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SUMMARY

Rainstorms, insect swarms, and galloping horses
produce ‘‘sound textures’’—the collective result of
many similar acoustic events. Sound textures are
distinguished by temporal homogeneity, suggesting
they could be recognized with time-averaged statis-
tics. To test this hypothesis, we processed real-world
textures with an auditory model containing filters
tuned for sound frequencies and their modulations,
and measured statistics of the resulting decomposi-
tion. We then assessed the realism and recogniz-
ability of novel sounds synthesized to have matching
statistics. Statistics of individual frequency channels,
capturing spectral power and sparsity, generally
failed to produce compelling synthetic textures; how-
ever, combining them with correlations between
channels produced identifiable and natural-sounding
textures. Synthesis quality declined if statistics were
computed from biologically implausible auditory
models. The results suggest that sound texture per-
ception is mediated by relatively simple statistics
of early auditory representations, presumably com-
puted by downstream neural populations. The syn-
thesis methodology offers a powerful tool for their
further investigation.

INTRODUCTION

Sensory receptors measure light, sound, skin pressure, and

other forms of energy, from which organisms must recognize

the events that occur in the world. Recognition is believed to

occur via the transformation of sensory input into representa-

tions in which stimulus identity is explicit (for instance, via

neurons responsive to one category but not others). In the audi-

tory system, as in other modalities, much is known about how

this process begins, from transduction through the initial stages

of neural processing. Something is also known about the

system’s output, reflected in the ability of human listeners to

recognize sounds. Less is known about what happens in the

middle—the stages between peripheral processing and percep-

tual decisions. The difficulty of studying thesemid-level process-
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ing stages partly reflects a lack of appropriate stimuli, as the

tones and noises that are staples of classical hearing research

do not capture the richness of natural sounds.

Here we study ‘‘sound texture,’’ a category of sound that is

well-suited for exploration of mid-level auditory perception.

Sound textures are produced by a superposition of many similar

acoustic events, such as arise from rain, fire, or a swamp full of

insects, and are analogous to the visual textures that have been

studied for decades (Julesz, 1962). Textures are a rich and varied

set of sounds, and we show here that listeners can readily recog-

nize them. However, unlike the sound of an individual event, such

asa footstep, or of the complex temporal sequences of speechor

music, a texture is defined by properties that remain constant

over time. Textures thus possess a simplicity relative to other

natural sounds that makes them a useful starting point for

studying auditory representation and sound recognition.

We explored sound texture perception using a model of bio-

logical texture representation. The model begins with known

processing stages from the auditory periphery and culminates

with the measurement of simple statistics of these stages. We

hypothesize that such statistics are measured by subsequent

stages of neural processing, where they are used to distinguish

and recognize textures. We tested the model by conducting

psychophysical experiments with synthetic sounds engineered

to match the statistics of real-world textures. The logic of the

approach, borrowed from vision research, is that if texture per-

ception is based on a set of statistics, two textures with the

same values of those statistics should sound the same (Julesz,

1962; Portilla and Simoncelli, 2000). In particular, our synthetic

textures should sound like another example of the correspond-

ing real-world texture if the statistics used for synthesis are

similar to those measured by the auditory system.

Although the statistics we investigated are relatively simple

and were not hand-tuned to specific natural sounds, they

produced compelling synthetic examples of many real-world

textures. Listeners recognized the synthetic sounds nearly as

well as their real-world counterparts. In contrast, sounds synthe-

sized using representations distinct from those in biological

auditory systems generally did not sound as compelling. Our

results suggest that the recognition of sound textures is based

on statistics of modest complexity computed from the re-

sponses of the peripheral auditory system. These statistics likely

reflect sensitivities of downstream neural populations. Sound

textures and their synthesis thus provide a substrate for studying

mid-level audition.
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Figure 1. Model Architecture

A sound waveform (top row) is filtered by a

‘‘cochlear’’ filterbank (gray stripe contains two

example filters at different frequencies, on a log-

frequency axis). Cochlear filter responses (i.e.,

subbands) are bandlimited versions of the original

signal (third row), the envelopes of which (in gray)

are passed through a compressive nonlinearity

(gray stripe, fourth row), yielding compressed en-

velopes (fifth row), from which marginal statistics

and cross band correlations are measured. En-

velopes are filtered with a modulation filter bank

(gray stripe, sixth row, containing two example

filters for each of the two example cochlear chan-

nels, on a log-frequency axis), the responses of

which (seventh row) are used to compute modu-

lationmarginals andcorrelations.Red iconsdenote

statistical measurements: marginal moments of

a single signal or correlations between two signals.
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RESULTS

Our investigations of sound texture were constrained by three

sources of information: auditory physiology, natural sound

statistics, and perceptual experiments. We used the known

structure of the early auditory system to construct the initial

stages of our model and to constrain the choices of statistics.

We then established the plausibility of different types of statistics

by verifying that they vary across natural sounds and could thus

be useful for their recognition. Finally, we tested the perceptual

importance of different texture statistics with experiments using

synthetic sounds.

Texture Model
Our model is based on a cascade of two filter banks (Figure 1)

designed to replicate the tuning properties of neurons in early

stages of the auditory system, from the cochlea through the thal-

amus. An incoming sound is first processed with a bank of 30

bandpass cochlear filters that decompose the sound waveform

into acoustic frequency bands, mimicking the frequency selec-

tivity of the cochlea. All subsequent processing is performed on

the amplitude envelopes of these frequency bands. Amplitude

envelopes can be extracted from cochlear responses with a

low-pass filter and are believed to underlie many aspects of

peripheral auditory responses (Joris et al., 2004).When the enve-

lopes are plotted in grayscale and arranged vertically, they form

a spectrogram, a two-dimensional (time versus frequency) image

commonly used for visual depiction of sound (e.g., Figure 2A).

Perceptually, envelopes carry much of the important information

in natural sounds (Gygi et al., 2004; Shannon et al., 1995; Smith
Neuron 71, 926–940, S
et al., 2002), and can be used to recon-

struct signals that are perceptually indis-

tinguishable from the original in which

the envelopes were measured. Cochlear

transduction of sound is also distin-

guished by amplitude compression (Rug-

gero, 1992)—the response to high inten-

sity sounds is proportionally smaller than
that to low intensity sounds, due to nonlinear, level-dependent

amplification. To simulate this phenomenon, we apply a com-

pressive nonlinearity to the envelopes.

Each compressed envelope is further decomposed using

a bank of 20 bandpass modulation filters. Modulation filters are

conceptually similar to cochlear filters, except that they operate

on (compressed) envelopes rather than the sound pressure

waveform, and are tuned to frequencies an order of magnitude

lower, as envelopes fluctuate at relatively slow rates. A modula-

tion filter bank is consistent with previous auditory models

(Bacon and Grantham, 1989; Dau et al., 1997) as well as reports

of modulation tuning in midbrain and thalamic neurons

(Baumann et al., 2011; Joris et al., 2004; Miller et al., 2002;

Rodrı́guez et al., 2010). Both the cochlear and modulation filters

in our model had bandwidths that increased with their center

frequency (such that they were approximately constant on a log-

arithmic scale), as is observed in biological auditory systems.

