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Statistics of natural reverberation enable perceptual
separation of sound and space
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In everyday listening, sound reaches our ears directly from a source as
well as indirectly via reflections known as reverberation. Reverbera-
tion profoundly distorts the sound from a source, yet humans can
both identify sound sources and distinguish environments from the
resulting sound, via mechanisms that remain unclear. The core
computational challenge is that the acoustic signatures of the source
and environment are combined in a single signal received by the ear.
Here we ask whether our recognition of sound sources and spaces
reflects an ability to separate their effects and whether any such
separation is enabled by statistical regularities of real-world re-
verberation. To first determine whether such statistical regularities
exist, we measured impulse responses (IRs) of 271 spaces sampled
from the distribution encountered by humans during daily life. The
sampled spaces were diverse, but their IRs were tightly constrained,
exhibiting exponential decay at frequency-dependent rates: Mid fre-
quencies reverberated longest whereas higher and lower frequencies
decayed more rapidly, presumably due to absorptive properties of
materials and air. To test whether humans leverage these regularities,
we manipulated IR decay characteristics in simulated reverberant
audio. Listeners could discriminate sound sources and environments
from these signals, but their abilities degraded when reverberation
characteristics deviated from those of real-world environments.
Subjectively, atypical IRs were mistaken for sound sources. The
results suggest the brain separates sound into contributions from
the source and the environment, constrained by a prior on natural
reverberation. This separation process may contribute to robust
recognition while providing information about spaces around us.

natural scene statistics | auditory scene analysis | environmental acoustics |
psychophysics | psychoacoustics

Perception requires the brain to determine the structure of the
world from the energy that impinges upon our sensory re-
ceptors. One challenge is that most perceptual problems are ill-
posed: The information we seek about the world is under-
determined given the sensory input. Sometimes this is because
noise partially obscures the structure of interest. In other cases, it
is because the sensory signal is influenced by multiple causal fac-
tors in the world. In vision, the light that enters the eye is a
function of the surface pigmentation we typically need to estimate,
but also of the illumination level. In touch, estimates of surface
texture from vibrations are confounded by the speed with which a
surface passes over the skin’s receptors. And in hearing, we seek to
understand the content of individual sound sources in the world,
but the ear often receives a signal that is a mixture of multiple
sources. These problems are all examples of scene analysis, in
which the brain must infer one or more of the multiple factors that
created the signals it receives (1). Inference in such cases is pos-
sible only with the aid of prior information about the world.

In real-world settings, audition is further complicated by the
interaction of sound with the environment. The sound entering
our ears reaches us directly from its source as well as indirectly
via reflections off surrounding surfaces, known collectively as
reverberation (Fig. 14). Because reflections follow a longer path
to our ears, they arrive later, thus distorting the direct sound
from a source (2-5). This distortion can be severe, particularly in
closed spaces such as rooms, caves, or dense forests, in which
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sound reflects multiple times off opposing surfaces (Fig. 1B). On
the other hand, reverberation provides information about the
environment, because reflection characteristics depend on the
geometry of the space around us and the position of a sound
source within it. Biological organisms are well adapted to re-
verberation, using it to infer room size and source distance (6-9)
while retaining a robust ability to identify sound sources despite
the environmental distortion (10-15). It remains unclear how the
auditory system achieves these capabilities.

The computational challenge of reverberation is that the signal
received by the ears results from the combined effects of a sound
source and the environment. Specifically, the effect of the reflec-
tions arriving at an ear can be described by a single linear filter,
h(t), and the sound that reaches the ear as the convolution of this
filter with the sound of the source: y(¢) =h(¢)*s(t) (Fig. 1C) (16).
Because the listener lacks direct access to either the source or the
filter, their estimation is ill-posed. Although the physics of re-
verberation are well established (2, 4, 5, 17), as is the fact that
human listeners are relatively robust to distortion from re-
verberation (4, 10-15), the underlying perceptual mechanisms
have been little studied and remain poorly understood. One might
suppose that robustness simply results from learning how the
structure of familiar sounds such as those of speech is altered
under reverberation. However, it remains unclear whether this
could be viable given the variation in reverberation from space to
space. Moreover, such an account does not explain how environ-
mental information could be extracted from reverberation. Here
we propose that reverberation should be treated as a scene anal-
ysis problem and that, as with other scene analysis problems, the
source and filter might in principle be separable given prior
knowledge of natural sound sources and environmental filters.

Significance

Sounds produced in the world reflect off surrounding surfaces
on their way to our ears. Known as reverberation, these reflec-
tions distort sound but provide information about the world
around us. We asked whether reverberation exhibits statistical
regularities that listeners use to separate its effects from those
of a sound’s source. We conducted a large-scale statistical anal-
ysis of real-world acoustics, revealing strong regularities of re-
verberation in natural scenes. We found that human listeners
can estimate the contributions of the source and the environ-
ment from reverberant sound, but that they depend critically on
whether environmental acoustics conform to the observed sta-
tistical regularities. The results suggest a separation process
constrained by knowledge of environmental acoustics that is
internalized over development or evolution.

Author contributions: J.T. and J.H.M. designed research; J.T. performed research; J.T.
analyzed data; and J.T. and J.H.M. wrote the paper.

The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
To whom correspondence should be addressed. Email: jtraer@mit.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1612524113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1612524113


http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1612524113&domain=pdf
mailto:jtraer@mit.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1612524113

— Direct-Path ("dry” sound) B 0
A — 1st-order reflections Dry Speech
— 2nd-order reflections I
ALA O | ]
) Tl | 10
wa B8 R 1 &
‘.‘.i-'\.k ! e -]

M e LTS
WA U NG = EA

Reverberant Speech

)
I
Q
@ 11} "
21 4. + (Restaurant)
S|l
| i e
sli -30
>
o
o
w
-40

Direct

C t=0| 1stecho, t=T, Direct sianal
I N
2nd echo, t=T, M a
* 3rd echo, t=T, =4 ' 1st echoed signal
T

Impulse response 2nd echoed signal
Dry speech s(t) h(t) +_T. PPN bl 9
° 3rd echoed signal

T

L ree—
Reverberant signal y(t) — S(t) * h(t)

E

Impulse Response

F First 100ms
Early reflections
e

a WJPW%M’,W‘WV"ru‘AWww.v,~v\|M\\'-.“A’1‘-m‘.r~M
e

Diffuse tail

Direct path

Fig. 1. The effect of reverberation. (A) Sound reaches a listener directly as
well as via reflections off surrounding surfaces. (B) Reverberation distorts
the structure of source signals, shown by cochleagrams (representations of
the spectrotemporal structure of sound as it is believed to be encoded by the
auditory periphery) of speech without (Top) and with (Bottom) re-
verberation. (C) The effect of reverberation on a sound s(t) is described
mathematically by the convolution of the sound with the IR of the envi-
ronment, h(t). The original sound is repeated, time-shifted, and scaled for
every nonzero point in the IR and the resulting signals are summed. This
process is illustrated for a schematic IR with 3 echoes. For clarity these echoes
are more widely spaced than in a naturally occurring IR. (D) A photograph of
the apparatus we used to measure IRs—a battery-powered speaker and a
portable digital recorder in one of the survey sites, a restaurant in Cam-
bridge, MA. (E) An IR measured in the room shown in D. Every peak corre-
sponds to a possible propagation path; the time of the peak indicates how
long it takes the reflected sound to arrive at the ear and the amplitude of
the peak indicates the amplitude of the reflection, relative to that of the
sound that travels directly to the ear. (F) The first 100 ms of the IR in E.
Discrete early reflections (likely first- or second-order reflections) are typi-
cally evident in the early section of an IR, after which the reflections become
densely packed in time, composing the diffuse tail.

