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Large-Scale, High-Resolution Comparison of the Core Visual
Object Recognition Behavior of Humans, Monkeys, and
State-of-the-Art Deep Artificial Neural Networks
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Primates, including humans, can typically recognize objects in visual images at a glance despite naturally occurring identity-preserving
image transformations (e.g., changes in viewpoint). A primary neuroscience goal is to uncover neuron-level mechanistic models that
quantitatively explain this behavior by predicting primate performance for each and every image. Here, we applied this stringent
behavioral prediction test to the leading mechanistic models of primate vision (specifically, deep, convolutional, artificial neural net-
works; ANNs) by directly comparing their behavioral signatures against those of humans and rhesus macaque monkeys. Using high-
throughput data collection systems for human and monkey psychophysics, we collected more than one million behavioral trials from
1472 anonymous humans and five male macaque monkeys for 2400 images over 276 binary object discrimination tasks. Consistent with
previous work, we observed that state-of-the-art deep, feedforward convolutional ANNs trained for visual categorization (termed
DCNN, models) accurately predicted primate patterns of object-level confusion. However, when we examined behavioral performance
for individual images within each object discrimination task, we found that all tested DCNN;. models were significantly nonpredictive of
primate performance and that this prediction failure was not accounted for by simple image attributes nor rescued by simple model
modifications. These results show that current DCNN, models cannot account for the image-level behavioral patterns of primates and
that new ANN models are needed to more precisely capture the neural mechanisms underlying primate object vision. To this end,
large-scale, high-resolution primate behavioral benchmarks such as those obtained here could serve as direct guides for discov-
ering such models.
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Recently, specific feedforward deep convolutional artificial neural networks (ANNs) models have dramatically advanced our
quantitative understanding of the neural mechanisms underlying primate core object recognition. In this work, we tested the
limits of those ANNs by systematically comparing the behavioral responses of these models with the behavioral responses of
humans and monkeys at the resolution of individual images. Using these high-resolution metrics, we found that all tested ANN
models significantly diverged from primate behavior. Going forward, these high-resolution, large-scale primate behavioral bench-
marks could serve as direct guides for discovering better ANN models of the primate visual system. j

ignificance Statement

occurring identity-preserving transformations such as changes in
viewpoint. This view-invariant visual object recognition ability is
thought to be supported primarily by the primate ventral visual
stream (Tanaka, 1996; Rolls, 2000; DiCarlo et al., 2012). A pri-

Introduction
Primates, both human and nonhuman, can typically recognize
objects in visual images at a glance even in the face of naturally
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mary neuroscience goal is to construct computational models
that quantitatively explain the neural mechanisms underlying
this ability. That is, our goal is to discover artificial neural net-
works (ANNs) that accurately predict neuronal firing rate re-
sponses at all levels of the ventral stream and its behavioral
output. To this end, specific models within a large family of deep,
convolutional neural networks (DCNNs), optimized by super-
vised training on large-scale category-labeled image sets (Im-
ageNet) to match human-level categorization performance
(Krizhevsky et al., 2012; LeCun et al., 2015), have been put forth
as the leading ANN models of the ventral stream (Kriegeskorte,
2015; Yamins and DiCarlo, 2016). We refer to this subfamily as
DCNN, models (IC to denote ImageNet categorization pre-
training) to distinguish them from all possible models in the
DCNN family and, more broadly, from the superfamily of all
ANN:S. To date, it has been shown that DCNN, models display
internal feature representations similar to neuronal representa-
tions along the primate ventral visual stream (Yamins et al., 2013,
2014; Cadieu et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014)
and they exhibit behavioral patterns similar to the behavioral
patterns of pairwise object confusions of primates (Ghodrati et
al., 2014; Rajalingham et al., 2015; Jozwik et al., 2016; Kherad-
pisheh et al., 2016). Therefore, DCNN, models may provide a
quantitative account of the neural mechanisms underlying pri-
mate core object recognition behavior.

However, several studies have shown that DCNN, models
can diverge drastically from humans in object recognition behav-
ior, especially with regard to particular images optimized to be
adversarial to these networks (Goodfellow et al., 2014; Nguyen et
al., 2015). Related work has shown that specific image distortions
are disproportionately challenging to current DCNNs compared
with humans (RichardWebster et al., 2016; Dodge and Karam,
2017; Geirhos et al., 2017; Hosseini et al., 2017). Such image-
specific failures of the current ANN models would likely not be
captured by “object-level” behavioral metrics (e.g., the pattern of
pairwise object confusions mentioned above) that are computed
by pooling over hundreds of images and thus are not sensitive to
variation in difficulty across images of the same object. To over-
come this limitation of prior work, we here aimed to use scalable
behavioral testing methods to precisely characterize primate be-
havior at the resolution of individual images and to directly com-
pare leading DCNN models to primates over the domain of core
object recognition behavior at this high resolution.

We focused on core invariant object recognition, the ability to
identify objects in visual images in the central visual field during
a single, natural viewing fixation (DiCarlo et al., 2012). We fur-
ther restricted our behavioral domain to basic-level object dis-
criminations, as defined previously (Rosch et al., 1976). Within
this domain, we collected large-scale, high-resolution measure-
ments of human and monkey behavior (over a million behavioral
trials) using high-throughput psychophysical techniques, includ-
inga novel home cage behavioral system for monkeys. These data
enabled us to systematically compare all systems at progressively
higher resolution. At lower resolutions, we replicated previous
findings that humans, monkeys, and DCNN, models all share a
common pattern of object-level confusion (Rajalingham et al.,
2015). However, at the higher resolution of individual images, we
found that the behavior of all tested DCNN; models was signif-
icantly different from human and monkey behavior and this
model prediction failure could not be easily rescued by simple
model modifications. These results show that current DCNN,~
models do not fully account for the image-level behavioral pat-
terns of primates, suggesting that new ANN models are needed to
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more precisely capture the neural mechanisms underlying pri-
mate object vision. To this end, large-scale high-resolution be-
havioral benchmarks such as those obtained here could serve as a
strong top-down constraint for efficiently discovering such
models.

Materials and Methods

Visual images. We examined basic-level, core object recognition behavior
using a set of 24 broadly sampled objects that we previously found to be
reliably labeled by independent human subjects based on the definition
of basiclevel proposed previously (Rosch etal., 1976). For each object, we
generated 100 naturalistic synthetic images by first rendering a 3D model
of the object with randomly chosen viewing parameters (2D position, 3D
rotation, and viewing distance) and then placing that foreground object
view onto a randomly chosen, natural image background. To do this,
each object was first assigned a canonical position (center of gaze), scale
(~2°), and pose and then its viewing parameters were randomly sampled
uniformly from the following ranges for object translation ([—3,3]° in
both h and v), rotation ([ —180,180]° in all three axes), and scale ([ X0.7,
X1.7]). Background images were sampled randomly from a large data-
base of high-dynamic range images of indoor and outdoor scenes ob-
tained from Dosch Design (www.doschdesign.com). This image
generation procedure enforces invariant object recognition rather than
image matching because it requires the visual recognition system (hu-
man, animal or model) to tackle the “invariance problem,” the compu-
tational crux of object recognition (Ullman and Humphreys, 1996; Pinto
et al., 2008). In particular, we used naturalistic synthetic images with
systematic variation in viewpoint parameters and uncorrelated back-
ground to remove potential confounds (natural images are often “com-
posed” such that backgrounds covary with the object category) while
keeping the task difficult for machine vision systems. We have previously
shown that, unlike some photographic image sets, synthetic images of the
types we used here are critical to separating some types of computer
vision systems from humans (Pinto et al., 2008). Using this procedure,
we previously generated 2400 images (100 images per object) rendered at
1024 X 1024 pixel resolution with 256-level gray scale and subsequently
resized to 256 X 256 pixel resolution for human psychophysics, monkey
psychophysics, and model evaluation (Rajalingham et al., 2015). In the
current work, we focused our analyses on a randomly subsampled, and
then fixed, subset of 240 images (10 images per object; here referred to as
the “primary test images”). Figure 1A shows the full list of 24 objects, with
two example images of each object.