From cochlear envelopes and their modulation bands, we

derive a representation of texture by computing statistics (red

symbols in Figure 1). The statistics are time-averages of nonlinear

functions of either the envelopes or the modulation bands. Such

statistics are in principle suited to summarizing stationary sig-

nals like textures, whose properties are constant over some

moderate timescale. A priori, however, it is not obvious whether

simple, biologically plausible statistics would havemuch explan-

atory power as descriptors of natural sounds or of their percep-

tion. Previous attempts to model sound texture have come

from the machine audio and sound rendering communities

(Athineos and Ellis, 2003; Dubnov et al., 2002; Saint-Arnaud

and Popat, 1995; Verron et al., 2009; Zhu and Wyse, 2004) and
eptember 8, 2011 ª2011 Elsevier Inc. 927
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Figure 2. Cochlear Marginal Statistics

(A) Spectrograms of three sound excerpts, gen-

erated by plotting the envelopes of a cochlear filter

decomposition. Gray-level indicates the (com-

pressed) envelope amplitude (same scale for all

three sounds).

(B) Envelopes of one cochlear channel for the

three sounds from (A).

(C) Histograms (gathered over time) of the enve-

lopes in (B). Vertical line segments indicate the

mean value of the envelope for each sound.

(D–G) Envelope marginal moments for each

cochlear channel of each of 168 natural sound

textures. Moments of sounds in (A–C) are plotted

with thick lines; dashed black line plots the mean

value of each moment across all sounds.
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have involved representations unrelated to those in biological

auditory systems.

Texture Statistics
Of all the statistics the brain could compute, whichmight be used

by the auditory system? Natural sounds can provide clues: in

order for a statistic to be useful for recognition, it must produce

different values for different sounds. We considered a set of

generic statistics and verified that they varied substantially

across a set of 168 natural sound textures.

We examined two general classes of statistic: marginal

moments and pairwise correlations. Both types of statistic

involve averages of simple nonlinear operations (e.g., squaring,

products) that could plausibly bemeasured using neural circuitry

at a later stage of neural processing. Moments and correlations

derive additional plausibility from their importance in the repre-
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sentation of visual texture (Heeger and

Bergen, 1995; Portilla and Simoncelli,

2000), which provided inspiration for our

work. Both types of statistic were

computed on cochlear envelopes as

well as their modulation bands (Figure 1).

Because modulation filters are applied to

the output of a particular cochlear

channel, they are tuned in both acoustic

frequency and modulation frequency.

We thus distinguished two types of

modulation correlations: those between

bands tuned to the same modulation

frequency but different acoustic frequen-

cies (C1), and those between bands

tuned to the same acoustic frequency

but different modulation frequencies (C2).

To provide some intuition for the

variation in statistics that occurs across

sounds, consider the cochlear marginal

moments: statistics that describe the

distribution of the envelope amplitude

for a single cochlear channel. Figure 2A

shows the envelopes, displayed as spec-

trograms, for excerpts of three example
sounds (pink [1/f] noise, a stream, andgeese calls), and Figure 2B

plots the envelopes of one particular channel for each sound. It is

visually apparent that the envelopes of the three sounds are

distributed differently—those of the geese contain more high-

amplitude and low-amplitude values than those of the stream

or noise. Figure 2C shows the envelope distributions for one

cochlear channel. Although the mean envelope values are nearly

equal in this example (because they have roughly the same

average acoustic power in that channel), the envelope distribu-

tions differ in width, asymmetry about the mean, and

the presence of a long positive tail. These properties can be

captured by the marginal moments (mean, variance, skew, and

kurtosis, respectively). Figures 2D–2G show these moments for

our full set of sound textures. Marginal moments have previously

been proposed to play a role in envelope discrimination (Lorenzi

et al., 1999; Strickland and Viemeister, 1996), and often reflect
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Figure 3. Modulation Power and Correlation Statistics

(A) Modulation power in each band (normalized by the variance of the corresponding cochlear envelope) for insects, waves, and stream sounds of Figure 4B. For

ease of display and interpretation, this statistic is expressed in dB relative to the same statistic for pink noise.

(B) Cross-band envelope correlations for fire, applause, and stream sounds of Figure 4B. Each matrix cell displays the correlation coefficient between a pair of

cochlear envelopes.

(C) C1 correlations for waves and fire sounds of Figure 4B. Eachmatrix contains correlations betweenmodulation bands tuned to the samemodulation frequency

but to different acoustic frequencies, yielding matrices of the same format as (B), but with a different matrix for each modulation frequency, indicated at the top of

each matrix.

(D) Spectrograms and C2 correlations for three sounds. Note asymmetric envelope shapes in first and second rows, and that abrupt onsets (top), offsets (middle),

and impulses (bottom) produce distinct correlation patterns. In right panels, modulation channel labels indicate the center of low-frequency band contributing to

the correlation. See also Figure S6.
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the property of sparsity, which tends to characterize natural

sounds and images (Field, 1987; Attias and Schreiner, 1998).

Intuitively, sparsity reflects the discrete events that generate

natural signals; these events are infrequent, but produce a burst

of energy when they occur, yielding high-variance amplitude

distributions. Sparsity has been linked to sensory coding (Field,

1987; Olshausen and Field, 1996; Smith and Lewicki, 2006), but

its role in the perception of real-world sounds has been unclear.

Each of the remaining statistics we explored (Figure 1)

captures distinct aspects of acoustic structure and also exhibits

large variation across sounds (Figure 3). The moments of the

modulation bands, particularly the variance, indicate the rates

at which cochlear envelopes fluctuate, allowing distinction

between rapidly modulated sounds (e.g., insect vocalizations)

and slowly modulated sounds (e.g., ocean waves). The correla-

tion statistics, in contrast, each reflect distinct aspects of coor-
dination between envelopes of different channels, or between

their modulation bands. The cochlear correlations (C) distinguish

textures with broadband events that activate many channels

simultaneously (e.g., applause), from those that produce nearly

independent channel responses (many water sounds; see

Experiment 1: Texture Identification). The cross-channel modu-

lation correlations (C1) are conceptually similar except that

they are computed on a particular modulation band of each co-

chlear channel. In some sounds (e.g., wind, or waves) the C1

correlations are large only for low modulation-frequency bands,

whereas in others (e.g., fire) they are present across all bands.

The within-channel modulation correlations (C2) allow discrimi-

nation between sounds with sharp onsets or offsets (or both),

by capturing the relative phase relationships between modula-

tion bands within a cochlear channel. See Experimental Proce-

dures for detailed descriptions.
Neuron 71, 926–940, September 8, 2011 ª2011 Elsevier Inc. 929
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Sound Synthesis
Our goal in synthesizing sounds was not to render maximally

realistic sounds per se, as in most sound synthesis applications

(Dubnov et al., 2002; Verron et al., 2009), but rather to test

hypotheses about how the brain represents sound texture, using

realism as an indication of the hypothesis validity. Others have

also noted the utility of synthesis for exploring biological auditory

representations (Mesgarani et al., 2009; Slaney, 1995); our work

is distinct for its use of statistical representations. Inspired by

methods for visual texture synthesis (Heeger and Bergen, 1995;

Portilla and Simoncelli, 2000), our method produced novel

signals thatmatched some of the statistics of a real-world sound.