Our approach was to characterize statistical regularities in
environmental acoustics that could be exploited to constrain the
inference of source and environmental filter. We focused on
regularities of the filter, as they had not been documented prior
to our investigations. We then tested whether humans can sep-
arately estimate the source and filter from reverberant audio and
whether these abilities depend on conformity to natural statis-
tical regularities of the filter. Our results suggest that naturally
occurring environmental impulse responses are tightly con-
strained, and that human perception relies critically on these
regularities to separate sound into its underlying causes in
the world.

Traer and McDermott

Results

Measuring Reverberation. The acoustic effect of an environment
can be summarized by the impulse response (IR), which is the
sound that results from an impulse (the sound of a “click”) in the
environment. Because the filtering effects of environments are
approximately linear (16), the IR can be used to predict the
sound that any source would produce in a particular environ-
ment and thus provides a means to describe reverberation. The
IR for an example room (Fig. 1D) is plotted in Fig. 1 E and F.
The first peak corresponds to the sound arriving directly from
the source (which thus arrives with the shortest possible delay);
subsequent peaks are due to reflections, each corresponding to a
particular path sound can take on its way to a listener’s ear.
Eventually, the reflections become sufficiently dense that they
overlap in time. Because energy is absorbed by environmental
surfaces with each reflection (as well as by air), longer paths
produce lower amplitudes, and the overlapping echoes produce a
“tail” in the IR that decays with time.

The IR is known to contain information about the environment
(4, 5, 18). For instance, larger rooms produce fewer reflections per
unit time, such that the reverberation decays more slowly. Decay
rates are also affected by material (e.g., carpet is more absorbent
than stone). The IR also contains information about the distance of
a sound source from the listener, via the ratio of direct to re-
verberant sound (19, 20). But given the vast range of physical en-
vironments humans encounter, with materials and geometries that
vary in many dimensions, it is not obvious whether IRs could exhibit
regularities that would permit their separation from source signals.

Room IRs like that of Fig. 1E are routinely measured (6, 7, 10, 11)
and simulated (17, 21). However, studies to date have measured only
small numbers of environments (11, 22) and have largely focused on
spaces used for music (23-25) (such as cathedrals and concert halls)
where reverberation has often been optimized for aesthetic criteria.
As a consequence, the distribution of natural environmental IRs
remains uncharacterized, and the extent to which they exhibit regu-
larities remains unclear. We thus began by characterizing the distri-
bution of IRs that human listeners encounter in their daily lives.
Because it is computationally intractable to simulate the acoustics of
complex real-world environments (4, 8, 22), physical measurements
of environmental acoustics were required.

Reverberation Statistics in Natural Scenes. To draw random sam-
ples from the distribution of natural acoustic environments, we
recruited seven volunteers and sent them randomly timed text
messages 24 times a day for 2 weeks. Participants were asked to
respond to each message with their location and a photograph of
the space. We then attempted to visit each location and measure
the IR. We measured IRs using an apparatus that recorded a
long-duration, low-volume noise signal produced by a speaker
(Fig. 1D). Because the noise signal and the apparatus transfer
function were known, the IR could be inferred from the recording
(SI Materials and Methods, Real-World IR Measurements, Measure-
ment Apparatus Transfer Function and Fig. S1 E and F). The long
duration allowed background noise to be averaged out and, along
with the low volume, permitted IR measurements in public places
(e.g., restaurants, stores, city streets). Our survey yielded 301 distinct
locations, mostly in the Boston metropolitan area (Fig. 2), of which
271 were measured. (The 30 unmeasured locations were private
spaces whose owners refused us permission to record.) The surveyed
IRs are available at mcdermottlab.mit.edu/Reverb/IR_Survey.html.
Our key findings were typically salient in individual IRs, and
we illustrate them in an example IR (Fig. 3) before showing
summary statistics from the entire set of surveyed IRs (Fig. 4).
As expected, the environmental IRs exhibited sparse early re-
flections, consisting of a small number of high-amplitude echoes
separated by brief periods of relative quiet (4, 16) (Fig. 34).
However, there was also considerable regularity in the way that

PNAS | Published online November 10, 2016 | E7857

wv
=
=
a
w
<
=
o

PSYCHOLOGICAL AND
COGNITIVE SCIENCES


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental/pnas.201612524SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental/pnas.201612524SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental/pnas.201612524SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental/pnas.201612524SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental/pnas.201612524SI.pdf?targetid=nameddest=SF1
http://mcdermottlab.mit.edu/Reverb/IR_Survey.html

Fig. 2. Survey of natural reverberation. (A) Maps showing the location of the 271
measured survey sites. (Top) Massachusetts and New Hampshire; (Middle) Greater
Boston area with most survey sites in Boston, Cambridge, and Somerville; (Bottom)
Cambridge, the location of most survey sites. Red boxes indicate the region shown
in higher detail below. (B) Photographs of 14 example locations from the survey
(from Top Left: suburban street corner, hallway, restaurant, Boston street, res-
taurant booth, forest, conference room, bathroom, open-plan office, MIT building
46, car, department store, bathroom, subway station, bar, office, aerobics gym).

the dense tail of the IR decayed over time, which, to our knowl-
edge, had not been previously documented. We found that the
local statistics of the IR time series typically began to resemble
Gaussian noise within ~50 ms (Fig. 34), indicating (i) that it was
appropriate to describe the IR tail by its amplitude envelope
(because Gaussian variables are completely characterized by mean
and variance) and (i) that the tail made up the vast majority of the
IR (measured as a fraction of either IR power or duration). This
latter finding indicates that the tail induces the majority of the
distortion to a source signal, suggesting that it might give rise to
important perceptual effects.

To examine the effect of the decaying tail on information
in peripheral auditory representations, we represented IRs as
“cochleagrams” intended to capture the representation sent to the
brain by the auditory nerve (Fig. 3B). Cochleagrams were generated
by processing sound waveforms with a filter bank that mimicked the
frequency selectivity of the cochlea (Fig. 3C) and extracting the
amplitude envelope from each filter (Fig. 3D). Despite the diversity
of spaces (including elevators, forests, bathrooms, subway stations,
stairwells, and street corners; Fig. 2), the IRs showed several
consistent features when viewed in this way.

