and for the fusion of fMRI and MEG/EEG analysis akin to research con-
ducted in fMRI (Walther et al., 2016). To support this process, we will
make the data set available to interested researchers upon request.

Acknowledgement

We are grateful to Yu-Teng Chang and Yasaman Bagherzadeh for
assistance in MEG and EEG data collection, and Martin Hebart and
Matthias Guggenmos for comments on a previous version of this manu-
script. This work was funded by the German Research Foundation (DFG,
CI241/1-1) to R.M.C. and by the McGovern Institute Neurotechnology
453
Program (to D.P.). MEG and EEG data were collected at the Athinoula A.
Martinos Imaging Center at the McGovern Institute for Brain
Research, MIT.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.
doi.org/10.1016/j.neuroimage.2017.07.023.

References

Babiloni, F., Babiloni, C., Carducci, F., Romani, G.L., Rossini, P.M., Angelone, L.M.,
Cincotti, F., 2004. Multimodal integration of EEG and MEG data: a simulation study
with variable signal-to-noise ratio and number of sensors. Hum. Brain Mapp. 22,
52–62.

Baillet, S., Garnero, L., Marin, G., Hugonin, J.P., 1999. Combined MEG and EEG source
imaging by minimization of mutual information. IEEE Trans. Biomed. Eng. 46,
522–534.

Bar, M., Kassam, K.S., Ghuman, A.S., Boshyan, J., Schmid, A.M., Dale, A.M.,
H€am€al€ainen, M.S., Marinkovic, K., Schacter, D.L., Rosen, B.R., Halgren, E., 2006. Top-
down facilitation of visual recognition. Proc. Natl. Acad. Sci. U. S. A 103, 449–454.

Benson, N.C., Butt, O.H., Datta, R., Radoeva, P.D., Brainard, D.H., Aguirre, G.K., 2012.
The retinotopic organization of striate cortex is well predicted by surface topology.
Curr. Biol. 22, 2081–2085.

Carlson, T., Alink, A., Tovar, D., Kriegeskorte, N., 2012. The evolving representation of
objects in the human brain. J. Vis. 12, 272, 272.

Carlson, T., Tovar, D.A., Alink, A., Kriegeskorte, N., 2013. Representational dynamics of
object vision: the first 1000 ms. J. Vis. 13, 1–19.

Chang, C., Lin, C., 2011. LIBSVM: a library for support vector machines. ACM Trans. Intel.
Sys Tech. 2, 27, 27, 2011.

Cichy, R.M., Khosla, A., Pantazis, D., Oliva, A., 2017. Dynamics of scene representations
in the human brain revealed by magnetoencephalography and deep neural networks.
Neuroimage 153, 346–358.

Cichy, R.M., Khosla, A., Pantazis, D., Torralba, A., Oliva, A., 2016b. Comparison of deep
neural networks to spatio-temporal cortical dynamics of human visual object
recognition reveals hierarchical correspondence. Sci. Rep. http://dx.doi.org/
10.1038/srep27755.

Cichy, R.M., Pantazis, D., Oliva, A., 2014. Resolving human object recognition in space
and time. Nat. Neurosci. 17, 455–462.

Cichy, R.M., Pantazis, D., Oliva, A., 2016a. Similarity-based fusion of MEG and fMRI
reveals spatio-temporal dynamics in human cortex during visual object recognition.
Cereb. Cortex:bhw135 26, 3563–3579.

Clarke, A., Devereux, B.J., Randall, B., Tyler, L.K., 2014. Predicting the time course of
individual objects with MEG. Cereb. Cortex 25, 3602–3612.

Cohen, D., Cuffin, B.N., 1983. Demonstration of useful differences between
magnetoencephalogram and electroencephalogram. Electroencephalogr. Clin.
Neurophysiol. 56, 38–51.

Cohen, D., Hosaka, H., 1976. Part II magnetic field produced by a current dipole.
J. Electrocardiol. 9, 409–417.

Cuffin, B.N., Cohen, D., 1979. Comparison of the magnetoencephalogram and
electroencephalogram. Electroencephalogr. Clin. Neurophysiol. 47, 132–146.

DiCarlo, J.J., Cox, D.D., 2007. Untangling invariant object recognition. Trends Cogn. Sci.
11, 333–341.