If the statistics used to synthesize the sound are similar to those

used by the brain for texture recognition, the synthetic signal

should sound like another example of the original sound.

To synthesize a texture, we first obtained desired values of

the statistics by measuring the model responses (Figure 1) for

a real-world sound. We then used an iterative procedure

to modify a random noise signal (using variants of gradient

descent) to force it to have these desired statistic values (Fig-

ure 4A). By starting from noise, we hoped to generate a signal

that was as random as possible, constrained only by the desired

statistics.

Figure 4B displays spectrograms of several naturally occurring

sound textures along with synthetic examples generated from

their statistics (see Figure S1 available online for additional

examples). It is visually apparent that the synthetic sounds share

many structural properties of the originals, but also that the pro-

cess has not simply regenerated the original sound—here and in

every other example we examined, the synthetic signals were

physically distinct from the originals (see also Experiment 1:

Texture Identification [Experiment 1b, condition 7]). Moreover,

running the synthesis procedure multiple times produced exem-

plars with the same statistics but whose spectrograms were

easily discriminated visually (Figure S2). The statistics we

studied thus define a large set of sound signals (including the

original in which the statistics are measured), from which one

member is drawn each time the synthesis process is run.

To assess whether the synthetic results sound like the natural

textures whose statistics they matched, we conducted several

experiments. The results can also be appreciated by listening

to example synthetic sounds, available online (http://www.cns.

nyu.edu/�lcv/sound_texture.html).

Experiment 1: Texture Identification
We first tested whether synthetic sounds could be identified as

exemplars of the natural sound texture fromwhich their statistics

were obtained. Listeners were presented with example sounds,

and chose an identifying name from a set of five. In Experiment

1a, sounds were synthesized using different subsets of statis-

tics. Identification was poor when only the cochlear channel

power was imposed (producing a sound with roughly the same

power spectrum as the original), but improved as additional

statistics were included as synthesis constraints (Figure 5A;

F[2.25, 20.25] = 124.68, p < 0.0001; see figure for paired compar-

isons between conditions). Identifiability of textures synthesized

using the full model approached that obtained for the original

sound recordings.
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Inspection of listeners’ responses revealed several results of

interest (Figures 5B and 5C). In condition 1, when only the

cochlear channel power was imposed, the sounds most often

correctly identified were those that are noise-like (wind, static,

etc.); such sounds were also the most common incorrect

answers. This is as expected, because the synthesis process

was initialized with noise and in this condition simply altered its

spectrum. A more interesting pattern emerged for condition 2,

in which the cochlear marginal moments were imposed. In this

condition, but not others, the sounds most often identified

correctly, and chosen incorrectly, were water sounds. This is

readily apparent from listening to the synthetic examples—water

often sounds realistic when synthesized from its cochlear

marginals, and most other sounds synthesized this way sound

water-like.

Because the cochlear marginal statistics only constrain the

distribution of amplitudes within individual frequency channels,

this result suggests that the salient properties of water sounds

are conveyed by sparsely distributed, independent, bandpass

acoustic events. In Experiment 1b, we further explored this

result: in conditions 1 and 2 we again imposed marginal statis-

tics, but used filters that were either narrower or broader than

the filters found in biological auditory systems. Synthesis

with these alternative filters produced overall levels of perfor-

mance similar to the auditory filter bank (condition 3; Figure 5D),

but in both cases, water sounds were no longer the most

popular choices (Figures 5E and 5F; the four water categories

were all identified less well, and chosen incorrectly less often,

in conditions 1 and 2 compared to condition 3; p < 0.01,

sign test). It thus seems that the bandwidths of biological audi-

tory filters are comparable to those of the acoustic events

produced by water (see also Figure S3), and that water sounds

often have remarkably simple structure in peripheral auditory

representations.

Although cochlear marginal statistics are adequate to convey

the sound of water, in general they are insufficient for recognition

(Figure 5A). One might expect that with a large enough set of

filters, marginal statistics alone would produce better synthesis,

because each filter provides an additional set of constraints on

the sound signal. However, our experiments indicate otherwise.

When we synthesized sounds using a filter bank with the band-

widths of our canonical model, but with four times asmany filters

(such that adjacent filters overlapped more than in the original

filter bank), identification was not significantly improved [Fig-

ure 5D; condition 4 versus 3, t(9) = 1.27, p = 0.24]. Similarly,

onemight suppose that constraining the full marginal distribution

(as opposed to just matching the four moments in our model)

might capture more structure, but we found that this also failed

to produce improvements in identification [Figure 5D; condition

5 versus 3, t(9) = 1.84, p = 0.1; Figure S4]. These results suggest

that cochlear marginal statistics alone, irrespective of how

exhaustively they are measured, cannot account for our percep-

tion of texture.

Because the texture model is independent of the signal length,

we could measure statistics from signals much shorter or longer

than those being synthesized. In both cases the results generally

sounded as compelling as if the synthetic and original signals

were the same length. To verify this empirically, in condition 7

http://www.cns.nyu.edu/~lcv/sound_texture.html
http://www.cns.nyu.edu/~lcv/sound_texture.html
http://www.cns.nyu.edu/~lcv/sound_texture.html
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Figure 4. Synthesis Algorithm and Example Results

(A) Schematic of synthesis procedure. Statistics are measured after a sound recording is passed through the auditory model of Figure 1. Synthetic signal is

initialized as noise, and the original sound’s statistics are imposed on its cochlear envelopes. The modified envelopes are multiplied by their associated fine

structure, and then recombined into a sound signal. The procedure is iterated until the synthesized signal has the desired statistics.

(B) Spectrograms of original and synthetic versions of several sounds (same amplitude scale for all sounds). See also Figure S1 and Figure S2.
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we used excerpts of 15 s signals synthesized from 7 s originals.

Identification performance was unaffected [Figure 5D; condition

7 versus 6; t(9) = 0.5, p = 0.63], indicating that these longer

signals captured the texture qualities as well as signals more

comparable to the original signals in length.
Experiment 2: Necessity of Each Class of Statistic
We found that each class of statistic was perceptually neces-

sary, in that its omission from the model audibly impaired the

quality of some synthetic sounds. To demonstrate this empiri-

cally, in Experiment 2a we presented listeners with excerpts
Neuron 71, 926–940, September 8, 2011 ª2011 Elsevier Inc. 931
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Figure 5. Experiment 1: Texture Identification

(A) Identification improves as more statistics are included in the synthesis. Asterisks denote significant differences between conditions, p < 0.01 (paired t tests,

corrected for multiple comparisons). Here and elsewhere, error bars denote standard errors and dashed lines denote the chance level of performance.

(B) The five categories correctly identified most often for conditions 1 and 2, with mean percent correct in parentheses.

(C) The five categories chosen incorrectly most often for conditions 1 and 2, with mean percent trials chosen (of those where they were a choice) in parentheses.