Because all of the images were generated from synthetic 3D object
models, we had explicit knowledge of the viewpoint parameters (posi-
tion, size, and pose) for each object in each image, as well as perfect
segmentation masks. Taking advantage of this feature, we characterized
each image based on these high-level attributes consisting of size, eccen-
tricity, relative pose, and contrast of the object in the image. Note that
these meta-parameters were independently randomly sampled to gener-
ate each image, so there is no correlation among size, eccentricity, and
pose over images. The size and eccentricity of the object in each image
were computed directly from the corresponding viewpoint parameters
under the assumption that the entire image would subtend 6° at the
center of visual gaze (*3° in both azimuth and elevation; see below). For
each synthetic object, we first defined its “canonical” 3D pose vector
based on independent human judgments. To compute the relative pose
attribute of each image, we estimated the difference between the object’s
3D pose and its canonical 3D pose. Pose differences were computed as
distances in unit quaternion representations: the 3D pose (r,,, r,,, and
r,,) was first converted into unit quaternions and distances between
quaternions q, and g, were estimated as cos ~'|q, * g,| (Huynh, 2009). To
compute the object contrast, we measured the absolute difference be-
tween the mean of the pixel intensities corresponding to the object and
the mean of the background pixel intensities in the vicinity of the object
(specifically, within 25 pixels of any object pixel, analogous to computing
the local foreground-background luminance difference of a foreground
objectin an image). Figure 5A shows example images with varying values
for the four image attributes.
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Figure 1. Images and behavioral task. 4, Two (of 100) example images for each of the 24 basic-level objects. To enforce true invariant object recognition behavior, we generated naturalistic
synthetic images, each with one foreground object, by rendering a 3D model of each object with randomly chosen viewing parameters and placing that foreground object view onto a randomly
chosen, natural image background. B, Time course of example behavioral trial (zebra vs dog) for human psychophysics. Each trial initiated with a central fixation point for 500 ms, followed by 100
ms presentation of a square test image (spanning 6 —8° of visual angle). After extinction of the test image, two choice images were shown to the left and right. Human participants were allowed
to freely view the response images for up to 1000 ms and responded by clicking on one of the choice images; no feedback was given. To neutralize top-down feature attention, all 276 binary object
discrimination tasks were randomly interleaved on a trial-by-trial basis. The monkey task paradigm was nearly identical to the human paradigm with the exception that trials were initiated by
touching a fixation circle horizontally centered on the bottom third of the screen and successful trials were rewarded with juice, whereas incorrect choices resulted in timeouts of 1-2.5°s. C,
Large-scale and high-throughput psychophysics in humans (top left), monkeys (top right), and models (bottom). Human behavior was measured using the online Amazon MTurk platform, which
enabled the rapid collection of ~1 million behavioral trials from 1472 human subjects. Monkey behavior was measured using a novel custom home cage behavioral system (MonkeyTurk), which
leveraged a web-based behavioral task running on a tablet to test many monkey subjects simultaneously in their home environment. Deep convolutional neural network models were tested on the
sameimages and tasks as those presented to humans and monkeys by extracting features from the penultimate layer of each visual system model and training back-end multiclass logistic regression

classifiers. All behavioral predictions of each visual system model were for images that were not seen in any phase of model training.

Core object recognition behavioral paradigm. Core object discrimina-
tion is defined as the ability to discriminate between two or more objects
in visual images presented under high view uncertainty in the central
visual field (~10°) for durations that approximate the typical primate
free-viewing fixation duration (~200 ms) (DiCarlo and Cox, 2007; Di-
Carloetal., 2012). Asin our previous work (Rajalingham et al., 2015), the
behavioral task paradigm consisted of a interleaved set of binary discrim-
ination tasks. Each binary discrimination task is an object discrimination
task between a pair of objects (e.g., elephant vs bear). Each such binary
task is balanced in that the test image is equally likely (50%) to be of either
of the two objects. On each trial, a test image is presented, followed by a
choice screen showing canonical views of the two possible objects (the
object that was not displayed in the test image is referred to as the “dis-
tractor” object, but note that objects are equally likely to be distractors
and targets). Here, 24 objects were tested, which resulted in 276 binary
object discrimination tasks. To neutralize feature attention, these 276
tasks are randomly interleaved (trial by trial) and the global task is re-
ferred to as a basic-level, core object recognition task paradigm.

Testing human behavior. All human behavioral data presented here
were collected from 1476 anonymous human subjects on Amazon Me-
chanical Turk (MTurk) performing the task paradigm described above.
Subjects were instructed to report the identity of the foreground object in
each presented image from among the two objects presented on the
choice screen (see Fig. 1B). Because all 276 tasks were interleaved ran-
domly (trial by trial), subjects could not deploy feature attentional strat-
egies specific to each object or specific to each binary task to process each
test image.

Figure 1B illustrates the time course of each behavioral trial, for a
particular object discrimination task (e.g., zebra vs dog). Each trial initi-
ated with a central black point for 500 ms, followed by 100 ms presenta-

tion of a test image containing one foreground object presented under
high variation in viewing parameters and overlaid on a random back-
ground, as described above (see “Visual images” section above). Imme-
diately after extinction of the test image, two choice images, each
displaying a single object in a canonical view with no background, were
shown to the left and right. One of these two objects was always the same
as the object that generated the test image (i.e., the correct object choice)
and the location of the correct object (left or right) was randomly chosen
on each trial. After clicking on one of the choice images, the subject was
queued with another fixation point before the next test image appeared.
No feedback was given and human subjects were never explicitly trained
on the tasks. Under assumptions of typical computer ergonomics, we
estimate that images were presented ata 6—8° of visual angle at the center
of gaze and the choice object images were presented at =6—8° of eccen-
tricity along the horizontal meridian.

We measured human behavior using the online Amazon MTurk plat-
form (see Fig. 1C), which enables efficient collection of large-scale psy-
chophysical data from crowd-sourced “human intelligence tasks”
(HITs). The reliability of the online MTurk platform has been validated
by comparing results obtained from online and in-laboratory psycho-
physical experiments (Majaj et al., 2015; Rajalingham et al., 2015). We
pooled 927,296 trials from 1472 human subjects to characterize the ag-
gregate human behavior, which we refer to as the “pooled” human (or
“archetypal” human). Each human subject performed only a small num-
ber of trials (~150) on a subset of the images and binary tasks. All 2400
images were used for behavioral testing but, in some of the HITs, we
biased the image selection toward the 240 primary testimages (1424 = 70
trials/image on this subsampled set vs 271 = 93 trials/image on the re-
maining images, mean = SD) to efficiently characterize behavior at
image-level resolution. Images were randomly drawn such that each hu-
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man subject was exposed to each image a relatively small number of times
(1.5 = 2.0 trials/image per subject, mean * SD), to mitigate potential
alternative behavioral strategies (e.g., “memorization” of images) that
could arise from a finite image set. Behavioral signatures at the object-
level (B.O1, B.O2, see “Behavioral metrics and signatures” section) were
measured using all 2400 test images, whereas image-level behavioral sig-
natures (B.Iln, B.I2n, see “Behavioral metrics and signatures” section)
were measured using the 240 primary test images. (We observed quali-
tatively similar results using those metrics on the full 2400 test images,
but we here focus on the primary test images because the larger number
of trials leads to lower noise levels).

Five other human subjects were separately recruited on MTurk to each
perform a large number of trials on the same images and tasks (53,097 =
15,278 trials/subject, mean * SD). Behavioral data from these five sub-
jects was not included in the characterization of the pooled human de-
scribed above, but instead aggregated together to characterize a distinct
held-out human pool. For the scope of the current work, this held-out
human pool, which largely replicated all behavioral signatures of the
larger archetypal human (see Figs. 2 and 3), served as an independent
validation of our human behavioral measurements.

Testing monkey behavior. Five adult male rhesus macaque monkeys
(Macaca mulatta, subjects M, Z, N, P, and B) were tested on the same basic-
level, core object recognition task paradigm described above, with minor
modification as described below. All procedures were performed in compli-
ance with National Institutes of Health guidelines and the standards of the
Massachusetts Institute of Technology Committee on Animal Care and the
American Physiological Society. To efficiently characterize monkey behav-
ior, we used a novel home cage behavioral system that we developed (termed
MonkeyTurk; see Fig. 1C). This system leveraged a tablet touchscreen (9-
inch Google Nexus or 10.5-inch Samsung Galaxy Tab S) and used a web
application to wirelessly load the task and collect the data (code available
from https://github.com/dicarlolab/mkturk). Analogous to the online
MTurk, which allows for efficient psychophysical assays of a large number
(hundreds) of human users in their native environments, MonkeyTurk al-
lowed us to test many monkey subjects simultaneously in their home envi-
ronment. Each monkey voluntarily initiated trials and each readily
performed the task a few hours each day that the task apparatus was made
available to it. At an average rate of ~2000 trials per day per monkey, we
collected a total of 836,117 trials from the 5 monkey subjects over a period of
~3 months.