To quantify the nature of reverberant energy decay over time, we
fitted polynomials of different degrees to the log power in each
frequency band. As shown in Fig. 3D, the decay was well described
by a linear function, with negligible additional benefit from higher
polynomial terms (Fig. 3E), indicating that the energy in each fre-
quency band decayed exponentially (linear on a log scale). We
quantified the rate of this decay by the time taken for the re-
verberating sound to decay 60 dB [i.e., the 60-dB reverberation time
(RT60)] in each subband (Fig. 3F). We observed these decay times
to vary with frequency in a regular manner, typically with rapid
decay at low and high frequencies but slower decay in the middle of
the spectrum (Fig. 3G). A similar dependence was also present in
the overall amplitude of reverberation at each frequency, charac-
terized by the direct-to-reverberant ratio (DRR) (Fig. S2).

Summary measurements of all of the IRs from our survey (Fig.
4) suggest that the three properties evident in the example IR of
Fig. 3 are typical of the environments encountered by humans in
daily life. First, reverberation consistently exhibited Gaussian
statistics after ~30 ms (Fig. 44), indicating the prominence of the
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decaying tail. Second, the tail invariably decayed exponentially
(higher-order polynomials provided a negligible improvement to
linear fits to the IR decay profile; Fig. 4B). Although complicated
geometries can induce nonexponential decay (26), our analysis
suggests that such environments are not typical of daily life. Third,
decay rates were consistently frequency dependent [Fig. 4C and
Fig. S3; F(1,270) = 9.82, P < 0.001], as were amplitudes [Fig. S2 4
and B; F(1,270) = 327, P < 0.001]. In general, decay rates were
slowest between 200 Hz and 2,000 Hz and reverberation decayed
more rapidly at frequencies above and below this range. The
survey also revealed a fourth property apparent in the distribution
of natural IRs: The frequency decay profile scales with total re-
verberation. Spaces with more overall reverberation (corre-
sponding to larger spaces and/or more reflective walls) showed
stronger frequency dependence [Fig. 4C; compare red and ma-
genta curves to blue curves; an ANOVA revealed an interaction
between frequency and quartile index, F(3,32) = 7.75, P < 0.001];
on a logarithmic time axis, the quartile profiles have similar
shapes. These regularities are presumably due to frequency-
dependent absorptive properties of typical environmental surfaces
and air. We note that although many of the surveyed spaces were
manmade, we also measured numerous outdoor spaces in forests
or parks, and these did not differ qualitatively from manmade
spaces apart from having shorter IRs on average (Fig. 4D).

The overall conclusion of our IR measurements is that real-
world IRs exhibit considerable regularities. The presence of
these regularities raises the possibility that the brain could le-
verage them for perception.
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Traer and McDermott


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental/pnas.201612524SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental/pnas.201612524SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental/pnas.201612524SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental/pnas.201612524SI.pdf?targetid=nameddest=SF2
www.pnas.org/cgi/doi/10.1073/pnas.1612524113

L T

/

1\

=y

A o T 5 4200 = C14 - =1st Quartile
s =2nd Quartile
b4 8.6 =3rd Quartile

= =4th Quartile
= |=TOp 5% mMost]
45 :_ reverberant
E b
<23 _ ]
By 5 —
S 1 812 =
< — - - N ——
S 1 - ' ' @ e el
> ! 1 1 1 osl = |
50.5 : ]
AP=A=auks o
B , ' ' 0.2 1
- 1 2 3 4 0.05 0.5 1 15 2
Polynomial Degree RT60 (s)
D 14
8.6 Indoor IRs Outdoor Urban IRs| ‘ Rural IRs
— = | ower
T 45 half
< Upper
§:>" 23 half
$12
g
r 05
0.2
0.05
0 1 2 0 RT60 (s) 0-5 0 0.5

Fig. 4. Statistics of natural reverberation. (A) IRs have locally Gaussian
statistics. Graph plots median kurtosis (sparsity) vs. time for the surveyed IRs.
The kurtosis for each IR was calculated in 10-ms windows; the line plots the
median across all surveyed IRs for each time point. Here and elsewhere in
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which the IR kurtosis reached the value for Gaussian noise (Tgauss) across the
surveyed IRs, along with the corresponding cumulative distribution function
(dashed line). (B) Energy decays exponentially. Graph displays box plots of the
distribution of the fraction of variance of IR subband envelopes accounted for
by polynomial decay models of degree P for P = [1,2,3,4]. The model was
fitted to the data recorded by the left channel of the recorder and evaluated
on the data recorded by the right channel (i.e., the variance explained was
computed from the right channel). The two channels were connected to
different microphones that were oriented 90° apart. They thus had a dif-
ferent orientation within the environment being recorded, and the fine
structure of the recorded IRs thus differed across channels. Using one
channel to fit the model and the other to test the fit helped to avoid
overfitting biases in the variance explained by each polynomial. (C) Fre-
quency dependence of reverberation time (RT60) in the surveyed IRs. Lines
plot the median RT60 of quartiles of the surveyed IRs, determined by aver-
age RT60(T, Eq. S9). Dotted red line plots the median value for the most
reverberant IRs (top 5%). (D) Median RT60 profiles (as in C except using
halves rather than quartiles because of smaller sample sizes) for indoor en-
vironments (n = 269), outdoor urban environments (e.g., street corners,
parking lots, etc., n = 62), and outdoor rural environments (forests, fields,
etc., n =29). To increase sample sizes we supplemented the 271 IRs measured
here with those of two other studies (ref. 22 and www.echothief.com).

Experiment 1: Discrimination of Real and Synthetic Reverberation.
We next tested whether human listeners were sensitive to the
four regularities we observed in real-world IRs, by synthesizing
IRs that were consistent or inconsistent with these regularities.
We synthesized IRs by imposing different types of energy decay
on noise filtered into simulated cochlear frequency channels
(Fig. 5). To replicate the decay properties observed in the
natural IR distribution, we generated frequency-dependent decay
rates (Fig. 5B) that mimicked both the frequency dependence and
the variation of decay profile with the length of the IR (Fig. 4C
and Fig. S3 and SI Materials and Methods, IR Synthesis).

To assess whether the resulting IRs replicated the perceptual
qualities of real-world reverberation, we asked listeners to dis-
criminate between real and synthetic reverberation. Listeners
were presented with two sounds (Fig. 64), each of which con-
sisted of a source convolved with an IR. In one case the IR was a
real-world IR and in the other it was synthetic. Listeners were
asked to identify which of the two sounds was recorded in a real
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space. If the synthetic IRs replicate the perceptually important
effects of reverberation, this task should be difficult. Listeners
performed this task for three types of sources: impulses (yielding
the IR itself as the stimulus), spoken sentences, and synthetic
modulated noise (27). These three types of sources were inten-
ded to test the generality of any observed effects across both
simple and complex and familiar and unfamiliar sound sources.
Because the IR regularities we observed were monaural in na-
ture, sound presentation was always diotic (see Discussion for
consideration of binaural effects).