(D) Identification with alternative marginal statistics, and long synthetic signals. Horizontal lines indicate nonsignificant differences (p > 0.05).

(E and F) The five (E) most correctly identified and (F) most often incorrectly chosen categories for conditions 1–3. See also Figure S3 and Figure S4.
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of original texture recordings followed by two synthetic

versions—one synthesized using the full set of model statistics,

and the other synthesized with one class omitted—and asked

them to judge which synthetic version sounded more like the

original. Figure 6A plots the percentage of trials on which the

full set of statistics was preferred. In every condition, this

percentage was greater than that expected by chance (t tests,

p < 0.01 in all cases, Bonferroni corrected), though the prefer-

ence was stronger for some statistic classes than others

[F(4,36) = 15.39, p < 0.0001].

The effect of omitting a statistic class was not noticeable for

every texture. A potential explanation is that the statistics of

many textures are close to those of noise for some subset of

statistics, such that omitting that subset does not cause the

statistics of the synthetic result to deviate much from the correct
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values (because the synthesis is initialized with noise). To test

this idea, we computed the difference between each sound’s

statistics and those of pink (1/f) noise, for each of the five statistic

classes. When we reanalyzed the data including only the 30% of

sounds whose statistics were most different from those of noise,

the proportion of trials on which the full set of statistics was

preferred was significantly higher in each case (t tests, p <

0.05). Including a particular statistic in the synthesis process

thus tends to improve realism when the value of that statistic

deviates from that of noise. Because of this, not all statistics

are necessary for the synthesis of every texture (although all

statistics presumably contribute to the perception of every

texture—if the values were actively perturbed from their correct

values, whether noise-like or not, we found that listeners gener-

ally noticed).
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Figure 6. Experiments 2 and 3: Omitting and Manipulating Statistics

(A) Experiment 2a: synthesis with the full set of statistics is preferred over

synthesis omitting any single class. Condition labels indicate statistic class

omitted. In condition 1, the envelope mean was imposed, to ensure that the

spectrum was approximately correct. Asterisks denote significant differences

from chance, p < 0.01.

(B) Experiment 2b: sounds with the correct cochlear marginal statistics were

preferred over those with (1), the cochlear marginal moments of noise; (2), all

cochlear marginals omitted (as in condition 1 of [A]); or (3), the skew and

kurtosis omitted. Asterisks denote significant differences from chance or

between conditions, p < 0.01.

(C) Frequency responses of logarithmically and linearly spaced cochlear filter

banks.

(D) Experiment 3: sounds synthesized with a biologically plausible auditory

model were preferred over those synthesized with models deviating from

biology (by omitting compression, or by using linearly spaced cochlear or

modulation filter banks). Asterisks denote significant differences from chance,

p < 0.01.
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We expected that the C2 correlation, which measures phase

relations between modulation bands, would help capture the

temporal asymmetry of abrupt onsets or offsets. To test this

idea, we separately analyzed sounds that visually or audibly

possessed such asymmetries (explosions, drum beats, etc.).

For this subset of sounds, and for other randomly selected

subsets, we computed the average proportion of trials in which

synthesis with the full set of statistics was preferred over that

with the C2 correlation omitted. The preference for the full set

of statistics was larger in the asymmetric sounds than in

99.96% of other subsets, confirming that the C2 correlations

were particularly important for capturing asymmetric structure.

It is also notable that omitting the cochlear marginal moments

produced a noticeable degradation in realism for a large fraction

of sounds, indicating that the sparsity captured by these statis-

tics is perceptually important. As a further test, we explicitly
forced sounds to be nonsparse and examined the effect on

perception. We synthesized sounds using a hybrid set of statis-

tics in which the envelope variance, skew, and kurtosis were

taken from pink noise, with all other statistics given the correct

values for a particular real-world sound. Because noise is non-

sparse (the marginals of noise lie at the lower extreme of the

values for natural sounds; Figure 2), this manipulation forced

the resulting sounds to lack sparsity but to maintain the other

statistical properties of the original sound. We found that the

preference for signals with the correct marginals was enhanced

in this condition [1 versus 2, t(9) = 8.1, p < 0.0001; Figure 6B],

consistent with the idea that sparsity is perceptually important

for most natural sound textures. This result is also an indication

that the different classes of statistic are not completely indepen-

dent: constraining the other statistics had some effect on the

cochlear marginals, bringing them closer to the values of the

original sound even if they themselves were not explicitly con-

strained. We also found that listeners preferred sounds synthe-

sized with all four marginal moments to those with the skew

and kurtosis omitted (t(8) = 4.1, p = 0.003). Although the variance

alone contributes substantially to sparsity, the higher-order

moments also play some role.

Experiment 3: Statistics of Nonbiological Sound
Representations
How important are the biologically inspired features of our

model? One might expect that any large and varied set of statis-

tics would produce signals that resemble the originals. As a test,

we altered our model in three respects: (1) removing cochlear

compression, (2), altering the bandwidths of the ‘‘cochlear’’

filters, and (3) altering the bandwidths of the modulation filters

(rows four, two, and six of Figure 1). In the latter two cases, line-

arly spaced filter banks were substituted for the log-spaced filter

banks found in biological auditory systems (Figure 6C). We also

included a condition with all three alterations. Each altered

model was used both to measure the statistics in the original

sound signal, and to impose them on synthetic sounds. In all

cases, the number of filters was preserved, and thus all models

had the same number of statistics.

We again performed an experiment in which listeners judged

which of two synthetic sounds (one generated from our biolog-

ically inspired model, the other from one of the nonbiological

models) more closely resembled the original from which their

statistics were measured. In each condition, listeners preferred

synthetic sounds produced by the biologically inspired model

(Figure 6D; sign tests, p < 0.01 in all conditions), supporting

the notion that the auditory system represents textures using

statistics similar to those in this model.

Experiment 4: Realism Ratings
To illustrate the overall effectiveness of the synthesis, we

measured the realism of synthetic versions of every sound in

our set. Listeners were presented with an original recording fol-

lowed by a synthetic signal matching its statistics. They rated the

extent to which the synthetic signal was a realistic example of the

original sound, on a scale of 1–7. Most sounds yielded average

ratings above 4 (Figures 7A and 7B; Table S1). The sounds

with low ratings, however, are of particular interest, as they are
Neuron 71, 926–940, September 8, 2011 ª2011 Elsevier Inc. 933
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Figure 7. Experiment 4: Realism Ratings

(A) Histogram of average realism ratings for each sound in our set.

(B) List of 20 sound textures with high average ratings. Multiple examples of similar sounds are omitted for brevity.

(C) List of all sounds with average realism ratings <2, along with their average rating. See Table S1 for complete list. See also Figure S5.
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statistically matched to the original recordings and yet do not

sound like them. Figure 7C lists the sounds with average ratings

below 2. They fall into three general classes—those involving

pitch (railroad crossing, wind chimes, music, speech, bells),

rhythm (tapping, music, drumming), and reverberation (drum

beats, firecrackers); see also Figure S5. This suggests that the

perception of these sound attributes involves measurements

substantially different from those in our model.