Monkey training was described in detail previously (Rajalingham et
al., 2015). Briefly, all monkeys were initially trained on the match test
image to object rule using other images and were also trained on discrim-
inating the particular set of 24 objects tested here using a separate set of
training images rendered from these objects in the same manner as the
main testing images. Two of the monkey subjects (Z and M) were previ-
ously trained in the laboratory setting and the remaining three subjects
were trained using MonkeyTurk directly in their home cages and did not
have significant prior laboratory exposure. Once monkeys reached satu-
ration performance on training images, we began the behavioral testing
phase to collect behavior on test images. Monkeys did improve through-
out the testing phase, exhibiting an increase in performance between the
firstand second half of trials of 4 * 0.9% (mean = SEM over five monkey
subjects). However, the image-level behavioral signatures obtained from
the first and the second halves of trials were highly correlated to each
other (B.I1 noise-adjusted correlation of 0.85 % 0.06, mean = SEM over
five monkey subjects, see “Behavioral metrics and signatures” section
below), suggesting that monkeys did not significantly alter strategies
(e.g., did not “memorize” images) throughout the behavioral testing
phase.

The monkey task paradigm was nearly identical to the human para-
digm (see Fig. 1B) with the exception that trials were initiated by touch-
ing a white “fixation” circle horizontally centered on the bottom third of
the screen (to avoid occluding centrally presented test images with the
hand). This triggered a 100 ms central presentation of a test image, fol-
lowed immediately by the presentation of the two choice images (see Fig.
1B, location of correct choice randomly assigned on each trial, identical
to the human task). Unlike the main human task, monkeys responded by
directly touching the screen at the location of one of the two choice
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images. Touching the choice image corresponding to the object shown in
the test image resulted in the delivery of a drop of juice through a tube
positioned at mouth height (but not obstructing view), whereas touching
the distractor choice image resulted in a 3 s timeout. Because gaze direc-
tion typically follows the hand during reaching movements, we assumed
that the monkeys were looking at the screen during touch interactions
with the fixation or choice targets. In both the laboratory and in the home
cage, we maintained total test image size at ~6° of visual angle at the
center of gaze and took advantage of the retina-like display qualities of
the tablet by presenting images pixel matched to the display (256 X 256
pixel image displayed using 256 X 256 pixels on the tablet at a distance of
8 inches) to avoid filtering or aliasing effects.

As with Mechanical Turk testing in humans, MonkeyTurk head-free
home cage testing enables efficient collection of reliable, large-scale psy-
chophysical data, but it likely does not yet achieve the level of experimen-
tal control that is possible in the head-fixed laboratory setting. However,
we note that when subjects were engaged in home cage testing, they
reliably had their mouth on the juice tube and their arm positioned
through an armhole. These spatial constraints led to a high level of head
position trial-by-trial reproducibility during performance of the task
paradigm. Furthermore, when subjects were in this position, they could
not see other animals because the behavior box was opaque and subjects
performed the task at a rapid pace of 40 trials/min, suggesting that they
were not frequently distracted or interrupted. The location of the up-
coming test image (but not the location of the object within that test
image) was perfectly predictable at the start of each behavioral trial,
which likely resulted in a reliable, reproduced gaze direction at the mo-
ment that each test image was presented. The relatively short, but natural
and high performing (Cadieu et al., 2014), test image duration (100 ms)
ensured that saccadic eye movements were unlikely to influence test
image performance because they generally take ~200 ms to initiate in
response to the test image and thus well after the test image had been
extinguished.

Testing model behavior. We tested a number of different DCNN mod-
els on the exact same images and tasks as those presented to humans and
monkeys. Importantly, our core object recognition task paradigm is
closely analogous to the large-scale ImageNet 1000-way object categori-
zation task for which these networks were optimized and thus expected
to perform well. We focused on publicly available DCNN model archi-
tectures that have proven highly successful with respect to this computer
vision benchmark over the past 5 years: AlexNet (Krizhevsky et al., 2012),
NYU (Zeiler and Fergus, 2014), VGG (Simonyan and Zisserman, 2014),
GoogleNet (Szegedy et al,, 2013), Resnet (He et al, 2016), and
Inception-v3 (Szegedy et al., 2013). Because this is only a subset of pos-
sible DCNN models, we refer to these as the DCNN|. visual system
model subfamily. For each of the publicly available model architectures,
we first used ImageNet categorization-trained model instances either
using publicly available trained model instances or training them to sat-
uration on the 1000-way classification task in-house. Training took sev-
eral days on one to two GPUs.

We then performed psychophysical experiments on each ImageNet-
trained DCNN model to characterize their behavior on the exact same
images and tasks as humans and monkeys. We first adapted these
ImageNet-trained models to our 24-way object recognition task by re-
training the final class probability layer (initially corresponding to the
probability output of the 1000-way ImageNet classification task) while
holding all other layers fixed. In practice, this was done by extracting
features from the penultimate layer of each DCNN;. (i.e., top-most be-
fore class probability layer) on the same images that were presented to
humans and monkeys and training back-end multiclass logistic regres-
sion classifiers to determine the cross-validated output class probability
for each image. This procedure is illustrated in Figure 1C. To estimate the
hit rate of a given image in a given binary classification task, we renor-
malized the 24-way class probabilities of that image, considering only the
two relevant classes, to sum to one. Object-level and image-level behav-
ioral metrics were computed based on these hit rate estimates (as de-
scribed in the “Behavioral metrics and signatures” section below).
Importantly, this procedure assumes that the model “retina” layer pro-
cesses the central 6° of the visual field. It also assumes that linear discrim-
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Table 1. Definition of behavioral performance metrics
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Behavioral metric HR FAR
One-versus-all object-level performance (B.01) (N5 < 1) Proportion of trials when images of object i were correctly Proportion of trials when any image was incorrectly
0,(i) = Z(HR(i)) — Z(FAR(7)), labeled as object i labeled as object i

i= ]' 2' e Nabje(rs
One-versus-other object-level performance

(8.02) (Nabjects X Nabje(ts)

02(“) = Z(HR(, j)) — Z(FARC )),
i=12..., Nabjem

j=12.., Nabjem

One-versus-all image-level performance

BT Wimages < 1) 11(if) = Z(HR(ii)) — Z(FARCi)), as objecti
1=1,2. . Nipgges
One-versus-other image-level performance
B.I2 (Nimages X Nolzjeas)
Iy, ) = Z(HRUi, j)) — Z(FARG, /),
1=1,2 0 Nipages
j = 1'2 s Nobje(rs

Proportion of trials when images of object i/ were correctly
labeled as i when presented against distractor object j

Proportion of trials when image ii was correctly classified

Proportion of trials when image i was correctly classified
as object / when presented against distractor object j

Proportion of trials when images of object j were
incorrectly labeled as object i

Proportion of trials when any image was incorrectly
labeled as object i

Proportion of trials when images of object j were
incorrectly labeled as object i

The first column provides the name, abbreviation, dimensions, and equations for each of the raw performance metrics. The next two columns provide the definitions for computing the hit rate (HR) and false alarm rate (FAR), respectively.

inants (“readouts”) of the model’s top feature layer are its behavioral
output (as intended by the model designers). Manipulating either of
these choices (e.g., resizing the input images such that they span only part
of the input layer or building linear discriminates for behavior using a
different model feature layer) would result in completely new, testable
ANN models that we did not test here.

From these analyses, we selected the most human consistent DCNN
architecture (Inception-v3, see “Behavioral consistency” section below),
fixed that architecture, and then performed post hoc analyses in which we
varied the input image sampling, the initial parameter settings before
training, the filter training images, the type of classifiers used to generate
the behavior from the model features, and the classifier training images.
To examine input image sampling, we retrained the Inception-v3 archi-
tecture on images from ImageNet that were first spatially filtered to
match the spatial sampling of the primate retina (i.e., an approximately
exponential decrease in cone density away from the fovea) by effectively
simulating a fisheye transformation on each image. These images were at
highest resolution at the “fovea” (i.e., center of the image) with gradual
decrease in resolution with increasing eccentricity. To examine the ana-
log of “intersubject variability,” we constructed multiple trained model
instances (“subjects”) in which the architecture and training images were
held fixed (Inception-v3 and ImageNet, respectively) but the model filter
weights initial condition and order of training images were randomly
varied for each model instance. Importantly, this procedure is only one
possible choice for simulating intersubject variability for DCNN models,
which, as a first-order approximation, models different human subjects
as random samples from a fixed model class. There are many other pos-
sible options for simulating intersubject variability, including: (1) ran-
dom sampling of different features from a fixed trained model of fixed
architecture; (2) random sampling of different trained models from a
fixed architecture and optimization; and (3) random sampling of differ-
ent trained models from a model class varying in architecture (3a), opti-
mization procedure and data (3b), or both (3¢), to name a few. This
choice is an important open research direction that we do not address
here. We do not claim this to be the best model of intersubject variability,
but rather a good starting point for that greater goal.