In all experiments, the various types of synthetic IRs were
equated for the distortion that they induced to the cochleagram, to
minimize the chances that judgments might simply reflect differ-
ences in such distortion. Distortion was computed as the mean
squared error between the cochleagram of the signal before and
after convolution with the IR (Eq. S16; see Fig. S4 for a consid-
eration of other distortion metrics, which produced similar results).
Distortion was adjusted by increasing or decreasing the mean decay
rate of the synthetic IR; each “atypical” IR was adjusted in this way
until it induced a similar distortion to the “ecological” IR (a syn-
thetic IR that incorporated real-world regularities) to which it was
compared (details in SI Materials and Methods, Measuring and
Equating IR-Induced Distortion). This process was performed sep-
arately for each experiment and for each source type.

We first sought to test the importance of the decaying tail relative
to the sparse early reflections that are also present in real-world IRs
(Fig. 1F). The tail forms the bulk of most real-world IRs (Fig. 44)
and its statistics were the focus of our IR analysis, but its perceptual
importance was not clear a priori. Listeners discriminated a real-
world IR (unaltered, to include early reflections; Fig. 6 B, i) from a
real-world IR whose early reflections were excised and replaced with
a single delta function (Fig. 6 B, ii). The excised section was the re-
gion of the time series whose kurtosis was non-Gaussian (SI Materials
and Methods, Analysis of IR Statistics, IR Gaussianity), such that the
entirety of the IR after the direct arrival had locally Gaussian sta-
tistics. Performance was not significantly different from chance re-
gardless of the source type [IR, #(21) = —1.34, P = 0.2; speech, #(21) =
0.16, P = 0.88; noise, #(21) = 0.00, P = 1.00], suggesting that the early
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Fig. 5. Synthetic IR generation. (A) IRs were generated by filtering Gaussian

noise into cochlear subbands and multiplying each subband by an amplitude
envelope. The modified subbands were then recombined to yield a broad-
band synthetic IR. The temporal form of the decaying envelopes and the
frequency dependence of decay rates were manipulated to produce IRs that
either were consistent with the statistics of real-world IRs or deviated from
them in some respect. (B) Synthetic decay rate profiles were computed that
shared the variation in frequency and the variation of decay-rate profile
with average RT60 with the surveyed IR distribution (Fig. 4C).
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Fig. 6. Discrimination of synthetic reverberation (experiment 1). (A) Schematic
of trial structure. Two sounds were played in succession, separated by a silent
interval. Each sound was generated by convolving a source signal (an impulse, a
spoken sentence, or a modulated noise) with an IR. The IR was a real-world IR for
one sound and one of the synthetic variants for the other one (matched in RT60).
Listeners judged which of the two sounds was recorded in a real room. (B) IR
variants used in psychophysical experiments, varying in the presence of early
reflections (i and ii), temporal dependence of decay (iii-vi), and spectral de-
pendence of decay (vii—x). (B, i) Real-world IR; (B, ii) real-world IR with the early
reflections removed; (B, iii) synthetic exponential decay with RT60 and DRR
profiles matched to a real-world IR; (B, iv and v) synthetic linear decay matched to
a real-world IR in starting amplitude or audible length (B, vi) time-reversed ex-
ponential decay; (B, vii) synthetic exponential decay with RT60 and DRR profiles
interpolated from the real-world IR distribution; (B, viii-x) inverted, exaggerated,
or reduced spectral dependence of RT60. (C) Task performance (proportion cor-
rect) as a function of the synthetic IR class for three source types: impulses (Top,
yielding the IRs themselves), speech (Middle), and modulated noise (Bottom).
Error bars denote SEMs. Asterisks denote significance of difference between each
condition and chance performance following correction for multiple comparisons
(*P < 0.05, **P < 0.01, and ***P < 0.001, two-sided t test; n.s., not significant).
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reflections are not critical for realistic reverberation, at least given
diotic presentation (Fig. 6 C, 7).

We next sought to test the perceptual importance of the temporal
pattern of decay in the IR tail, which in real-world IRs is well de-
scribed by frequency-dependent exponential decay (Fig. 4B). In one
case, we replicated the coarse features of particular real-world IRs,
imposing exponentially decaying envelopes whose subband RT60
and DRR values matched the values measured in the comparison
real-world IR (“matched exponential,” Fig. 6 B, iii). In several other
conditions we imposed alternative forms of decay: two types of linear
decay or time-reversed exponential decay. The two linear IR types
were formed by fixing either the starting amplitude (DRR; “matched
start”) or the audible length (time at which the amplitude reached
—60 dB; “matched end”) to the real-world IR value and iteratively
adjusting the rate of linear decay until the distortion induced by the
synthetic IR was equal to that of the real-world IR (the adjustments
were modest, never exceeding +8%; SI Materials and Methods,
Measuring and Equating IR-Induced Distortion). Linear decay and
time-reversed decay were chosen as alternatives because they are
clearly distinct from exponential decay while similarly distorting the
source signals as measured by the power spectrum and modulation
spectrum (Fig. S4B). In all cases the synthetic IRs lacked early re-
flections, but were compared with a real-world IR with early re-
flections intact (similar results were obtained if the comparison was
to a real-world IR with excised early reflections).

When asked to discriminate these synthetic IRs from real-world
IRs, we found large effects of the temporal decay pattern (Fig. 6 C,
ii). Listeners were unable to detect the matched exponential IRs as
synthetic, regardless of the source type [IR, #21) = —0.79, P = 0.44;
speech, #21) = 0.40, P = 0.70; noise, #21) = 0.44, P = 0.67]. In
contrast, all three alternative decay shapes were readily detected as
synthetic [linear matched end: IR, #(21) = 26.6, P < 0.001; speech,
#(21) = 4.28, P < 0.001; noise, #(21) = 3.78, P = 0.001; linear
matched start: IR, #(21) = 13.78, P < 0.001; speech, #(21) =7.93, P <
0.001; noise, #(21) = 4.26, P < 0.001; time-reversed: IR, #(21) = 15.1,
P < 0.001; speech, 18.0, P < 0.001; noise, #(21) = 7.66, P < 0.001].

To test the importance of the frequency dependence of decay
(Fig. 4C), we generated exponentially decaying IRs with ecological
and nonecological decay-vs.-frequency profiles (spectral variants).
The “generic exponential” IRs had RT60 profiles chosen to be
consistent with the survey data, such that mid frequencies decayed
more slowly than low and high frequencies (Fig. 6 B, vii), but were
not explicitly matched to any particular real-world IR. The “inverted
spectral dependence” decayed exponentially but had frequency de-
pendence that deviated from that in typical IRs (slow decay at high
and low frequencies, but fast decay at intermediate frequencies).

Finally, we tested sensitivity to the fourth regularity from our IR
analysis (Fig. 4C) with IRs that had exaggerated or reduced degrees
of decay variation with frequency. The reduced and exaggerated
profiles test whether humans are sensitive to the dependence of the
variation in decay rate with frequency on IR length.