Fokas, A.S., 2009. Electro–magneto-encephalography for a three-shell model: distributed
current in arbitrary, spherical and ellipsoidal geometries. J. R. Soc. Interface 6,
479–488.

Fuchs, M., Wagner, M., Wischmann, H.-A., K€ohler, T., Theißen, A., Drenckhahn, R.,
Buchner, H., 1998. Improving source reconstructions by combining bioelectric and
biomagnetic data. Electroencephalogr. Clin. Neurophysiol. 107, 93–111.

Groen, I.I.A., Ghebreab, S., Prins, H., Lamme, V.A.F., Scholte, H.S., 2013. From image
statistics to scene gist: evoked neural activity reveals transition from low-level natural
image structure to scene category. J. Neurosci. 33, 18814–18824.

Grootswagers, T., Wardle, S.G., Carlson, T.A., 2016. Decoding dynamic brain patterns
from evoked responses: a tutorial on multivariate pattern analysis applied to time
series neuroimaging data. J. Cogn. Neurosci 29, 677–697.

Haynes, J.-D., Rees, G., 2005. Predicting the stream of consciousness from activity in
human visual cortex. Curr. Biol. 15, 1301–1307.

H€am€al€ainen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V., 1993.
Magnetoencephalography—theory, instrumentation, and applications to noninvasive
studies of the working human brain. Rev. Mod. Phys. 65, 413–497.

Henriksson, L., Khaligh-Razavi, S.-M., Kay, K., Kriegeskorte, N., 2015. Visual
representations are dominated by intrinsic fluctuations correlated between areas.
NeuroImage 114, 275–286.

Henson, R.N., Goshen-Gottstein, Y., Ganel, T., Otten, L.J., Quayle, A., Rugg, M.D., 2003.
Electrophysiological and haemodynamic correlates of face perception, recognition
and priming. Cereb. Cortex 13, 793–805.

Henson, R.N., Mouchlianitis, E., Friston, K.J., 2009. MEG and EEG data fusion:
simultaneous localisation of face-evoked responses. NeuroImage 47, 581–589.

Huang, M.-X., Song, T., Hagler Jr., D.J., Podgorny, I., Jousmaki, V., Cui, L., Gaa, K.,
Harrington, D.L., Dale, A.M., Lee, R.R., Elman, J., Halgren, E., 2007. A novel
integrated MEG and EEG analysis method for dipolar sources. NeuroImage 37,
731–748.

http://dx.doi.org/10.1016/j.neuroimage.2017.07.023
http://dx.doi.org/10.1016/j.neuroimage.2017.07.023
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref1
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref1
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref1
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref1
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref1
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref2
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref2
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref2
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref2
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref51
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref51
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref51
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref51
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref51
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref51
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref51
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref3
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref3
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref3
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref3
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref4
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref4
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref5
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref5
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref5
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref6
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref6
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref7
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref7
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref7
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref7
http://dx.doi.org/10.1038/srep27755
http://dx.doi.org/10.1038/srep27755
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref9
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref9
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref9
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref10
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref10
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref10
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref10
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref11
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref11
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref11
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref12
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref12
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref12
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref12
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref13
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref13
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref13
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref14
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref14
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref14
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref15
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref15
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref15
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref16
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref16
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref16
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref16
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref16
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref17
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref17
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref17
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref17
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref17
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref18
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref18
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref18
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref18
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref53
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref53
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref53
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref53
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref54
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref54
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref54
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref19
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref19
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref19
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref19
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref19
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref19
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref19
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref19
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref20
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref20
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref20
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref20
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref21
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref21
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref21
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref21
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref22
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref22
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref22
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref23
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref23
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref23
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref23
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref23


R.M. Cichy, D. Pantazis NeuroImage 158 (2017) 441–454
Isik, L., Meyers, E.M., Leibo, J.Z., Poggio, T.A., 2014. The dynamics of invariant object
recognition in the human visual system. J. Neurophysiol. 111, 91–102.