To examine the effect of model training, we first fine-tuned an
ImageNet-trained Inception-v3 model on a synthetic image set consist-
ing of ~6.9 million images of 1049 objects (holding out 50,000 images for
model validation). These images were generated using the same render-
ing pipeline as our test images, but the objects were nonoverlapping with
the 24 test objects presented here. As expected, fine-tuning on synthetic
images led to a small increase in overall performance (see Fig. 5). To push
the limits of training on synthetic images, we additionally trained an
Inception-v3 architecture exclusively on this synthetic image set. To
avoid overfitting on this synthetic image set, we stopped the model train-
ing based on maximum performance on a validation set of held-out

objects. These synthetic-trained models were high performing, with only
a small decrease in overall performance relative to the ImageNet-trained
models (see Fig. 5, last bar). Finally, we tested the effect of different
classifiers to generate model behavior by testing both multiclass logistic
regression and support vector machine classifiers as well as the effect of
varying the number of training images used to train those classifiers (20
vs 50 images per class).

Behavioral metrics and signatures. To characterize the behavior of any
visual system, we here introduce four behavioral ( B) metrics of increas-
ing richness requiring increasing amounts of data to measure reliably.
Each behavioral metric computes a pattern of unbiased behavioral per-
formance, using a sensitivity index: d’ = Z(HitRate) — Z(FalseAlarm-
Rate), where Z is the inverse of the cumulative Gaussian distribution. The
various metrics differ in the resolution at which hit rates and false alarm
rates are computed. Table 1 summarizes the four behavioral metrics,
varying the hit rate resolution (object-level or image-level) and the false
alarm resolution (one-versus-all or one-versus-other). When each met-
ric is applied to the behavioral data of a visual system, biological or
artificial, we refer to the result as one behavioral “signature” of that
system. Note that we do not consider the signatures obtained here to be
the final say on the behavior of these biological or artificial systems, in the
terms defined here, new experiments using new objects/images, but the
same metrics would produce additional behavioral signatures.

The four behavioral metrics we chose are as follows. First, the one-
versus-all object-level performance metric (termed B.O1) estimates the
discriminability of each object from all other objects, pooling across all
distractor object choices. Because we here tested 24 objects, the resulting
B.O1 signature has 24 independent values. Second, the one-versus-other
object-level performance metric (termed B.O2) estimates the discrim-
inability of each specific pair of objects or the pattern of pairwise object
confusions. Because we here tested 276 interleaved binary object discrim-
ination tasks, the resulting B.O2 signature has 276 independent values
(the oft-diagonal elements on one-half of the 24 X 24 symmetric matrix).
Third, the one-versus-all image-level performance metric (termed B.I1)
estimates the discriminability of each image from all other objects, pool-
ing across all possible distractor choices. Because we here focused on the
primary image test set of 240 images (10 per object, see above), the
resulting B.I1 signature has 240 independent values. Fourth, the one-
versus-other image-level performance metric (termed B.12) estimates the
discriminability of each image from each distractor object. Because we
here focused on the primary image test set of 240 images (10 per object,
see above) with 23 distractors, the resulting B.I2 signature has 5520 in-
dependent values.

Naturally, object-level and image-level behavioral signatures are
tightly linked. For example, images of a particularly difficult-to-discriminate
object would inherit lower performance values on average compared
with images from a less difficult-to-discriminate object. To isolate the
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behavioral variance that is specifically driven by image variation and not
simply predicted by the objects (and thus already captured by B.O1 and
B.0O2), we defined normalized image-level behavioral metrics (termed
B.I1n, B.I2n) by subtracting the mean performance values over all images
of the same object and task. This process is schematically illustrated in
Figure 3A. We note that the resulting normalized image-level behavioral
signatures capture a significant proportion of the total image-level be-
havioral variance in our data (e.g., 52%, 58% of human B.I1 and B.12
variance is driven by image variation, independent of object identity). In
this study, we use these normalized metrics for image-level behavioral
comparisons between models and primates (see Results).

Behavioral consistency. To quantify the similarity between a model
visual system and the human visual system with respect to a given behav-
ioral metric, we used a measure called “human consistency” as previously
defined (Johnson et al., 2002). Human consistency (p) is computed, for
each of the four behavioral metrics, as a noise-adjusted correlation of
behavioral signatures (DiCarlo and Johnson, 1999). For each visual sys-
tem, we randomly split all behavioral trials into two equal halves and
applied each behavioral metric to each half, resulting in two independent
estimates of the system’s behavioral signature with respect to that metric.
We took the Pearson correlation between these two estimates of the
behavioral signature as a measure of the reliability of that behavioral
signature given the amount of data collected; that is, the split-half inter-
nal reliability. To estimate human consistency, we computed the Pearson
correlation over all the independent estimates of the behavioral signa-
ture from the model (m) and the human (h) and we then divide that
raw Pearson correlation by the geometric mean of the split-half in-
ternal reliability of the same behavioral signature measured for each

p(m, h)
\p(m, m)p(h, h)’

Because all correlations in the numerator and denominator were com-
puted using the same amount of trial data (exactly half of the trial data),
we did not need to make use of any prediction formulas (e.g., extrapola-
tion to larger number of trials using Spearman—Brown prediction for-
mula). This procedure was repeated 10 times with different random
split-halves of trials. Our rationale for using a reliability-adjusted corre-
lation measure for human consistency was to account for variance in the
behavioral signatures that arises from “noise”; that is, variability that is
not replicable by the experimental condition (image and task) and thus
that no model can be expected to predict (DiCarlo and Johnson, 1999;
Johnson et al., 2002). In sum, if the model () is a replica of the arche-
typal human (h), then its expected human consistency is 1.0 regardless of
the finite amount of data that are collected. Note that the human consis-
tency value is directly linked, via a squaring operation, to the proportion
of the explainable behavioral variance that is explained by models.

Characterization of residuals. In addition to measuring the similarity
between the behavioral signatures of primates and models (using human
consistency analyses, as described above), we examined the correspond-
ing differences, termed “residual signatures.” Each candidate visual sys-
tem model’s residual signature was estimated as the residual of a linear
least-squares regression of the model’s signature on the corresponding
human signature and a free intercept parameter. This procedure effec-
tively captures the differences between human and model signatures after
accounting for overall performance differences. Residual signatures were
estimated on disjoint split-halves of trials repeated 10 times with random
trial permutations. Residuals were computed with respect to the normal-
ized one-versus-all image-level performance metric (B.I1n) because this
metric showed a clear difference between DCNN; models and primates
and the behavioral residual can be interpreted based only on the test
images (i.e., we can assign a residual per image).

To examine the extent to which the difference between each model and
the archetypal human is reliably shared across different models, we mea-
sured the Pearson correlation between the residual signatures of pairs of
models. Residual similarity was quantified as the proportion of shared
variance, defined as the square of the noise-adjusted correlation between
residual signatures (the noise adjustment was done as defined in equa-
tion above). Correlations of residual signatures were always computed
across distinct split-halves of data to avoid introducing spurious corre-
lations from subtracting common noise in the human data. We mea-

system as follows: p(m,h) =
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sured the residual similarity between all pairs of tested models, holding
both architecture and optimization procedure fixed (between instances
of the ImageNet categorization-trained Inception-v3 model varying in
filter initial conditions), varying the architecture while holding the opti-
mization procedure fixed (between all tested ImageNet categorization-
trained DCNN architectures), and holding the architecture fixed while
varying the optimization procedure (between ImageNet categorization-
trained Inception-v3 and synthetic categorization fine-tuned Inception-v3
models). This analysis addresses not only the reliability of the failure of
DCNN, models to predict human behavior (deviations from humans),
butalso the relative importance of the characteristics defining similarities
within the model subfamily (namely, the architecture and the optimiza-
tion procedure). We first performed this analysis for residual signatures
over the 240 primary test images and subsequently zoomed in on subsets
of images that humans found to be particularly difficult. This image
selection was made relative to the distribution of image-level perfor-
mance of held-out human subjects (B.I1 metric from five subjects); dif-
ficult images were defined as ones with performance below the 25™
percentile of this distribution.