We again found large effects of whether the IR conformed to the
regularities of typical real-world IRs (Fig. 6 C, iii). Listeners were
unable to detect the ecological synthetic IRs as synthetic [IR, #21) =
1.52, P = 0.14; speech, #21) = —0.45, P = 0.66; noise, #(21) = —0.87,
P = 0.40], but readily detected inverted frequency dependence as
such for all three source types [IR, #(21) = 16.14, P = 0.001,;
speech, #(21) = 5.23, P < 0.001; noise, #(21) = 4.06, P = 0.001]. The
IRs with exaggerated and reduced frequency dependence were
detected as synthetic when the source was an impulse [exagger-
ated: IR, #(21) = 5.457, P < 0.001; reduced: IR, #(21) = 6.289, P <
0.001] but not when the source was more complex [exaggerated:
speech, #(21) = 0.654, P = 0.520; noise, #(21) = 0.611, P = 0.548;
reduced: speech, #(21) = —0.358, P = 0.724; noise, #(21) = 2.401,
P = 0.026]. This latter finding is consistent with our subjective im-
pression that this regularity is the most subtle of the four that
we documented.
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Collectively, these results suggest that the features revealed by
our analysis of real-world IRs—a Gaussian tail exhibiting expo-
nential decay at frequency-dependent rates—are both requisite
and sufficient for the perception of reverberation. Consistent
with this interpretation, participants reported that IRs with un-
natural decay modes sounded artificial (audio demos available at
mcdermottlab.mit.edu/Reverb/ReverbDemos.html). In some cases
the subjective impression was striking. For instance, IRs with
unnatural frequency dependence (i.e., spectrally inverted) of-
ten seemed to contain two sounds: a source with moderate
reverberation and a high-frequency “hiss.” The auditory system
is apparently unwilling to interpret high frequencies that decay
more slowly than low frequencies as reverberation, ascribing
them to an additional noise-like sound source rather than an
impulse interacting with the environment. In contrast, syn-
thetic IRs with ecologically valid decay characteristics typically
sounded like a single impulsive source in a reverberant space,
despite being generated by merely imposing decay on noise.
Similar perceptual effects were observed with DRR variants
(Fig. S2 D and E). Example stimuli can be heard at medermottlab.
mit.edu/Reverb/ReverbDemos.html.

L T

\

Experiments 2 and 3: Perceptual Separation of Source and Reverberation.
We next tested whether humans can separately estimate source and
filter from reverberant sound and whether any such abilities would
depend on conformity to the regularities present in real-world re-
verberation. We designed two tasks in which listeners heard syn-
thetic sources convolved with synthetic IRs. One task measured
discrimination of the sources (Fig. 74), whereas the other one
measured discrimination of the IRs (Fig. 7B). In both cases the
sources were designed to be structured but unfamiliar, and the IRs
were synthesized to be consistent with the natural distribution (Fig.
7C, i) or to deviate from it with either atypical spectral (Fig. 7 C, ii)
or temporal structure (Fig. 7 C, iii-v).

In the source discrimination task (Fig. 74), participants were
presented with three sounds, two of which were generated from
identical sources. The task was to identify the distinct source
(either first or last). Because the three sources were convolved
with different IRs (corresponding to different source-listener
distances in the same room), all three sounds arriving at the ear
were different. Participants were thus incentivized to estimate
features of the sound sources from their convolutions with the
IRs. They were told that sometimes the reverberation would
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Perceptual separation of source and IR (experiments 2 and 3). (A) Schematic of trial structure for experiment 2 (discrimination of sources in re-

verberation). Three sounds were played in succession, separated by silent intervals. Each sound was generated by convolving a source signal (modulated
noise) with a different IR. The IRs were all a particular type of synthetic variant and had the same RT60 but differed in DRR (simulating different distances of
the source from the listener). Listeners judged which of the three sources was different from the other two. (B) Schematic of trial structure for experiment 3
(discrimination of IRs in reverberant sound). Three sounds were played in succession, separated by silent intervals. Each sound was generated by convolving a
source signal (modulated noise) with an IR. The IRs were all a particular type of synthetic variant. Two of them were identical and the third one had a longer
RT60 (simulating a larger room). Listeners judged which of the three sources was recorded in a different room. (C) IR variants used to probe the effect of
reverberation characteristics on perceptual separation. All IRs of a given RT60 and DRR introduced equivalent distortion in the cochleagram. (D) Source
discrimination performance (proportion correct) as a function of IR decay time for different synthetic IR classes. Here, and in E, error bars denote SEMs and
asterisks denote significance of difference between average performance in each condition and that of the generic exponential condition. (£) IR discrimi-
nation performance (proportion correct) as a function of the IR decay time for different synthetic IR classes.
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sound natural and in other cases the reverberation would be
synthetic and potentially unnatural, but that in either case they
should discount its effects as best they could. In all cases, the
different types of IRs were adjusted to induce similar distortion
(measured by squared error on the cochleagram), such that
differences in performance were unlikely to reflect the extent to
which the reverberation physically obscured the sources.

As shown in Fig. 7D, listeners performed well above chance,
indicating some ability to discriminate source properties in the
presence of reverberation. Performance decreased as the IRs
became longer (and thus more distortive), as expected, pro-
ducing a main effect of RT60 [F(1,13) = 43.2, P < 0.0001].
However, performance was consistently higher when the IRs
were ecological (generic exponential) than when they violated
the regularities of natural environments, producing a main effect
of IR type [F(4,52) = 21.6, P < 0.0001; paired comparisons be-
tween generic exponential and all other conditions were signifi-
cant in each case, P < 0.02 or lower; with no interaction between
RT60 and IR type, F(4,52) = 0.48, P = 0.75].

To confirm that this pattern of results could not be explained
by the amount of distortion induced by the different IR types, we
measured the performance of a null model that chose the
stimulus (i.e., source convolved with IR) that was most different
from the middle stimulus (i.e., the second of the three sounds
presented in a trial) as measured by mean-squared error in the
cochleagram. This model performed well above chance on the
task, but showed little difference in performance between IR
types and did not replicate the pattern of performance variation
seen in human listeners (Fig. S5 4 and B). This result suggests
that if listeners were performing the task by comparing the
convolved stimuli, rather than estimating the sources, they would
have performed equally well in all conditions. Taken together,
the results suggest that listeners could estimate the structure of
the underlying sound sources to some extent and that they were
better at this when IRs were ecologically valid.

In the IR discrimination task (Fig. 7B), subjects were again
presented with three sounds, each of which was generated by
convolving a synthetic source and IR. All three sources were
distinct (different samples of modulated noise), but two of them
were convolved with the same IR. The other one was convolved
with an IR either longer or shorter than the other two, as would
occur under natural conditions if it were recorded in a room of a
different size. Subjects were asked to identify which sound was
recorded in a different room. The sound sources were randomly
varied in length (2-2.4 s) such that the longest (or shortest)
stimulus was not necessarily the one with the longest (or short-
est) IR. Because the sources were different for all three sounds,
we expected task performance to require estimation of IR
properties from their convolutions with the sources.