DISCUSSION

We have studied ‘‘sound textures,’’ a class of sounds produced

by multiple superimposed acoustic events, as are common to

many natural environments. Sound textures are distinguished

by temporal homogeneity, and we propose that they are re-

presented in the auditory system with time-averaged statistics.

We embody this hypothesis in a model based on statistics

(moments and correlations) of a sound decomposition like that

found in the subcortical auditory system. To test the role of these

statistics in texture recognition, we conducted experiments with

synthetic sounds matching the statistics of various real-world

textures. We found that (1) such synthetic sounds could be accu-

rately recognized, andat levels far better than if only the spectrum

or sparsity was matched, (2) eliminating subsets of the statistics

in themodel reduced the realismof the synthetic results, (3)modi-

fying the model to less faithfully mimic the mammalian auditory

system also reduced the realism of the synthetic sounds, and

(4) the synthetic results were often realistic, but failed markedly

for a few particular sound classes.

Our results suggest that when listeners recognize the sound

of rain, fire, insects, and other such sounds, they are recog-

nizing statistics of modest complexity computed from the

output of the peripheral auditory system. These statistics are

likely measured at downstream stages of neural processing,

and thus provide clues to the nature of mid-level auditory

computations.
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Neural Implementation
Because texture statistics are time averages, their computation

can be thought of as involving two steps: a nonlinear function

applied to the relevant auditory response(s), followed by an

average over time. A moment, for instance, could be computed

by a neuron that averages its input (e.g., a cochlear envelope)

after raising it to a power (two for the variance, three for the

skew, etc.). We found that envelope moments were crucial for

producing naturalistic synthetic sounds. Envelope moments

convey sparsity, a quality long known to differentiate natural

signals from noise (Field, 1987) and one that is central to many

recent signal-processing algorithms (Asari et al., 2006; Bell and

Sejnowski, 1996). Our results thus suggest that sparsity is repre-

sented in the auditory system and used to distinguish sounds.

Although definitive characterization of the neural locus awaits,

neural responses in the midbrain often adapt to particular ampli-

tude distributions (Dean et al., 2005; Kvale and Schreiner, 2004),

raising the possibility that envelope moments may be computed

subcortically. Themodulation power (also amarginal moment) at

particular rates also seems to be reflected in the tuning of many

thalamic and midbrain neurons (Joris et al., 2004).

The other statistics in our model are correlations. A correlation

is the average of a normalized product (e.g., of two cochlear

envelopes), and could be computed as such. However, a correla-

tion can also be viewed as the proportion of variance in one vari-

able that is shared by another, which is partly reflected in the vari-

ance of the sum of the variables. This formulation provides an

alternative implementation (see Experimental Procedures), and

illustrates that correlations in one stage of representation (e.g.,

bandpass cochlear channels) can be reflected in the marginal

statistics of the next (e.g., cortical neurons that sum input from

multiple channels), assuming appropriate convergence. All of

the texture statistics we have considered could thus reduce to

marginal statistics at different stages of the auditory system.

Neuronal tuning to texture statistics could be probed using

synthetic stimuli whose statistics are parametrically varied.



Figure 8. Analogous Model of Visual

Texture Representation

Model is depicted in a format like that of the

auditory texture model in Figure 1. An image of

beans (top row) is filtered into spatial frequency

bands by center-surround filters (second row), as

happens in the retina/LGN. The spatial frequency

bands (third row) are filtered again by orientation

selective filters (fourth row) analogous to V1 simple

cells, yielding scale and orientation filtered bands

(fifth row). The envelopes of these bands are ex-

tracted (sixth row) to produce analogs of V1

complex cell responses (seventh row). The linear

function at the envelope extraction stage indicates

the absence of the compressive nonlinearity

present in the auditory model. As in Figure 1, red

icons denote statistical measurements: marginal

moments of a single signal (M) or correlations

between two signals (AC, C1, or C2 for autocor-

relation, cross-band correlation, or phase-

adjusted correlation). C1 and C2 here and in Fig-

ure 1 denote conceptually similar statistics. The

autocorrelation (AC) is identical to C1 except that it

is computed within a channel. This model is

a variant of Portilla and Simoncelli (2000).
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Stationary artificial sounds have a long history of use in psycho-

acoustics and neurophysiology, with recent efforts to incorpo-

rate naturalistic statistical structure (Attias and Schreiner,

1998; Garcia-Lazaro et al., 2006; McDermott et al., 2011; Over-

ath et al., 2008; Rieke et al., 1995; Singh and Theunissen, 2003).

Stimuli synthesized from our model capture naturally occurring

sound structure while being precisely characterized within an

auditory model. They offer a middle ground between natural

sounds and the tones and noises of classical hearing research.

Relation to Visual Texture
Visual textures, unlike their auditory counterparts, have been

studied intensively for decades (Julesz, 1962), and our work

was inspired by efforts to understand visual texture using

synthesis (Heeger and Bergen, 1995; Portilla and Simoncelli,

2000; Zhu et al., 1997). How similar are visual and auditory

texture representations? For ease of comparison, Figure 8

shows amodel diagram of the most closely related visual texture

model (Portilla and Simoncelli, 2000), analogous in format to our

auditory model (Figure 1) but with input signals and representa-

tional stages that vary spatially rather than temporally. The vision

model has two stages of linear filtering (corresponding to LGN

cells and V1 simple cells) followed by envelope extraction (corre-

sponding to V1 complex cells), whereas the auditory model has

the envelope operation sandwiched between linear filtering

operations (corresponding to the cochlea and midbrain/thal-

amus), reflecting structural differences in the two systems. There

are also notable differences in the stages at which statistics are

computed in the two models: several types of visual texture

statistics are computed directly on the initial linear filtering

stages, whereas the auditory statistics all follow the envelope
Neuron 71, 926–940, S
operation, reflecting the primary locus of

structure in images versus sounds.

However, the statistical computations
themselves—marginal moments and correlations—are concep-

tually similar in the twomodels. In both systems, relatively simple

statistics capture texture structure, suggesting that texture

perception, like filling in (McDermott and Oxenham, 2008;

Warren et al., 1972), and saliency (Cusack and Carlyon, 2003;

Kayser et al., 2005), may involve analogous computations across

modalities.

It will be interesting to explore whether the similarities between

modalities extend to inattention, to which visual texture is

believed to be robust (Julesz, 1962). Under conditions of focused

listening, we are often aware of individual events composing a

sound texture, presumably in addition to registering time-aver-

aged statistics that characterize the texture qualities. A classic

example is the ‘‘cocktail party problem,’’ in which we attend to

a single person talking in a room dense with conversations (Bee

and Micheyl, 2008; McDermott, 2009). Without attention, indi-

vidual voices or other sound sources are likely inaccessible, but

we may retain access to texture statistics that characterize the

combined effect of multiple sources, as is apparently the case

in vision (Alvarez andOliva, 2009). This possibility could be tested

in divided attention experiments with synthetic textures.