To determine whether the difference between each model and humans
can be explained by simple human-interpretable stimulus attributes, we
regressed each DCNN, . model’s residual signature on image attributes
(object size, eccentricity, pose, and contrast). Briefly, we constructed a
design matrix from the image attributes (using individual attributes or all
attributes) and used multiple linear least-squares regression to predict
the image-level residual signature. The multiple linear regression was
tested using twofold cross-validation over trials. The relative importance
of each attribute (or groups of attributes) was quantified using the pro-
portion of explainable variance (i.e., variance remaining after accounting
for noise variance) explained from the residual signature.

Primate behavior zone. In this work, we are primarily concerned with
the behavior of an “archetypal human” rather than the behavior of any
given individual human subject. We operationally defined this concept as
the common behavior over many humans obtained by pooling together
trials from a large number of individual human subjects and treating this
human pool as if it were acquired from a single behaving agent. Due to
intersubject variability, we do not expect any given human or monkey
subject to be perfectly consistent with this archetypal human (i.e., we do
not expect it to have a human consistency of 1.0). Given current limita-
tions of monkey psychophysics, we are not yet able to measure the be-
havior of very large number of monkey subjects at high resolution and
consequently cannot directly estimate the human consistency of the cor-
responding “archetypal monkey” to the human pool. Rather, we indi-
rectly estimated this value by first measuring human consistency as a
function of number of individual monkey subjects pooled together ()
and then extrapolating the human consistency estimate for pools of
very large number of subjects (as n approaches infinity). Extrapola-
tions were done using least-squares fitting of an exponential function
p(n) = a + b-e  (see Fig. 4).

For each behavioral metric, we defined a “primate zone” as the range
of human consistency values delimited by estimates p,,, and p,.. as
lower and upper bounds respectively. p, .. corresponds to the extrapo-
lated estimate of human consistency of a large (i.e., infinitely many) pool
of rhesus macaque monkeys; p,,... is by definition equal to 1.0. Therefore,
the primate zone defines a range of human consistency values that cor-
respond to models that accurately capture the behavior of the human
pool at least as well as an extrapolation of our monkey sample. In this
work, we defined this range of human consistency values as the criterion
for success for computational models of primate visual object recogni-
tion behavior.

To make a global statistical inference about whether models sampled
from the DCNN| subfamily meet or fall short of this criterion for suc-
cess, we attempted to reject the hypothesis that, for a given behavioral
metric, the human consistency of DCNN,~ models is within the primate
zone. To test this hypothesis, we estimated the empirical probability that
the distribution of human consistency values, estimated over different
model instances within this family, could produce human consistency
values within the primate zone. Specifically, we estimated a p-value for
each behavioral metric using the following procedure: We first estimated
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an empirical distribution of Fisher-transformed human consistency val-
ues for this model family (i.e., over all tested DCNN, . models and over all
trial resampling of each DCNN, model). From this empirical distribu-
tion, we fit a Gaussian kernel density function, optimizing the bandwidth
parameter to minimize the mean squared error to the empirical distri-
bution. This kernel density function was evaluated to compute a p-value
by computing the cumulative probability of observing a human consis-
tency value greater than or equal to the criterion of success (i.e., the Fisher
transformed p, .. value). This p-value indicates the probability that hu-
man consistency values sampled from the observed distribution would
fall into the primate zone, with smaller p-values indicating stronger evi-
dence against the hypothesis that the human consistency of DCNN mod-
els is within the primate zone.

Results

In the present work, we systematically compared the basic level
core object recognition behavior of primates and state-of-the-art
artificial neural network models using a series of behavioral met-
rics ranging from low to high resolution within a two-alternative
forced choice match-to-sample paradigm. The behavior of each
visual system, whether biological or artificial, was tested on the
same 2400 images (24 objects, 100 images/object) in the same 276
interleaved binary object recognition tasks. Each system’s behav-
ior was characterized at multiple resolutions (see “Behavioral
metrics and signatures” section in the Materials and Methods)
and directly compared with the corresponding behavioral metric
applied on the archetypal human (defined as the average behav-
ior of a large pool of human subjects tested; see Materials and
Methods). The overarching logic of this study was that, if two
visual systems are equivalent, then they should produce statisti-
cally indistinguishable behavioral signatures with respect to these
metrics. Specifically, our goal was to compare the behavioral sig-
natures of visual system models with the corresponding behav-
ioral signatures of primates.

Object-level behavioral comparison

We first examined the pattern of one-versus-all object-level be-
havior (B.O1 metric) computed across all images and possible
distractors. Because we tested 24 objects here, the B.O1 signature
was 24 dimensional. Figure 2A shows the B.O1 signatures for the
pooled human (pooling # = 1472 human subjects), pooled mon-
key (pooling #n = 5 monkey subjects), and several DCNN, mod-
els as 24-dimensional vectors using a color scale. Each element of
the vector corresponds to the system’s discriminability of one
object against all others that were tested (i.e., all other 23 objects).
The color scales span each signature’s full performance range and
warm colors indicate lower discriminability. For example, red
indicates that the tested visual system found the object corre-
sponding to that element of the vector to be very challenging to
discriminate from other objects (on average over all 23 discrim-
ination tests and on average over all images). Figure 2B directly
compares the B.O1 signatures computed from the behavioral
output of two visual system models, a pixel model (Fig. 2B, top)
and a DCNN/ model (Inception-v3; Fig. 2B, bottom), against
that of the human B.O1 signature. We observe a tighter corre-
spondence to the human behavioral signature for the DCNN/
model visual system than for the baseline pixel model visual sys-
tem. We quantified that similarity using a noise-adjusted corre-
lation between each pair of B.O1 signatures (termed human
consistency; Johnson et al., 2002). The noise adjustment means
that a visual system that is identical to the human pool will have
an expected human consistency score of 1.0 even if it has irreduc-
ible trial-by-trial stochasticity (see Materials and Methods). Fig-
ure 2C shows the B.O1 human consistency for each of the tested
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model visual systems. We additionally tested the behavior of a
held-out pool of five human subjects (black dot) and a pool of
five macaque monkey subjects (gray dot) and observed that both
yielded B.O1 signatures that were highly human consistent (hu-
man consistency, p = 0.90, 0.97 for monkey pool and held-out
human pool, respectively). We defined a range of human consis-
tency values, termed the “primate zone” (shaded gray area), de-
limited by extrapolated human consistency estimates of large
pools of macaques (see Materials and Methods; see Fig. 4). We
found that the baseline pixel visual system model and the low-
level V1 visual system model were not within this zone (p = 0.40,
0.67 for pixels and V1 models, respectively), whereas all tested
DCNN;| visual system models were either within or very close to
this zone. Indeed, we could not reject the hypothesis that
DCNN; models are primate like (p = 0.54, exact test; see Mate-
rials and Methods).

Next, we compared the behavior of the visual systems at a
slightly higher level of resolution. Specifically, instead of pooling
over all discrimination tasks for each object, we computed the
mean discriminability of each of the 276 pairwise discrimination
tasks (still pooling over images within each of those tasks). This
yielded a symmetric matrix that is referred to here as the B.O2
signature. Figure 2D shows the B.O2 signatures of the pooled
human, pooled monkey and several DCNN|. visual system mod-
els as 24 X 24 symmetric matrices. Each bin (3, j) corresponds to
the system’s discriminability of objects i and j, where warmer
colors indicate lower performance; color scales are not shown but
span each signature’s full range. We observed strong qualitative
similarities between the pairwise object confusion patterns of all
of the high level visual systems (e.g., camel and dog are often
confused with each other by all three systems). This similarity is
quantified in Figure 2E, which shows the human consistency of
all examined visual system models with respect to this metric.
Similar to the B.O1 metric, we observed that both a pool of ma-
caque monkeys and a held-out pool of humans are highly human
consistent with respect to this metric (p = 0.77, 0.94 for monkeys,
humans respectively). Also similar to the B.O1 metric, we found
that all DCNN. visual system models are highly human consis-
tent (p > 0.8), whereas the baseline pixel visual system model and
the low-level V1 visual system model were not (p = 0.41, 0.57 for
pixels, V1 models, respectively). Indeed, all DCNN. visual sys-
tem models are within the defined “primate zone” of human
consistency and we could not falsify the hypothesis that DCNN|
models are primate like (p = 0.99, exact test).