Listeners were able to discriminate IRs from their convolution
with sources (Fig. 7F), indicating some ability to estimate IR
properties. As expected, performance was better when the dif-
ference between the IR lengths was greater, making the task
intrinsically easier [F(1,13) = 5.6, P = 0.034, with no interaction
with IR type: F(4,52) = 2.1, P = 0.1]. However, performance was
again substantially worse when IR properties deviated from
those in the real world [F(4,52) = 16.2, P < 0.0001; paired
comparisons between ecological (generic exponential) and non-
ecological IRs were significant in all cases other than the
inverted spectral dependence, P < 0.02]. In the inverted spectral
dependence condition, several subjects reported noticing a high-
frequency hiss from the slowly decaying high frequencies, which
may have provided a cue that boosted performance.

To test whether statistical differences induced by the IRs could
account for the results, we implemented a model that measured
texture statistics (28) from the three stimuli in each trial and
chose the stimulus whose statistics were most different from
those of the middle stimulus (i.e., the second of the three stimuli
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presented in a single trial). The performance of this model was
only slightly above chance and did not differ substantially across
IR types (Fig. S5 C and D). This analysis suggests that listener
performance on this task is unlikely to be mediated by basic sta-
tistical properties of the convolved stimuli. A second model using
stimulus duration to perform the task was similarly unable to ex-
plain the results (Fig. S5 C and D). We note also that a cochleagram
difference model, like that used in the source discrimination
experiment, performs at chance, because the three sources are
different. The results indicate that human listeners are better able
to infer IR properties from reverberant sounds when the IR is
natural, consistent with the idea that separation of source and filter
relies on prior knowledge of reverberation statistics.

Discussion

We have shown that the disparate and varied environments that
humans encounter in daily life produce acoustic effects with
consistent gross structure and that humans rely on these con-
sistencies to correctly interpret sound. Replicating real-world
reverberant energy decay properties was both requisite and
sufficient to produce the perception of reverberation (experi-
ment 1). In addition, listeners were able to access properties of
the sound source (experiment 2) and IR (experiment 3) from
their convolution into reverberant audio, but these abilities were
strongly dependent on whether the IR conformed to real-world
regularities. Collectively our results suggest that reverberation
perception should be viewed as a core problem of auditory scene
analysis, in which listeners partially separate reverberant sound
into a sound source and an environmental filter, constrained by a
prior on environmental acoustics.

Environmental Acoustic Regularities. Our IR measurements revealed
four characteristics common to almost all of the IRs we surveyed:
(i) a transition from high kurtosis, produced by sparse early re-
flections, to Gaussian statistical properties within ~50 ms of the
direct arrival; (if) exponential decay; (iii) frequency-dependent
decay rates, with the slowest decay between 200 Hz and 2,000 Hz
and faster decay at higher and lower frequencies; and (iv) decay-
vs.-frequency profiles that varied with the overall magnitude of the
reverberation (decay rates in more reverberant spaces tended to
vary more with frequency). The first two characteristics have been
widely noted (2-5), although not extensively evaluated in real-
world environments. To our knowledge, the last two characteris-
tics have not been previously documented. Our findings were
mostly limited to spaces in the Boston metropolitan area (with a
small number from wilderness areas in Massachusetts and New
Hampshire), but IRs recorded elsewhere are consistent with our
findings (Fig. S14). Moreover, results were qualitatively similar
for manmade and rural environments (Fig. 4D and Fig. S1B),
suggesting that the regularities we observed are fairly universal
consequences of the interaction between sound and surfaces. Al-
though a detailed discussion of the physical origins of these reg-
ularities is beyond the scope of this paper, they are likely due to
geometric and physical regularities in environments, such as the
absorptive properties of typical materials and of air.

We found that human listeners are sensitive to all four regu-
larities and that they are necessary for the perception of re-
verberation and the accurate separation of a sound source from
reverberation. We also found that realistic reverberation could
be synthesized simply by imposing these four regularities on
noise (i.e., without constraining the fine structure). Although we
did not formally analyze the statistics of the IR fine structure,
this psychophysical finding suggests that environmental IRs
(excluding early reflections) do not contain statistical structure
beyond that present in their temporal envelopes, at least not that
is salient to human listeners. This is likely because the fine-
grained structure of the IR (i.e., the rapid fluctuations in energy
upon which exponential decay is imposed, evident in Fig. 3D)

Traer and McDermott


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental/pnas.201612524SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental/pnas.201612524SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental/pnas.201612524SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental/pnas.201612524SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612524113/-/DCSupplemental/pnas.201612524SI.pdf?targetid=nameddest=SF1
www.pnas.org/cgi/doi/10.1073/pnas.1612524113

L T

/

1\

=y

depends sensitively on the particular position of the listener in an
environment relative to the surfaces therein and thus may exhibit
few statistical regularities.

Early Reflections and Binaural Cues. Most of the IRs used in our
experiments differed from real-world IRs in two respects: They
were devoid of early reflections and were identical in the left and
right ears. We adopted these two simplifications to isolate the ef-
fect of the diffuse tail of IRs. We did so because the tail is the
primary source of distortion, and thus poses a core computational
challenge, and because we found the tail exhibited strong regu-
larities that had not been documented or examined perceptually.
Moreover, we found in experiment 1 that listeners had difficulty
distinguishing the realism of IRs with and without early reflections,
indicating that their presence or absence is less salient than the tail
properties that we manipulated. We note, however, that the early
reflections in the first few milliseconds of the IR also contain
structure and pose their own computational challenge because they
arrive with potentially misleading localization cues. The perceptual
effect of such reflections is well documented via the “precedence
effect” (29, 30), by which echo location cues are discounted.

Our experiments used diotic sound presentation because we
sought to isolate the effect of the IR tail regularities we had ob-
served and because reverberation remains salient under such con-
ditions. We found evidence for source/IR separation under these
diotic conditions, suggesting that aspects of reverberation percep-
tion are monaural in nature. However, natural listening conditions
introduce binaural cues that could complement the effects we have
documented. In particular, performance in separation tasks (e.g.,
experiments 2 and 3) would likely be aided by binaural cues (31-34)
and such effects will be important to explore in the future.

Separation of Source and Reverberation. Participants in our ex-
periments were able to make judgments about sound sources and
IRs given only their convolution (i.e., without direct access to the
sources or IRs). Both tasks were designed to prevent listeners
from performing well simply by comparing the convolutions
themselves. Moreover, listeners were better in both cases when
the IRs were natural rather than unnatural, despite equivalent
levels of acoustic distortion. In contrast, models that performed
the tasks by comparing the convolutions (Fig. S54) or their
statistical properties (Fig. S5C) performed similarly across con-
ditions. It is not obvious how to explain the results without
supposing that listeners were relying on estimates of source and
IR that were more accurate when IRs were natural. The results
thus suggest that the human auditory system can at least partially
separate reverberant audio into estimates of a source signal and
the environmental IR with which it was convolved.

Although there has been little direct evidence for separation
of source and filter in reverberation perception, several previous
findings are consistent with a separation process. Humans in
some cases perceive sound sources as equally loud even when
one is farther away and imparts less power to the eardrum (7),
suggesting that perceived loudness represents an estimate of the
source properties after accounting for effects of the environ-
ment. Similarly, humans rate temporally asymmetric sounds as
louder and longer when they ramp from quiet to loud than when
they are time-reversed (35, 36), possibly because in the latter
case some of the sound is attributed to reverberation whereas in
the former all of the sound is attributed to the source.