Texture Extensions
We explored the biological representation of sound texture using

a set of generic statistics and a relatively simple auditory model,

both of which could be augmented in interesting ways. The three

sources of information that contributed to the present work—

auditory neuroscience, natural sound analysis, and perceptual

experiments—all provide directions for such extensions.

The auditory model of Figure 1, from which statistics are com-

puted, captures neuronal tuning characteristics of subcortical
eptember 8, 2011 ª2011 Elsevier Inc. 935
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structures. Incorporating cortical tuning properties would likely

extend the range of textures we can account for. For instance,

cortical receptive fields have spectral tuning that is more

complex and varied than that found subcortically (Barbour and

Wang, 2003; Depireux et al., 2001), and statistics of filters

modeled on their properties could capture higher-order structure

that our current model does not. As discussed earlier, the cor-

relations computed on subcortical representations could then

potentially be replaced by marginal statistics of filters at a later

stage.

It may also be possible to derive additional or alternative

texture statistics from an analysis of natural sounds, similar in

spirit to previous derivations of cochlear and V1 filters from

natural sounds and images (Olshausen and Field, 1996; Smith

and Lewicki, 2006), and consistent with other examples of con-

gruence between properties of perceptual systems and natural

environments (Attias and Schreiner, 1998; Garcia-Lazaro et al.,

2006; Lesica and Grothe, 2008; Nelken et al., 1999; Rieke

et al., 1995; Rodrı́guez et al., 2010; Schwartz and Simoncelli,

2001; Woolley et al., 2005). We envision searching for statistics

that vary maximally across sounds and would thus be optimal

for recognition.

The sound classes for which the model failed to pro-

duce convincing synthetic examples (revealed by Experiment

4) also provide directions for exploration. Notable failures include

textures involving pitched sounds, reverberation, and rhythmic

structure (Figure 7, Table S1, and Figure S5). It was not obvious

a priori that these sounds would produce synthesis failures—

they each contain spectral and temporal structures that are

stationary (given a moderately long time window), and we antic-

ipated that they might be adequately constrained by the model

statistics. However, our results show that this is not the case,

suggesting that the brain is measuring something that the model

is not.

Rhythmic structure might be captured with another stage of

envelope extraction and filtering, applied to the modulation

bands. Such filters would measure ‘‘second-order’’ modulation

of modulation (Lorenzi et al., 2001), as is common in rhythmic

sounds. Alternatively, rhythm could involve a measure specifi-

cally of periodic modulation patterns. Pitch and reverberation

may also implicate dedicated mechanisms. Pitch is largely

conveyed by harmonically related frequencies, which are not

made explicit by the pair-wise correlations across frequency

found in our current model (see also Figure S5). Accounting for

pitch is thus likely to require a measure of local harmonic struc-

ture (de Cheveigne, 2004). Reverberation is also well understood

from a physical generative standpoint, as linear filtering of a

sound source by the environment (Gardner, 1998), and is used

to judge source distance (Zahorik, 2002) and environment prop-

erties. However, a listener has access only to the result of envi-

ronmental filtering, not to the source or the filter, implying that

reverberation must be reflected in something measured from

the sound signal (i.e., a statistic). Our synthesis method provides

an unexplored avenue for testing theories of the perception of

these sound properties.

One other class of failures involved mixtures of two sounds

that overlap in peripheral channels but are acoustically distinct,

such as broadband clicks and slow bandpass modulations.
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These failures likely result because the model statistics are aver-

ages over time, and combine measurements that should be

segregated. This suggests a more sophisticated form of esti-

mating statistics, in which averaging is performed after (or in

alternation with) some sort of clustering operation, a key ingre-

dient in recent models of stream segregation (Elhilali and

Shamma, 2008).
Using Texture to Understand Recognition
Recognition is challenging because the sensory input arising

from different exemplars of a particular category in the world

often varies substantially. Perceptual systems must process

their input to obtain representations that are invariant to the vari-

ation within categories, while maintaining selectivity between

categories (DiCarlo and Cox, 2007). Our texture model incorpo-

rates an explicit form of invariance by representing all possible

exemplars of a given texture (Figure S2) with a single set of

statistic values. Moreover, different textures produce different

statistics, providing an implicit form of selectivity. However, our

model captures texture properties with a large number of simple

statistics that are partially redundant. Humans, in contrast, cate-

gorize sounds into semantic classes, and seem to have

conscious access to a fairly small set of perceptual dimensions.

It should be possible to learn such lower-dimensional represen-

tations of categories from our sound statistics, combining the

full set of statistics into a small number of ‘‘metastatistics’’ that

relate to perceptual dimensions. We have found, for instance,

that most of the variance in statistics over our collection of

sounds can be captured with a moderate number of their prin-

cipal components, indicating that dimensionality reduction is

feasible.

The temporal averaging through which our texture statistics

achieve invariance is appropriate for stationary sounds, and it

is worth considering how this might be relaxed to represent

sounds that are less homogeneous. A simple possibility involves

replacing the global time-averages with averages taken over

a succession of short timewindows. The resulting local statistical

measures would preserve some of the invariance of the global

statistics, but would follow a trajectory over time, allowing repre-

sentation of the temporal evolution of a signal. By computing

measurements averaged within windows of many durations,

the auditory system could derive representations with varying

degrees of selectivity and invariance, enabling the recognition

of sounds spanning a continuum from homogeneous textures

to singular events.
EXPERIMENTAL PROCEDURES

Auditory Model

Our synthesis algorithm utilized a classic ‘‘subband’’ decomposition in which

a bank of cochlear filters were applied to a sound signal, splitting it into

frequency channels. To simplify implementation, we used zero-phase filters,

with Fourier amplitude shaped as the positive portion of a cosine function.

We used a bank of 30 such filters, with center frequencies equally spaced

on an equivalent rectangular bandwidth (ERB)N scale (Glasberg and Moore,

1990), spanning 52–8844 Hz. Their (3 dB) bandwidths were comparable to

those of the human ear (�5% larger than ERBsmeasured at 55 dB sound pres-

sure level (SPL); we presented sounds at 70 dB SPL, at which human auditory

filters are somewhat wider). The filters did not replicate all aspects of biological
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auditory filters, but perfectly tiled the frequency spectrum—the summed

squared frequency response of the filter bank was constant across frequency

(to achieve this, the filter bank also included lowpass and highpass filters at the

endpoints of the spectrum). The filter bank thus had the advantage of being

invertible: each subband could be filtered again with the corresponding filter,

and the results summed to reconstruct the original signal (as is standard in

analysis-synthesis subband decompositions [Crochiere et al., 1976]).

The envelope of each subband was computed as the magnitude of its

analytic signal, and the subband was divided by the envelope to yield the

fine structure. The fine structure was ignored for the purposes of analysis

(measuring statistics). Subband envelopes were raised to a power of 0.3 to

simulate basilar membrane compression. For computational efficiency, statis-

tics were measured and imposed on envelopes downsampled (following low-

pass filtering) to a rate of 400 Hz. Although the envelopes of the high-frequency

subbands contained modulations at frequencies above 200 Hz (because

cochlear filters are broad at high frequencies), these were generally low in

amplitude. In pilot experiments we found that using a higher envelope sam-

pling rate did not produce noticeably better synthetic results, suggesting the

high frequency modulations are not of great perceptual significance in this

context.