Kaneshiro, B., Perreau Guimaraes, M., Kim, H.-S., Norcia, A.M., Suppes, P., 2015.
A representational similarity analysis of the dynamics of object processing using
single-trial EEG classification. PLoS One 10 e0135697.

Kiani, R., Esteky, H., Mirpour, K., Tanaka, K., 2007. Object category structure in response
patterns of neuronal population in monkey inferior temporal cortex. J. Neurophysiol.
97, 4296–4309.

Kietzmann, T.C., Gert, A.L., Tong, F., K€onig, P., 2016. Representational dynamics of facial
viewpoint encoding. J. Cogn. Neurosci. 1–15.

King, J.-R., Dehaene, S., 2014. Characterizing the dynamics of mental representations: the
temporal generalization method. Trends Cogn. Sci. 18, 203–210.

Kriegeskorte, N., 2008a. Representational similarity analysis – connecting the branches of
systems neuroscience. Front. Syst. Neurosci. 2, 4.

Kriegeskorte, N., Kievit, R.A., 2013. Representational geometry: integrating cognition,
computation, and the brain. Trends Cogn. Sci. 17, 401–412.

Kriegeskorte, N., Mur, M., Ruff, D.A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K.,
Bandettini, P.A., 2008b. Matching categorical object representations in inferior
temporal cortex of man and monkey. Neuron 60, 1126–1141.

Leahy, R.M., Mosher, J.C., Spencer, M.E., Huang, M.X., Lewine, J.D., 1998. A study of
dipole localization accuracy for MEG and EEG using a human skull phantom.
Electroencephalogr. Clin. Neurophysiol. 107, 159–173.

Liu, A.K., Dale, A.M., Belliveau, J.W., 2002. Monte Carlo simulation studies of EEG and
MEG localization accuracy. Hum. Brain Mapp. 16, 47–62.

Liu, T., Slotnick, S.D., Serences, J.T., Yantis, S., 2003. Cortical mechanisms of feature-
based attentional control. Cereb. Cortex 13, 1334–1343.

Maldjian, J.A., Laurienti, P.J., Kraft, R.A., Burdette, J.H., 2003. An automated method for
neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets.
NeuroImage 19, 1233–1239.

Maris, E., Oostenveld, R., 2007. Nonparametric statistical testing of EEG- and MEG-data.
J. Neurosci. Methods 164, 177–190.

Molins, A., Stufflebeam, S.M., Brown, E.N., H€am€al€ainen, M.S., 2008. Quantification of the
benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation.
NeuroImage 42, 1069–1077.
454
Müller, K., Mika, S., R€atsch, G., Tsuda, K., Sch€olkopf, B., 2001. An introduction to kernel-
based learning algorithms. IEEE Trans. Neural Netw. 12, 181–201.

Myers, N.E., Rohenkohl, G., Wyart, V., Woolrich, M.W., Nobre, A.C., Stokes, M.G., 2015.
Testing sensory evidence against mnemonic templates. eLife 4, e09000.

Nasiotis, K., Clavagnier, S., Baillet, S., Pack, C.C., 2017. High-resolution retinotopic maps
estimated with magnetoencephalography. NeuroImage 145 (Part A), 107–117.

Nichols, T.E., Holmes, A.P., 2002. Nonparametric permutation tests for functional
neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25.

Pantazis, D., Nichols, T.E., Baillet, S., Leahy, R.M., 2005. A comparison of random field
theory and permutation methods for the statistical analysis of MEG data. NeuroImage
25, 383–394.

Pflieger, M.E., Simpson, G.V., Ahlfors, S.P., Ilmoniemi, R.J., 2000. Superadditive
information from simultaneous MEG/EEG data. In: Aine, C.J., Stroink, G.,
Wood, C.C., Okada, Y., Swithenby, S.J. (Eds.), Biomag 96. Springer, New York,
pp. 1154–1157.

Sharon, D., H€am€al€ainen, M.S., Tootell, R.B.H., Halgren, E., Belliveau, J.W., 2007. The
advantage of combining MEG and EEG: comparison to fMRI in focally stimulated
visual cortex. NeuroImage 36, 1225–1235.

Stokes, M.G., Wolff, M.J., Spaak, E., 2015. Decoding rich spatial information with high
temporal resolution. Trends Cogn. Sci. 19, 636–638.

Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M., 2011. Brainstorm: a user-
friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 1–13.

Taulu, S., Kajola, M., Simola, J., 2004. Suppression of interference and artifacts by the
signal space separation method. Brain Topogr. 16, 269–275.

Taulu, S., Simola, J., 2006. Spatiotemporal signal space separation method for rejecting
nearby interference in MEG measurements. Phys. Med. Biol. 51, 1759.

Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., Diedrichsen, J., 2016. Reliability
of dissimilarity measures for multi-voxel pattern analysis. NeuroImage 137, 188–200.

Yoshinaga, H., Nakahori, T., Ohtsuka, Y., Oka, E., Kitamura, Y., Kiriyama, H.,
Kinugasa, K., Miyamoto, K., Hoshida, T., 2002. Benefit of simultaneous recording of
EEG and MEG in dipole localization. Epilepsia 43, 924–928.

http://refhub.elsevier.com/S1053-8119(17)30591-8/sref24
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref24
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref24
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref25
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref25
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref25
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref26
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref26
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref26
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref26
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref27
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref27
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref27
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref27
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref28
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref28
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref28
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref29
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref29
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref29
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref30
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref30
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref30
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref32
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref32
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref32
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref32
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref35
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref35
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref35
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref35
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref36
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref36
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref36
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref37
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref37
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref37
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref38
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref38
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref38
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref38
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref39
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref39
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref39
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref41
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref41
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref41
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref41
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref41
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref41
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref41
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref41
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref42
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref42
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref42
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref42
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref42
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref55
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref55
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref56
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref56
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref56
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref43
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref43
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref43
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref44
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref44
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref44
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref44
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref45
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref45
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref45
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref45
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref45
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref46
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref46
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref46
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref46
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref46
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref46
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref46
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref57
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref57
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref57
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref47
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref47
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref47
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref48
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref48
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref48
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref49
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref49
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref58
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref58
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref58
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref50
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref50
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref50
http://refhub.elsevier.com/S1053-8119(17)30591-8/sref50

	Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space
	1. Introduction
	2. Methods
	2.1. Participants
	2.2. Visual stimulus set and experimental design
	2.3. MEG and EEG acquisition and preprocessing
	2.4. Multivariate analysis
	2.4.1. Time-resolved single image classification
	2.4.2. Time-resolved object category discrimination

	2.5. Common and unique aspects of visual representations in MEG and EEG data
	2.6. fMRI stimulation protocol, acquisition, preprocessing and processing
	2.6.1. Experimental paradigm
	2.6.2. fMRI acquisition
	2.6.3. fMRI activation estimation
	2.6.4. fMRI region-of-interest definition
	2.6.5. Region-of-interest-based fMRI representational similarity analysis

	2.7. Spatial localization of MEG and EEG visual representations using fMRI-MEG/EEG fusion
	2.7.1. Region-of-interest-based fMRI-MEG/EEG fusion
	2.7.2. Spatially unbiased searchlight fMRI-MEG/EEG fusion

	2.8. Statistical testing

	3. Results
	3.1. Commonalities and differences in the time courses of single image classification from MEG and EEG data
	3.2. Time courses of visual category membership resolved with MEG and EEG are similar
	3.3. Comparison of MEG and EEG data by representational similarity analysis revealed both common and unique aspects of neural re ...
	3.4. Fusion with fMRI revealed the locus of unique and common aspects of visual representations resolved with MEG and EEG
	3.5. MEG and EEG equally resolved the spatiotemporal dynamics of the ventral pathway as revealed by searchlight-based fusion wit ...
	3.6. Summary of supplementary results based on supplementary sensor samplings

	4. Discussion
	4.1. Summary
	4.2. Both EEG and MEG are well suited for multivariate analyses methods to reveal human cortical dynamics
	4.3. Multivariate analysis of MEG and EEG reveals both common and unique aspects of neural representations

	Acknowledgement
	Appendix A. Supplementary data
	References