Physiologically, responses to source direction (37), pitch (38, 39),
and amplitude modulation (40) are altered in the presence of
reverberation, but in some cases there is evidence that re-
verberation is partially “removed” from the brain’s represen-
tation of sound (40, 41). Our results suggest that if these effects
reflect the separation process that appears to be at work in
human listeners, they should depend on whether the reverberation
conforms to real-world IR regularities. Moreover, given that re-
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verberation is accessible to the listener to some extent, it is likely
represented explicitly somewhere in the auditory system, although
the neural locus remains unclear.

Although reverberation that is unusually pronounced can degrade
speech intelligibility (34), humans on the whole are remarkably ro-
bust to the profound distortion reverberation imposes (4, 10-15).
Comparable robustness remains beyond the capability of automatic
speech recognition, the performance of which deteriorates under
even moderate reverberation (42). A priori one might suppose that
human robustness simply reflects learned templates of reverberant
speech. However, such templates are unlikely to account for our
source discrimination results (experiment 2) because the source
stimuli we used were unfamiliar sounds with relatively unnatural
statistics. Our results thus suggest that the robustness evident in
human listeners is at least partly due to a separation mechanism that
uses a prior on environmental acoustics, raising the possibility that
machine hearing algorithms could be aided by a similar prior.

Perceptual Importance of Regularities in Natural Reverberation. We
found perception to depend strongly on whether an IR con-
formed to the statistical regularities of natural environments,
suggesting that the brain has internalized the regularities of
natural reverberation. Our results leave open the question of
whether knowledge of natural IR regularities is present from
birth or learned over development. Our measurements indicate
that reverberation in outdoor and indoor environments is qual-
itatively similar, apart from overall decay rate (slower indoors,
because reflected sound is trapped, leading to more reflections).
Moreover, we have informally observed that IRs in caves are
similar to those in modern rooms (Fig. S1B). These observations
indicate that the reverberation encountered by humans in
modern industrialized society is probably not qualitatively dif-
ferent from what was typical in preindustrial societies. The de-
mands of real-world hearing long ago could thus, in principle,
have shaped priors on reverberation, although the importance of
such priors is likely greater in modern life (because we spend
more time indoors).

It is possible that a listener’s IR prior could be refined on short
time scales based on recent exposure. Indeed, speech compre-
hension in a room has been reported to improve after a few sec-
onds of exposure to other speech material recorded in the same
room (43, 44). These results could reflect updates to a listener’s
reverberation prior based on recent experience. It remains to be
seen whether short-term exposure could aid listeners when an IR
is highly unnatural, as in some of our experimental conditions.

Our results provide an example of environmental statistical
constraints on perception. Such effects are relatively common in
human vision, where priors have been characterized on orientation
(45), speed (46), and contour shape (47). Similar approaches have
recently proved fruitful in audition (48-50). The significance of the
reverberation regularities we observed, along with their influence on
perception, is that they suggest reverberation should be viewed as a
scene analysis problem, comparable to the better-known cocktail
party problem, rather than simply a source of distortion or noise.

We have focused on the role of prior knowledge of environ-
mental IRs in the perception of reverberation, but prior knowl-
edge of sources could be equally important. We explored IR
regularities because they had not been previously examined and
because it seemed possible that they might be constrained in
their form. To minimize the role of source priors in our sepa-
ration experiments, we used random synthetic sources with little
structure. However, inference could be aided by prior knowledge
of the regularities of natural sound sources (51), such that per-
formance on tasks requiring estimates of source and filter might
further improve with more naturalistic sources.
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Materials and Methods

Real-World IR Statistics.

Survey. Text messages requesting location information were sent once within
each hour of the day, with the delivery time drawn from a uniform distri-
bution over that hour. In addition, participants installed a phone application
that sent us their phone’s GPS coordinates every 15 min. Participants were
financially compensated for every successful GPS ping (to encourage them to
keep their phone batteries charged and GPS enabled) and for every text
message that they replied to. Immediate replies were compensated more
highly than late replies to encourage timely responses. Each participant was
tracked for 14 d. The 7 participants (4 female, mean age = 27.3y, SD = 6.8)
covered a range of occupations (musician, marketing manager, postdoctoral
researcher, part-time nurse, childcare specialist, and two undergraduates).
Participants replied to an average of 284 of the 336 text messages they re-
ceived (24/d x 14 d), with an average latency of 23 min between message
and response (excluding time asleep).

All experiments, including the IR survey, were approved by the Committee on the

Use of Humans as Experimental Subjects at Massachusetts Institute of Technology
(MIT) and were conducted with the informed consent of the participants.
Measurement. \We measured IRs by recording a noise signal produced by a
speaker (Fig. 1D). Because the noise signal and the apparatus transfer
function were known, the IR could be inferred from the recording. The noise
signal was played from a battery-powered speaker (lon Block Rocker) and
recorded using a digital multitrack recorder (Tascam DR-40, using the two
internal microphones; the microphones were oriented at 90° with respect to
each other and fed into the left and right recording channels). The speaker
and recorder were positioned 1.5 m apart, with the recorder as close as
possible to the position reported by the participant. Transfer functions of
the apparatus were measured in an anechoic chamber (SI Materials and
Methods, Real-World IR Measurements, Measurement Apparatus Transfer
Function). The noise signal was a set of interleaved 11.9-s Golay comple-
mentary sequences (52, 53) (S/ Materials and Methods, Real-World IR Mea-
surements, IR Measurement). Golay sequences have two advantages for
measuring IRs in public spaces: (/) They do not need to be played at high
volumes, because they are relatively noise robust, and (ii) they are less sa-
lient than the sine sweeps commonly used to estimate IRs. They were thus
less likely to provoke the curiosity or objections of bystanders or to worry the
floor managers of restaurants that we might drive customers away. The av-
erage noise floor across all recordings was —81 dB relative to the direct arrival
and was usually 20-60 dB below the start of the reverberant tail (Fig. S1D).
Analysis. We computed the kurtosis of each 10-ms section of the IR (centered
on each individual sample more than 5 ms from the beginning or end; S/
Materials and Methods, Analysis of IR Statistics, IR Gaussianity). We classified
each sample as Gaussian or non-Gaussian based on whether the section
kurtosis exceeded the confidence interval for the kurtosis of a 10-ms sample
of Gaussian noise (with the 32-kHz sampling rate we used, the upper bound of
the confidence interval was 3.54). We defined Tgauss (Fig. 4C, Inset) as the
time at which as many Gaussian data points as non-Gaussian data points
had occurred (this metric gives an indication of how long the IR remains
non-Gaussian, but is also robust to sparse late-arriving reflections). We
considered the diffuse tail to be the section of the IR after Tgauss. Each IR’s
diffuse tail was filtered into 33 frequency subbands obtained from a filter
bank mimicking the frequency selectivity of the human ear (28, 54), with
center frequencies spanning 20 Hz to16 kHz. Polynomials were fitted (S/
Materials and Methods, Analysis of IR Statistics, Polynomial Decay Fits) to the
envelope of each subband, extracted by taking the magnitude of the analytic
signal (via the Hilbert transform).
Statistics. Repeated-measures ANOVAs were run on the measured RT60s and
DRRs, treating the 33 frequency subbands as related measurements. A two-
way ANOVA was performed on the RT60 data after grouping the IRs into
quartiles by their broadband RT60 (7) and treating quartile and frequency
bins as related measurements.