The filters used to measure modulation power also had half-cosine fre-

quency responses, with center frequencies equally spaced on a log scale

(20 filters spanning 0.5–200 Hz), and a quality factor of 2 (for 3 dB bandwidths),

consistent with those in previous models of human modulation filtering (Dau

et al., 1997), and broadly consistent with animal neurophysiology data (Miller

et al., 2002; Rodrı́guez et al., 2010). Although auditory neurons often exhibit

a degree of tuning to spectral modulation as well (Depireux et al., 2001; Rodrı́-

guez et al., 2010; Schönwiesner and Zatorre, 2009), this is typically less pro-

nounced than their temporal modulation tuning, particularly early in the audi-

tory system (Miller et al., 2002), and we elected not to include it in our

model. Because 200Hzwas the Nyquist frequency, the highest frequency filter

consisted only of the lower half of the half-cosine frequency response.

We used a smaller set of modulation filters to compute the C1 and C2

correlations, in part because it was desirable to avoid large numbers of unnec-

essary statistics, and in part because the C2 correlations necessitated octave-

spaced filters (see below). These filters also had frequency responses that

were half-cosines on a log-scale, but were more broadly tuned (Q=
ffiffiffi
2

p
),

with center frequencies in octave steps from 1.5625 to 100 Hz, yielding seven

filters.

Boundary Handling

All filtering was performed in the discrete frequency domain, and thus

assumed circular boundary conditions. To avoid boundary artifacts, the statis-

tics measured in original recordings were computed as weighted time-aver-

ages. The weighting window fell from one to zero (half cycle of a raised cosine)

over the 1 s intervals at the beginning and end of the signal (typically a 7 s

segment), minimizing artifactual interactions. For the synthesis process, statis-

tics were imposed with a uniform window, so that they would influence the

entire signal. As a result, continuity was imposed between the beginning and

end of the signal. This was not obvious from listening to the signal once, but

it enabled synthesized signals to be played in a continuous loop without

discontinuities.

Statistics

We denote the kth cochlear subband envelope by sk(t), and the windowing

function by w(t), with the constraint that
P

t wðtÞ= 1. The nth modulation

band of cochlear envelope sk is denoted by bk,n(t), computed via convolution

with filter fn.

Cochlear Marginal Statistics

Our texture representation includes the first four normalized moments of the

envelope:

M1k =mk =
X
t

wðtÞskðtÞ;

M2k =
s2
k

m2
k

=

P
t wðtÞðskðtÞ � mkÞ2

m2
k

;

M3k =

P
t wðtÞðskðtÞ � mkÞ3

s3
k

;

and

M4k =

P
t wðtÞðskðtÞ � mkÞ4

s4
k

k˛½1.32� in each case:

The variance was normalized by the squared mean, so as to make it dimen-

sionless like the skew and kurtosis.

The envelope variance, skew, and kurtosis reflect subband sparsity. Spar-

sity is often associated with the kurtosis of a subband (Field, 1987), and prelim-

inary versions of our model were also based on this measurement (McDermott

et al., 2009). However, the envelope’s importance in hearing made its

moments a more sensible choice, and we found them to capture similar spar-

sity behavior.

Figures 2D–2G show the marginal moments for each cochlear envelope of

each sound in our ensemble. All four statistics vary considerably across natural

sound textures. Their values for noise are also informative. The envelope

means, which provide a coarse measure of the power spectrum, do not

have exceptional values for noise, lying in the middle of the set of natural

sounds. However, the remaining envelope moments for noise all lie near the

lower bound of the values obtained for natural textures, indicating that natural

sounds tend to be sparser than noise (see also Experiment 2b) (Attias and

Schreiner, 1998).

Cochlear Cross-Band Envelope Correlation

Cjk =
X
t

wðtÞ�sjðtÞ � mj

�ðskðtÞ � mkÞ
sjsk

; j; k˛½1.32�

such that ðk � jÞ˛½1; 2; 3;5; 8; 11; 16; 21�:

Our model included the correlation of each cochlear subband envelope with

a subset of eight of its neighbors, a number that was typically sufficient to

reproduce the qualitative form of the full correlation matrix (interactions

between overlapping subsets of filters allow the correlations to propagate

across subbands). This was also perceptually sufficient: we found informally

that imposing fewer correlations sometimes produced perceptually weaker

synthetic examples, and that incorporating additional correlations did not

noticeably improve the results.

Figure 3B shows the cochlear correlations for recordings of fire, applause,

and a stream. The broadband events present in fire and applause, visible as

vertical streaks in the spectrograms of Figure 4B, produce correlations

between the envelopes of different cochlear subbands. Cross-band correla-

tion, or ‘‘comodulation,’’ is common in natural sounds (Nelken et al., 1999),

and we found it to be to be a major source of variation among sound textures.

The stream, for instance, contains much weaker comodulation.

The mathematical form of the correlation does not uniquely specify the

neural instantiation. It could be computed directly, by averaging a product

as in the above equation. Alternatively, it could be computed with squared

sums and differences, as are common in functional models of neural compu-

tation (Adelson and Bergen, 1985):

Cjk =
X
t

wðtÞ
�
sjðtÞ � mj + skðtÞ � mk

�2��
sjðtÞ � mj � skðtÞ+mk

�2
4sjsk

:

Modulation Power

For the modulation bands, the variance (power) was the principal marginal

moment of interest. Collectively, these variances indicate the frequencies

present in an envelope. Analogous quantities appear to be represented by

the modulation-tuned neurons common to the early auditory system (whose

responses code the power in their modulation passband). To make the modu-

lation power statistics independent of the cochlear statistics, we normalized

each by the variance of the corresponding cochlear envelope; the measured

statistics thus represent the proportion of total envelope power captured by

each modulation band:

Mk;n =

P
t wðtÞbk;nðtÞ2

s2
k

; k˛½1.32�; n˛½1.20�:
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Note that the mean of the modulation bands is zero (because the filters fn are

zero-mean). The other moments of the modulation bands were either uninfor-

mative or redundant (see Supplemental Experimental Procedures) and were

omitted from the model.

The modulation power implicitly captures envelope correlations across

time, and is thus complementary to the cross-band correlations. Figure 3A

shows the modulation power statistics for recordings of swamp insects, lake

shore waves, and a stream.

Modulation Correlations

These correlations were computed using octave-spaced modulation filters

(necessitated by the C2 correlations), the resulting bands of which are denoted

by ~bk;nðtÞ.
The C1 correlation is computed between bands centered on the same

modulation frequency but different acoustic frequencies:

C1jk;n =

P
t wðtÞ ~bj;nðtÞ ~bk;nðtÞ

sj;nsk;n

; j˛½1.32�; ðk � jÞ˛½1;2�; n˛½2.7�;

and

sj;n =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

wðtÞ ~bj;nðtÞ2
r

:

We imposed correlations between eachmodulation filter and its two nearest

neighbors along the cochlear axis, for six modulation bands spanning

3–100 Hz.