Together, humans, monkeys, and current DCNN; models all
share similar patterns of object-level behavioral performances
(B.O1 and B.O2 signatures) that are not shared with lower-level
visual representations (pixels and V1). However, object-level
performance patterns do not capture the fact that some images of
an object are more challenging than other images of the same
object because of interactions of the variation in the object’s pose
and position with the object’s class. To overcome this limitation,
we next examined the patterns of behavior at the resolution of
individual images on a subsampled set of images where we specifi-
cally obtained a large number of behavioral trials to accurately esti-
mate behavioral performance on each image. Note that, from the
point of view of the subjects, the behavioral tasks are identical to
those already described. We simply aimed to measure and compare
their patterns of performance at much higher resolution.

Image-level behavioral comparison
To isolate purely image-level behavioral variance, that is, vari-
ance that is not predicted by the object and thus already captured
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Figure 2.

DCNNs

Object-level comparison to human behavior. A, One-versus-all object-level (B.01) signatures for the pooled human (n = 1472 human subjects), pooled monkey (n = 5 monkey
subjects), and several DCNN, models. Each B.01 signature is shown as a 24-dimensional vector using a color scale; each colored bin corresponds to the system’s discriminability of one object against
all others that were tested. The color scales span each signature’s full performance range and warm colors indicate lower discriminability. B, Direct comparison of the B.01 signatures of a pixel visual
system model (top) and a DCNN, visual system model (Inception-v3; bottom) against that of the human B.01 signature. ¢, Human consistency of B.01 signatures for each of the tested model visual
systems. The black and gray dots correspond to a held-out pool of five human subjects and a pool of five macaque monkey subjects, respectively. The shaded area corresponds to the “primate zone,”
a range of consistencies delimited by the estimated human consistency of a pool of infinitely many monkeys (see Fig. 44). D, One-versus-other object-level (B.02) signatures for pooled human,
pooled monkey, and several DCNN, models. Each B.02 signature is shown as a 24 X 24 symmetric matrices using a color scale, where each bin (i,j) corresponds to the system’s discriminability of
objectsiandj. Asin 4, color scales span each signature’s full performance range and warm colors indicate lower discriminability. £, Human consistency of B.02 signatures for each of the tested model
visual systems. Format is identical to that in C.

by the B.O1 signature, we computed the normalized image-level
signature. This normalization procedure is schematically illus-
trated in Figure 3A, which shows that the one-versus-all image-
level signature (240-dimensional, 10 images/object) is used to
obtain the normalized one-versus-all image-level signature

(termed B.I1n, see “Behavioral metrics and signatures” section).
Figure 3B shows the B.Iln signatures for the pooled human,
pooled monkey, and several DCNN; models as 240 dimensional
vectors. Each bin’s color corresponds to the discriminability of a
single image against all distractor options (after subtraction of
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Image-level comparison to human behavior. 4, Schematic for computing B.I1n. First, the one-versus-all image-level signature (B.I1) is shown as a 240-dimensional vector (24 objects,

10images/object) using a color scale, where each colored bin corresponds to the system’s discriminability of one image against all distractor objects. From this pattern, the normalized one-versus-all
image-level signature (B.I1n) is estimated by subtracting the mean performance value over allimages of the same object. This normalization procedure isolates behavioral variance that is specifically
image driven but not simply predicted by the object. B, Normalized one-versus-all object-level (B.I1n) signatures for the pooled human, pooled monkey, and several DCNN, models. Each B.ITn
signature is shown as a 240-dimensional vector using a color scale formatted as in A. ¢, Human consistency of B.I1n signatures for each of the tested model visual systems. Format is identical to that
inFigure 2C. D, Normalized one-versus-otherimage-level (B.12n) signatures for pooled human, pooled monkey, and several DCNN, models. Each B.I2n signature s shown as a 240 X 24 matrix using
a color scale, where each bin (i,j) corresponds to the system’s discriminability of image / against distractor object j. Colors scalesin A, Band D span each signature’s full performance range and warm
colors indicate lower discriminability. £, Human consistency of B.I2n signatures for each of the tested model visual systems. Format is identical to that in Figure 2C.

object-level discriminability; see Fig. 3A), where warmer colors
indicate lower values; color scales are not shown but span each
signature’s full range. Figure 3C shows the human consistency
with respect to the B.I1n signature for all tested models. Unlike
with object-level behavioral metrics, we now observe a diver-
gence between DCNN, models and primates. Both the monkey
pool and the held-out human pool remain highly human consistent
(p = 0.77, 0.96 for monkeys, humans respectively), but all DCNN|
models were significantly less human consistent (Inception-v3: p =
0.62) and well outside of the defined “primate zone” of B.I1n human
consistency. Indeed, the hypothesis that the human consistency of
DCNN;, models is within the primate zone is strongly rejected (p =
6.16e-8, exact test; see Materials and Methods).

We can zoom in further by examining not only the overall
performance for a given image but also the object confusions for
each image, that is, the additional behavioral variation that is due,
not only to the test image, but also to the interaction of that test
image with the alternative (incorrect) object choice that is pro-

vided after the test image (Fig. 1B). This is the highest level of
behavioral accuracy resolution that our task design allows. In raw
form, it corresponds to one-versus-other image-level confusion
matrix, where the size of that matrix is the total number of images
by the total number of objects (here, 240X24). Each bin (i)
corresponds to the behavioral discriminability of a single image
against distractor object j. Again, we isolate variance that is not
predicted by object-level performance by subtracting the average
performance on this binary task (mean over all images) to con-
vert the raw matrix B.I2 above into the normalized matrix, re-
ferred to as B.12n. Figure 3D shows the B.I2n signatures as 240 X
24 matrices for the pooled human, pooled monkey, and top
DCNN;. visual system models. Color scales are not shown but
span each signature’s full range; warmer colors correspond to
images with lower performance in a given binary task relative
to all images of that object in the same task. Figure 3E shows
the human consistency with respect to the B.I2n metric for all
tested visual system models. Extending our observations using
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B.Iln, we observe a similar divergence between primates and
DCNN; ¢ visual system models on the matrix pattern of image-by-
distractor difficulties (B.I2n). Specifically, both the monkey pool and
held-out human pool remain highly human consistent (p = 0.75,
0.77 for monkeys, humans respectively), whereas all tested DCNN;
models are significantly less human consistent (Inception-v3: p =
0.53) falling well outside of the defined “primate zone” of B.I2n
human consistency values. Once again, the hypothesis that the hu-
man consistency of DCNN; models is within the primate zone is
strongly rejected (p = 3.17e-18, exact test; see Materials and
Methods).

Natural subject-to-subject variation

For each behavioral metric (B.O1, BO2, B.I1n, BI2n), we defined
a “primate zone” as the range of consistency values delimited by
human consistency estimates p,.. and p;.. as lower and upper
bounds respectively. p,.. corresponds to the extrapolated esti-
mate of the human consistency of a large (i.e., infinitely many
subjects) pool of rhesus macaque monkeys. Therefore, the fact
that a particular tested visual system model falls outside of the
primate zone can be interpreted as a failure of that visual system
model to accurately predict the behavior of the archetypal human
at least as well as the archetypal monkey.

However, from the above analyses, it is not yet clear whether a
visual system model that fails to predict the archetypal human might
nonetheless accurately correspond to one or more individual human
subjects found within the natural variation of the human popula-
tion. Given the difficulty of measuring individual subject behavior at
the resolution of single images for large numbers of human and
monkey subjects, we could not yet directly test this hypothesis. In-
stead, we examined it indirectly by asking whether an archetypal
model—that is, a pool that includes an increasing number of model
“subjects”—would approach the human pool. We simulated model
intersubject variability by retraining a fixed DCNN architecture with
a fixed training image set with random variation in the initial condi-
tions and order of training images. This procedure results in models
that can still perform the task but with slightly different learned
weight values. We note that this procedure is only one possible
choice of generating intersubject variability within each visual
system model type, a choice thatis an important open research
direction that we do not address here. From this procedure, we
constructed multiple trained model instances (“subjects”) for
a fixed DCNN architecture and asked whether an increasingly
large pool of model “subjects” better captures the behavior of
the human pool at least as well as a monkey pool. This post hoc
analysis was conducted for the most human consistent DCNN
architecture (Inception-v3).