IR Synthesis. Synthetic IRs were generated by imposing different types of decay
on noise subbands, using the same filter bank used for real-world IR analysis. For
all synthetic IRs a delta function at t =0 was used to simulate the direct arrival.

To measure the audible distortion induced by an IR on a given class of
signals, the IR was convolved with 100 randomly selected sources used in the
relevant experiment. Distortion was taken to be the average mean-squared
error (MSE) between the cochleagrams of the source before and after fil-
tering by the IR [subband envelopes were downsampled to 100 Hz and all
values of < —60 dB were truncated at —60 dB (S/ Materials and Methods,
Measuring and Equating IR-Induced Distortion); distortion measurements
were robust to the specific parameters of the cochleagrams used to compute
them; Fig. S4B]. Frequencies below 20 Hz were not included. MSE values
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were then averaged across the 100 sources to yield a measure of the dis-
tortion induced by the IR.

To increase or decrease the distortion of an IR for the purposes of equating
it with that of another IR, the RT60 of each of the subbands was increased or
decreased by a fixed proportion until the two IRs produced MSE values within
1%. In all experiments one IR was designed to be ecologically valid (i.e.,
consistent with the survey) and this IR was held constant while the non-
ecological IRs were adjusted to match it.

Experiment 1: Discrimination of Real and Synthetic Reverberation.
Impulse responses. Real-world IRs were recorded with a 10-m source-receiver
separation. Ten rooms were chosen from the surveyed locations with a
range of overall reverberation time (T) of 0.51-1.19 s. These reverberation
times were large enough that the reverberation was salient but still well
within the distribution of surveyed IRs (Fig. 4). IRs were presented diotically
(the left channel of the measured real-world IR was presented to both ears).
To generate real-world IRs without early reflections, the section of the IR before
Tcauss (i-€., the section for which the IR statistics were not Gaussian) was excised and
replaced with a delta function directly adjoining the diffuse tail. Across the real-
world IRs in this experiment Tgaus Values ranged from 10 ms to 74 ms and cor-
responded to 1-20% (5.7% on average) of the audible IR duration. In this and all
other experiments convolutions were performed in the frequency domain. In all
cases the source and IR were zero-padded to have the same length before being
Fourier transformed. The length of the padded signals was the smallest even
power of 2 that was greater than the sum of their individual lengths, eliminating
wraparound artifacts. To eliminate inaudible portions of the resulting waveform,
all data points after the last value with magnitude greater than —90 dB (relative to
the peak value) were removed before presentation.
Synthetic sources. In this and all subsequent experiments, modulated noise was
generated using the method of McDermott et al. (27). Cochleagrams were
modeled with a multivariate Gaussian distribution with covariance in time and
frequency that resembled that found in natural sounds. Cochleagrams were
sampled from this distribution and imposed on noise subbands, which were then
summed to produce a waveform. To introduce variability in the source charac-
teristics, covariance parameters were randomly chosen from a distribution (log
uniform) centered around values common to natural sounds (distributions were
centered at —0.11 per 20-ms time window and —0.065 per frequency bin and
varied from one-fifth of to five times these values). The sounds were 2.4 s long
and were generated at 32 kHz with the same filter bank used for the IR analysis.
Participants. Twenty-two listeners (10 female, mean age 37.4y, SD = 14.2) took
part. All had self-reported normal hearing.
Statistics. A one-tailed t test was run on the proportion correct for each IR class,
testing differences from chance performance (0.5). Uncorrected P values are
reported in the text, but modified Bonferroni correction was used to determine
statistical significance (due to the large number of conditions). These corrected
P values were also used for the statistical significance symbols (asterisks) in Fig. 6.

Audio Presentation. In all experiments, sounds were played via the sound card
on a MacMini at a sampling rate of 32 kHz, via a Behringer HA400 amplifier.
The Psychtoolbox for Matlab (55) was used to play out sound waveforms.
Sounds were then presented to subjects over Sennheiser HD280 headphones
(circumaural) in a soundproof booth (Industrial Acoustics).

Experiment 2: Source Discrimination.

Source signals. Two 400-ms modulated noise signals were summed both with
and without a time offset to create a pair of sources for an experiment trial that
had nearly identical time-averaged spectra. A window was applied to ensure
that the two source signals had identical onsets and offsets (S/ Materials and
Methods, Experiment 2—Source Discrimination). Each subject heard 50 ran-
dom source pairs convolved once with each IR type. The distinct source (i.e.,
which differed before application of the IRs) was always the first or the last of
the three sounds presented in a trial.

Procedure. Participants were presented with stimuli in blocks of 10 trials. All
stimuli within a given block were convolved with the same IR class. At the end
of each block participants were given feedback on their performance for that
block. Blocks were presented in random order, with the exception that every
sixth block (i.e., blocks 1, 7, 13, 19, ...) consisted of 10 trials with dry stimuli in
which feedback was given after every trial.

Participants. Fourteen listeners (5 female, mean age = 42.7 y, SD = 16.4) took
part. All had self-reported normal hearing.

Statistics. Repeated-measures ANOVAs were used to test for main effects and
interactions of RT60 and IR class. The results were pooled over RT60 and two-
tailed t tests were used to test for significant differences from performance
for generic exponential IRs. ANOVAs were used to test for significant
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differences in the performance of the null models (SI Materials and Meth-
ods, Statistical Tests), between IR classes.

Experiment 3: IR Discrimination.

Synthetic IRs. One of the IRs in the pairing had a broadband RT60 of T=0.6's
and the other took a value of either 0.9 s or 1.2's. On 50% of trials the short
IR (T = 0.6 s) occurred twice and the long IR (T = 0.9 s or 1.2 s) occurred once
and vice versa on the other 50% of trials.

Source signals. The source signals were excerpts of synthetic sources with different
values of time correlation, frequency correlation, and modulation depth (selected
from the same range as in experiment 1), such that the three sounds all had different
statistics from each other. For each participant we generated 40 randomly chosen
sets of three sounds and used each set once with each condition. The source length
varied randomly between 2,000 ms and 2,400 ms such that the longest convolved
sound did not necessarily correspond to the longest IR (to discourage participants
from basing their judgments on duration; Fig. S5 C and D).

Procedure. Participants were presented with stimuli in blocks of 10 trials. All
trials within a block were generated using the same IR class. At the end of
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each block participants were given feedback on their performance over that
block. Blocks were presented in a random order.
Participants and statistics. The participants and statistics were the same as in the
source discrimination experiment. The participants were run on the two
experiments in a random order.

Methods are described in more detail in S/ Materials and Methods.
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