C1 correlations are shown in Figure 3C for the sounds of waves and fire. The

qualitative pattern of C1 correlations shown for waves is typical of a number of

sounds in our set (e.g., wind). These sounds exhibit low-frequency modula-

tions that are highly correlated across cochlear channels, but high-frequency

modulations that are largely independent. This effect is not simply due to the

absence of high-frequency modulation, as most such sounds had substantial

power at high modulation frequencies (comparable to that in pink noise,

evident from dB values close to zero in Figure 3A). In contrast, for fire (and

many other sounds), both high and low frequency modulations exhibit correla-

tions across cochlear channels. Imposing the C1 correlations was essential to

synthesizing realistic waves and wind, among other sounds. Without them, the

cochlear correlations affected both high and low modulation frequencies

equally, resulting in artificial sounding results for these sounds.

C1 correlations did not subsume cochlear correlations. Even when larger

numbers of C1 correlations were imposed (i.e., across more offsets), we found

informally that the cochlear correlations were necessary for high quality

synthesis.

The second type of correlation, labeled C2, is computed between bands of

different modulation frequencies derived from the same acoustic frequency

channel. This correlation represents phase relations between modulation fre-

quencies, important for representing abrupt onsets and other temporal asym-

metries. Temporal asymmetry is common in natural sounds, but is not cap-

tured by conventional measures of temporal structure (e.g., the modulation

spectrum), as they are invariant to time reversal (Irino and Patterson, 1996).

Intuitively, an abrupt increase in amplitude (e.g., a step edge) is generated

by a sum of sinusoidal envelope components (at different modulation frequen-

cies) that are aligned at the beginning of their cycles (phase – p/2), whereas an

abrupt decrease is generated by sinusoids that align at the cycle midpoint

(phasep/2), and an impulse (e.g., a click) has frequency components that align

at their peaks (phase 0). For sounds dominated by one of these feature types,

adjacent modulation bands thus have consistent relative phase in places

where their amplitudes are high. We captured this relationship with a

complex-valued correlation measure (Portilla and Simoncelli, 2000).

We first define analytic extensions of the modulation bands:

ak;nðtÞh ~bk;nðtÞ+ iH
�
~bk;nðtÞ

�
;

where H denotes the Hilbert transform and i =
ffiffiffiffiffiffiffi�1

p
.

The analytic signal comprises the responses of the filter and its quadrature

twin, and is thus readily instantiated biologically. The correlation has the

standard form, except it is computed between analytic modulation bands

tuned to modulation frequencies an octave apart, with the frequency of the
938 Neuron 71, 926–940, September 8, 2011 ª2011 Elsevier Inc.
lower band doubled. Frequency doubling is achieved by squaring the

complex-valued analytic signal:

dk;nðtÞ=
a2k;nðtÞ

kak;nðtÞk;

yielding

C2k;mn =

P
t wðtÞd�

k;mðtÞak;nðtÞ
sk;msk;n

;

k ˛ [1.32], m ˛ [1.6], and (n � m) = 1, where * and k,k denote the complex

conjugate and modulus, respectively.

Because the bands result from octave-spaced filters, the frequency

doubling of the lower-frequency band causes them to oscillate at the same

rate, producing a fixed phase difference between adjacent bands in

regions of large amplitude. We use a factor of 2 rather than something smaller

because the operation of exponentiating a complex number is uniquely

defined only for integer powers. See Figure S6 for further explanation.

C2k,mn is complex valued, and the real and imaginary partsmust be indepen-

dently measured and imposed. Example sounds with onsets, offsets, and

impulses are shown in Figure 3D along with their C2 correlations.

In total, there are 128 cochlear marginal statistics, 189 cochlear cross-corre-

lations, 640 modulation band variances, 366 C1 correlations, and 192 C2

correlations, for a total of 1515 statistics.

Imposition Algorithm

Synthesis was driven by a set of statistics measured for a sound signal of

interest using the auditory model described above. The synthetic signal was

initialized with a sample of Gaussian white noise, and was modified with an

iterative process until it shared the measured statistics. Each cycle of the

iterative process, as illustrated in Figure 4A, consisted of the following steps:

(1) The synthetic sound signal is decomposed into cochlear subbands.

(2) Subband envelopes are computed using the Hilbert transform.

(3) Envelopes are divided out of the subbands to yield the subband fine

structure.

(4) Envelopes are downsampled to reduce computation.

(5) Envelope statistics aremeasured and compared to those of the original

recording to generate an error signal.

(6) Downsampled envelopes are modified using a variant of gradient

descent, causing their statistics to move closer to those measured in

the original recording.

(7) Modified envelopes are upsampled and recombined with the unmodi-

fied fine structure to yield new subbands.

(8) New subbands are combined to yield a new signal.

We performed conjugate gradient descent using Carl Rasmussen’s ‘‘mini-

mize’’ MATLAB function (available online). The objective function was the total

squared error between the synthetic signal’s statistics and those of the original

signal. The subband envelopes were modified one-by-one, beginning with the

subband with largest power, and working outwards from that. Correlations

between pairs of subband envelopes were imposed when the second sub-

band envelope contributing to the correlation was being adjusted.

Each episode of gradient descent resulted in modified subband envelopes

that approached the target statistics. However, there was no constraint forcing

the envelope adjustment to remain consistent with the subband fine structure

(Ghitza, 2001), or to produce new subbands that were mutually consistent (in

the sense that combining them would produce a signal that would yield the

same subbands when decomposed again). It was thus generally the case

that during the first few iterations, the envelopes measured at the beginning

of cycle n + 1 did not completely retain the adjustment imposed at cycle n,

because combining envelope and fine structure, and summing up the sub-

bands, tended to change the envelopes in ways that altered their statistics.

However, we found that with iteration, the envelopes generally converged to

a state with the desired statistics. The fine structure was not directly con-

strained, and relaxed to a state consistent with the envelope constraints.

Convergence was monitored by computing the error in each statistic at the

start of each iteration andmeasuring the signal-to-noise ratio (SNR) as the ratio
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of the squared error of a statistic class, summed across all statistics in the

class, to the sum of the squared statistic values of that class. The procedure

was halted once all classes of statistics were imposed with an SNR of 30 dB

or higher or when 60 iterations were reached. The procedure was considered

to have converged if the average SNR of all statistic classes was 20 dB or

higher. Occasionally the synthesis process converged to a local minimum in

which it failed to produce a signal matching the statistics of an original sound

according to our criterion. This was relatively rare, and such failures of conver-

gence were not used in experiments.

Although the statistics in our model constrain the distribution of the sound

signal, we have no explicit probabilistic formulation and as such are not guar-

anteed to be drawing samples from an explicit distribution. Instead, we qual-

itatively mimic the effect of sampling by initializing the synthesis with different

samples of noise (as in some visual texture synthesis methods) (Heeger and

Bergen, 1995; Portilla and Simoncelli, 2000). An explicit probabilistic model

could be developed via maximum entropy formulations (Zhu et al., 1997),

but sampling from such a distribution is generally computationally prohibitive.
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