Figure 4A shows, for each of the four behavioral metrics, the
measured human consistency of subject pools of varying size
(number of subjects, n) of rhesus macaque monkeys (black) and
ImageNet-trained Inception-v3 models (blue). The human con-
sistency increases with growing number of subjects for both vi-
sual systems across all behavioral metrics. To estimate the
expected human consistency for a pool of infinitely many mon-
key or model subjects, we fit an exponential function mapping #
to the mean human consistency values and obtained a parameter
estimate for the asymptotic value (see Materials and Methods).
We note that estimated asymptotic values are not significantly
beyond the range of the measured data; the human consistency of
a pool of five monkey subjects reaches within 97% of the human
consistency of an estimated infinite pool of monkeys for all met-
rics, giving credence to the extrapolated human consistency val-
ues. This analysis suggests that, under this model of intersubject
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variability, a pool of Inception-v3 subjects accurately capture ar-
chetypal human behavior at the resolution of objects (B.O1,
B.O2) by our primate zone criterion (Fig. 4A, first two panels). In
contrast, even a large pool of Inception-v3 subjects still fails at its
final asymptote to accurately capture human behavior at the im-
age level (B.Iln, B.I2n) (Fig. 4A, last two panels).

Modification of visual system models to try to rescue their
human consistency

Next, we wondered whether some relatively simple changes to the
DCNN;. visual system models tested here could bring them into
better correspondence with the primate visual system behavior
(with respect to B.I1n and B.I2n metrics). Specifically, we consid-
ered and tested the following modifications to the most human
consistent DCNN, model visual system (Inception-v3): we did
the following: (1) changed the input to the model to be more
primate-like in its retinal sampling (Inception-v3 + retina-like),
(2) changed the transformation (aka “decoder”) from the inter-
nal model feature representation into the behavioral output by
augmenting the number of decoder training images or changing
the decoder type (Inception-v3 + SVM, Inception-v3 + classifi-
er_train), and (3) modified all of the internal filter weights of the
model (aka “fine tuning”) by augmenting its ImageNet training
with additional images drawn from the same distribution as our
test images (Inception-v3 + synthetic-fine-tune), and (4) modi-
fied all of the internal filter weights of the model by training
exclusively on images drawn from the same distribution as our
test images (Inception-v3 + synthetic-train). All model modifi-
cations resulted in relatively high-performing models; Figure 5
(gray bars) shows the mean overall performance over object rec-
ognition tasks evaluated with a fixed decoder type (logistic clas-
sifier, 20 training images per class). However, we found that none
of these modifications led to a significant improvement in its
human consistency on the behavioral metrics (Fig. 4B). In par-
ticular, training exclusively on synthetic images led to a noted
decrease in human consistency across all metrics. Figure 5 shows
the relationship between model performances (B.O2, averaged
over 276 tasks) and human consistency for both object-level and
image-level metrics. We observe a strong correlation between
performance and image-level human consistency across different
model architectures trained on ImageNet (black points, r = 0.97,
p<10 ~4), but no such correlation across our modified models
within a fixed architecture (gray points, r = 0.35, p = 0.13).
Therefore, the failure of current DCNN, models to accurately
capture the image-level signatures of primates cannot be rescued
by simple modifications on a fixed architecture.

Looking for clues: Image-level comparisons of models

and primates

Together, Figures 2, 3, 4, and 5 suggest that current DCNN
visual system models fail to accurately capture the image-level be-
havioral signatures of humans and monkeys. To further examine
this failure in the hopes of providing clues for model improvement,
we examined the image-level residual signatures of all the visual
system models relative to the pooled human. For each model, we
computed its residual signature as the difference (positive or nega-
tive) of a linear least-squares regression of the model signature on the
corresponding human signature. For this analysis, we focused on the
B.I1n metric because it showed a clear divergence of DCNN, mod-
elsand primates and the behavioral residual can be interpreted based
only on the test images (whereas B.I2n depends on the interaction
between test images and distractor choice).
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Figure4.

Effect of subject pool size and DCNN model modifications on consistency with human behavior. 4, For each of the four behavioral metrics, the human consistency distributions of monkey

(blue markers) and model (black markers) pools are shown as a function of the number of subjects in the pool (mean == SD, over subjects). Human consistency increases with growing number of
subjects for all visual systems across all behavioral metrics. The dashed lines correspond to fitted exponential functions and the parameter estimate (mean = SE) of the asymptotic value,
corresponding to the estimated human consistency of a pool of infinitely many subjects, is shown at the right most point on each abscissa. B, Model modifications that aim to rescue the DCNN,
models. We tested several simple modifications (see Materials and Methods) to the most human consistent DCNN, ¢ visual system model (Inception-v3). Each panel shows the resulting human
consistency per modified model (mean = SD. over different model instances, varying in random filter initializations) for each of the four behavioral metrics.

We first asked to what extent the residual signatures are shared
between different visual system models. Figure 6A shows the sim-
ilarity between the residual signatures of all pairs of models; the
color of bin (4,j) indicates the proportion of explainable variance
that is shared between the residual signatures of visual systems i
and j. For ease of interpretation, we ordered visual system models
based on their architecture and optimization procedure and par-
titioned this matrix into four distinct regions. Each region com-
pares the residuals of a “source” model group with fixed
architecture and optimization procedure (five Inception-v3
models optimized for categorization on ImageNet, varying only
in initial conditions and training image order) to a “target” model
group. The target groups of models for each of the four regions
are as follows: (1) the pooled monkey, (2) other DCNN,~ models
from the source group, (3) DCNN, models that differ in archi-
tecture but share the optimization procedure of the source group
models, and (4) DCNN models that differ slightly using an
augmented optimization procedure but share the architecture of
the source group models. Figure 6B shows the mean (+SD) vari-
ance shared in the residuals averaged within these four regions for
all images (black dots), as well as for images that humans found to
be particularly difficult (gray dots, selected based on held-out
human data, see Materials and Methods). First, consistent with

the results shown in Figure 3, we note that the residual signatures
of this particular DCNN model are not well shared with the
pooled monkey (7> = 0.39 in region 1) and this phenomenon is
more pronounced for the images that humans found most diffi-
cult (r* = 0.17 in region 1). However, this relatively low correla-
tion between model and primate residuals is not indicative of
spurious model residuals because the model residual signatures
were highly reliable between different instances of this fixed
DCNN;, model across random training initializations (region 2:
r? = 0.79, 0.77 for all and most difficult images, respectively).
Interestingly, residual signatures were still largely shared with
other DCNN, models with vastly different architectures (region
3: 7% = 0.70, 0.65 for all and most difficult images, respectively).
However, residual signatures were more strongly altered when the
visual training diet of the same architecture was altered (region 4:
r* = 0.57, 0.46 for all and most difficult images respectively, cf.
region 3). Together, these results indicate that the images where
DCNN;. visual system models diverged from humans (and mon-
keys) were not spurious, but were rather highly reliable across differ-
ent model architectures, demonstrating that current DCNN~
models systematically and similarly diverge from primates.

Figure 7A shows example images sorted by B.I1n squared re-
siduals, corresponding to images that models and primates
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(mean == SD, within each region) for all images (black dots) and for images that humans found to be particularly difficult (gray dots, selected based on held-out human data).

largely agreed on (left) and diverged on (right) with respect to the
B.Iln metric. We observed no qualitative differences between
these images. To look for clues for model improvement, we asked
what, if any, characteristics of images might account for this di-
vergence of models and primates. We regressed the residual sig-
natures of DCNN models on four different image attributes
(corresponding to the size, eccentricity, pose, and contrast of the
object in each image). We used multiple linear regressions to
predict the model residual signatures from all of these image
attributes and also considered each attribute individually using
simple linear regressions. Figure 7B shows example images (sam-
pled from the full set of 2400 images) with increasing attribute

value for each of these four image attributes. Although the
DCNN;, models were not directly optimized to display primate-
like performance dependence on such attributes, we observed
that the Inception-v3 visual system model nonetheless exhibited
qualitatively similar performance dependencies as primates
(Fig. 7C). For example, humans (black), monkeys (gray), and
the Inception-v3 model (blue) all performed better, on average,
for images in which the object is in the center of gaze (low eccen-
tricity) and large in size. Furthermore, all three systems per-
formed better, on average, for images when the pose of the object
was closer to the canonical pose (Fig. 7C); this sensitivity to object
pose manifested itself as a nonlinear dependence due to the fact
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that all tested objects exhibited symmetry in at least one axis. The
similarity of the patterns in Figure 7C between primates and the
DCNN;. visual system models is not perfect but is striking, par-
ticularly in light of the fact that these models were not optimized to
produce these patterns. However, this similarity is analogous to the
similarity in the B.O1 and B.O2 metrics in that it only holds on
average over many images. Looking more closely at the image-
by-image comparison, we again found that the DCNN, models
failed to capture a large portion of the image-by-image variation
(Fig. 3). In particular, Figure 7D shows the proportion of variance
explained by specific image attributes for the residual signatures
of monkeys (black) and DCNN; models (blue). We found that,
together, all four of these image attributes explained only ~10%
of the variance in DCNN|. residual signatures and each individ-
ual attribute could explain at most a small amount of residual
variance (<5% of the explainable variance). In sum, these anal-
yses show that some behavioral effects that might provide intui-
tive clues to modify the DCNN, models are already in place in
those models (e.g., a dependence on eccentricity). However, the
quantitative image-by-image analyses of the remaining unex-
plained variance (Fig. 7D) argue that the DCNN, visual system
models’ failure to capture primate image-level signatures cannot
be further accounted for by these simple image attributes and
likely stem from other factors.

Discussion

The current work was motivated by the broad scientific goal of
discovering models that quantitatively explain the neuronal
mechanisms underlying primate invariant object recognition be-
havior. To this end, previous work had shown that specific ANNs

drawn from a large family of DCNNs and optimized to achieve
high levels of object categorization performance on large-scale
image sets capture a large fraction of the variance in primate
visual recognition behaviors (Ghodrati et al., 2014; Rajalingham
etal., 2015; Jozwik et al., 2016; Kheradpisheh et al., 2016; Kubilius
et al., 2016; Peterson et al., 2016; Battleday et al., 2017; Wallis et
al., 2017) and the internal hidden neurons of those same models
also predict alarge fraction of the image-driven response variance
of brain activity at multiple stages of the primate ventral visual
stream (Yamins et al., 2013, 2014; Cadieu et al., 2014; Khaligh-
Razavi and Kriegeskorte, 2014; Gii¢lii and van Gerven, 2015;
Cichy et al,, 2016, 2017; Hong et al., 2016; Seibert et al., 2016;
Cadena et al., 2017; Eickenberg et al., 2017; Khaligh-Razavi et al.,
2017; Seeliger et al., 2017; Wen et al., 2017). For clarity, we here
referred to this subfamily of models as DCNN. (to denote Im-
ageNet categorization training) to distinguish them from all pos-
sible models in the DCNN family and, more broadly, from the
superfamily of all ANNs. In this work, we directly compared
leading DCNN, models to primates (humans and monkeys)
with respect to their behavioral signatures at both object-level
and image-level resolution in the domain of core object recogni-
tion. To do so, we measured and characterized primate behavior
at larger scale and higher resolution than previously possible. We
first replicate prior work (Rajalingham et al., 2015) showing that,
at the object level, DCNN, models produce statistically indistin-
guishable behavior from primates and we extend that work by
showing that these models also match the average primate sensi-
tivities to object contrast, eccentricity, size, and pose, a notewor-
thy similarity in light of the fact that these models were not optimized
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to produce these performance patterns. This similarity, which we
speculate may largely reflect the training history of these models (i.e.,
optimization on photographer-framed images, which may be biased
with respect to these attributes), is a good direction for future work.
However, our primary novel result is that, examining behavior at the
higher resolution of individual images, all leading DCNN,~ models
failed to replicate the image-level behavioral signatures of primates.
An important related claim is that rhesus monkeys are more consis-
tent with the archetypal human than any of the tested DCNN;
models (at the image level).

We compared human, monkey, and model behavior on a set
of naturalistic synthetic images sampled with systematic varia-
tion in viewpoint parameters and uncorrelated background. Al-
though these images may seem non-natural, synthetic images of
this types are, unlike some photographic image sets, very power-
ful at separating humans from low-level computer vision systems
(Pinto et al., 2008). Furthermore, given our definition of success
(a candidate visual system model that accurately captures pri-
mate behavior for all images), the inference that models differ
from primates can be supported by testing models on any image
set, including the synthetic set that we used. Importantly, this
inference is with respect to a trained model’s behavior at “run
time,” agnostic to its learning procedure. Although we do not
make any claims about learning, we note that neither humans nor
monkeys were separately optimized to perform on our synthetic
images (beyond the minimal training described in the Materials
and Methods section). Interestingly, we observed that synthetic-
image-optimized models (new ANN models constructed by fine-
tuning or training an existing network architecture exclusively on
large sets of synthetic image) were no more similar to primates than
ANN models optimized only on ImageNet, suggesting that the
tested ANN architectures have one or more fundamental flaws that
cannot be readily overcome by manipulating the training environ-
ment. Together, these results support the general inference, agnostic
to natural choices of image set, that DCNN| models diverge from
primates in their core object recognition behavior.

This inference is consistent with previous work showing that
DCNN, models can diverge from human behavior on specifi-
cally chosen adversarial images (Szegedy et al., 2013). A strength
of our work is that we did not optimize images to induce failure,
but instead randomly sampled a broadly defined image gen-
erative parameter space highlighting a general rather than
adversarial-induced divergence of DCNN,. from primate core
object recognition behavior. Furthermore, we showed that this
failure could not be rescued by a number of simple modifications
to the model class, providing qualitative insight into what does
and does not explain the gap between primates and DCNN mod-
els. Together, these results suggest that new ANN models are
needed to more precisely capture the neural mechanisms under-
lying primate object vision.

With regard to new ANN models, we can attempt to make
prospective inferences about future possible DCNN,- models
from the data presented here. Based on the observed distribution
of image-level human consistency values for the DCNN, models
tested here, we infer that as yet untested model instances sampled
identically (i.e., from the DCNN,- model subfamily) are very
likely to have similarly inadequate image-level human consis-
tency. Although we cannot rule out the possibility that at least one
model instance within the DCNN. subfamily would fully match
the image-level behavioral signatures, the probability of sampling
such a model is vanishingly small (p < 10" for B.I2n human
consistency, estimated using exact test using Gaussian kernel density
estimation; see Materials and Methods and Results). An important
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caveat of this inference is that we may have a biased estimate of the
human consistency distribution of this model subfamily because we
did not exhaustively sample the subfamily. In particular, if the model
sampling process is nonstationary over time (e.g., increases in com-
putational power over time allows larger models to be successfully
trained), then the human consistency of new (i.e., yet to be sampled)
models may lie outside the currently estimated distribution. There-
fore, it is possible that the evolution of “next-generation” models
within the DCNN subfamily could meet our criteria for successful
matching primate-like behavior.

Alternatively, it is possible—and we think likely—that future
DCNN, models will also fail to capture primate-like image-level
behavior, suggesting that either the architectural limitations (e.g.,
convolutional, feedforward) and/or the optimization procedure
(including the diet of visual images) that define this model sub-
family are fundamentally limiting. Therefore, ANN model sub-
families using different architectures (e.g., recurrent neural
networks) and/or optimized for different behavioral goals (e.g.,
loss functions other than object classification performance,
and/or images other than category-labeled ImageNet images)
may be necessary to accurately capture primate behavior. To this
end, we propose that testing even individual changes to the
DCNN;, models, each creating a new ANN model subfamily,
may be the best way forward because DCNN; models currently
offer the best explanations (in a predictive sense) of both the
behavioral and neural phenomena of core object recognition.

To reach that goal of finding a new ANN model subfamily that
is a better mechanistic model of the primate ventral visual stream,
we propose that even larger-scale, high-resolution behavioral
measurements such as expanded versions of the patterns of
image-level performance presented here could serve as useful
top-down optimization guides. Not only do these high-
resolution behavioral signatures have the statistical power to re-
ject the currently leading ANN models, but they can also be
efficiently collected at very large scale, in contrast to other guide
data (e.g., large-scale neuronal measurements). Indeed, current
technological tools for high-throughput psychophysics in hu-
mans and monkeys (e.g., MTurk for humans, MonkeyTurk for
rhesus monkeys) enable time- and cost-efficient collection of
large-scale behavioral datasets such as the ~1 million behavioral
trials obtained for the current work. These systems trade off an
increase in efficiency with a decrease in experimental control. For
example, we did not impose experimental constraints on sub-
jects’ acuity and we can only infer likely head and gaze position.
Previous work has shown that patterns of behavioral perfor-
mance on object recognition tasks from in-laboratory and online
subjects were equally reliable and virtually identical (Majaj et al.,
2015), butitis not yet clear to what extent this holds at the resolution
of individual images because one might expect that variance in per-
formance across images is more sensitive to precise head and gaze
location. For this reason, we here refrain from making strong infer-
ences from small behavioral differences such as the small difference
between humans and monkeys. Nevertheless, we argue that this sac-
rifice in exact experimental control while retaining sufficient power
for model comparison is a good tradeoff for efficiently collecting
large behavioral datasets toward the goal of constraining future
models of the primate ventral visual stream.
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