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The advent of powerful perturbation tools, such as optogenetics, has created new frontiers for probing causal
dependencies in neural and behavioral states. These approaches have significantly enhanced the ability to
characterize the contribution of different cells and circuits to neural function in health and disease. They
have shifted the emphasis of research toward causal interrogations and increased the demand for more
precise and powerful tools to control and manipulate neural activity. Here, we clarify the conditions under
which measurements and perturbations support causal inferences. We note that the brain functions at
multiple scales and that causal dependencies may be best inferred with perturbation tools that interface
with the system at the appropriate scale. Finally, we develop a geometric framework to facilitate the interpre-
tation of causal experiments when brain perturbations do or do not respect the intrinsic patterns of brain
activity. We describe the challenges and opportunities of applying perturbations in the presence of dy-
namics, and we close with a general perspective on navigating the activity space of neurons in the search
for neural codes.
Neuroscience research is undergoing a transformation of scale

along two axes. On the one hand, experiments in the age of

‘‘-omics’’ (genomics, proteomics, connectomics, etc.) are

providing information on large-scale correlations at multiple

scales, from genes to behavior. On the other hand, increasingly

more precise perturbation techniques are beginning to reveal

causal relationships at an unprecedented level of detail. The

time is ripe for a fresh perspective on how to optimally harness

these data toward a greater understanding of the brain and

behavior. Here we evaluate the strengths and weaknesses of

measurement and perturbation experiments in terms of their

ability to generate and refine theories and causal models of brain

function.

Correlation and Causation: A Brief Primer
Correlational dependencies describe associations that we mea-

sure but do not control (Figure 1A), whereas causal depen-

dencies link a dependent variable to an experimentally controlled

variable (Figures 1A and 1B). Note that we use the term correla-

tion to refer to any form of statistical dependence. In neurosci-

ence research, experiments that rely on measurements of neural

activity (e.g., extracellular recordings) are commonly dubbed

correlational, and experiments that involve direct perturbation

of neural activity (e.g., microstimulation), causal. Intuitively

appealing as it may be, this connotation is misleading. The key

concept in causal inference is randomization, i.e., setting the

value of a variable independent of other variables. Experiments

that only rely on measurements of brain activity may indeed

reveal causal dependencies if they employ a randomized

variable, such as an external stimulus. For example, we can

confidently state that a neural response is caused by a sensory

stimulus, if the sensory input is randomized. This logic, however,
can belie the complexity of the causal chain when the causal

chain between the stimulus and the neural response is long.

For example, a contrived experiment might establish a causal

link between neural activity in motor neurons and a looming

threat. However, numerous intervening nodes between the

cause and effect would limit the generality of the inferences

one can make from such causal observation about the function

of motor neurons.

Conversely, inferences one can make from direct perturba-

tions of brain activity are not always causal. Dependencies that

involve a randomized variable are causal, whereas depen-

dencies among all non-randomized variables are correlational.

Although this seems like a straightforward distinction, in practice

it may be difficult to ascertain which variables are directly ran-

domized. We will use two hypothetical examples to crystallize

the nuanced relationship between types of inference (causal

versus correlational) and experimental techniques (perturbation

versus measurement).

Example 1

An interventional study uses marmoset to examine the neural

basis of auditory spatial perception. The experimenter records

neural activity along the auditory pathway while an animal dis-

criminates the azimuth of a randomly positioned sound source.

In this experiment, one can assess four types of relationships:

(1) the relationship between stimulus and behavior, (2) the rela-

tionship between stimulus and neural activity, (3) the relationship

between neural activity and behavior, and (4) the relationship

between neural activity in two brain areas. The inferences one

can make in the first two cases are causal because one of the

variables (i.e., the stimulus) was randomized. In contrast, the

last two relationships are correlational because neither the neu-

ral activity nor the behavior was independently randomized. This
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Figure 1. Randomization, Correlation, and Causation Using
Measurements and Perturbations
(A) A completely observational study that involves recording neural activity and
behavior of a free-range animal in its natural habitat. Any statistical de-
pendency observed under such circumstances is correlational because no
variable is externally randomized. Here even sensory responses to natural
stimuli do not reflect causation because the appearance of the stimulus is
determined by the animal and other factors that are not controlled or ran-
domized by the experimenter.
(B) An experiment in which the input (e.g., auditory stimulus) is experimentally
randomized (e.g., sound played at random times), and the ensuing brain ac-
tivity is measured. Here any aspect of brain activity (e.g., activity in the auditory
cortex) and/or behavior (e.g., orienting) that depends on the stimulus reveals a
causal relationship. However, relationships between the activity of different
variables in the brain and the dependency of the behavior on the brain remain
correlational.
(C) An experiment employing a perturbation technique (e.g., microstimulation).
Here again the choice of correlational versus causal inference depends not on
the experimental technique but on the variables of interest. The relationship
between every dependent variable and the randomized variable is causal. The
relationship between all variables that are not randomized (e.g., activity in the
brain areas that are not directly perturbed), as well as the relationship between
non-randomized variables and behavior, remains correlational.
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experiment can be used to make causal inferences about the

nature of stimulus encoding by auditory neurons as well as the

effect of the stimulus on behavior. However, statements about
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whether and what features of the neural responses support the

behavior remain correlational.

Example 2

An interventional study in a mouse model aims to test the causal

role of a projection from area A to area B in a specific behavior.

Using advanced optogenetic techniques, the experimenter

selectively randomizes the spiking activity of area A neurons

that project to area B, and the experimenter makes the two un-

ambiguous causal inferences that the firing rate of neurons in

area A that project to area B can (1) control firing rates in area

B and (2) influence behavior. However, the link between area B

activity and behavior remains correlational, unless the experi-

menter can rule out other secondary and/or off-target effects

downstream of the optical stimulation.

As a final point, we note that the empirical assessment of

causal statements is not as straightforward as their theoretical

definition. Causal statements imply that we can directly control

the variables of interest. However, many quantities we may

wish to perturb, such as the firing rate of a neuron, are latent vari-

ables that are not accessible directly. For latent variables as well

as other variables that are technically difficult to perturb, causal

statements must be viewed in shades of gray, depending on the

extent to which we can control the variable deterministically. For

example, in Figure 1C, if variable A is not deterministically

controlled by the randomized stimulation, we may not be able

to ascertain that the dependency of variable B on variable A is

causal.

Correlation and Causation in a Multi-scale System
Correlational statements do not imply causation, but causal

statements are not always revealing either. As Weiskrantz wrote

in Analysis of Behavioral Change, ‘‘a simple statement that Task

X is affected by Treatment A is inadequate except insofar as a

confession that one has a research program’’ (Weiskrantz,

1968). The logic of this rather harsh characterization is that be-

haviors typically rely on numerous entangled capacities that

are difficult to tease apart. An old riddle might clarify this point.

If removing a transistor from a radio adds noise to the sound,

can we conclude that the transistor’s function is to improve

signal-to-noise? Similarly, if silencing a specific cell type in-

creases reaction time in a certain behavior, can we conclude

that it controls reaction time? The answer to both questions

may be positive, but such perturbations might also lead to incor-

rect inferences.

Nearly two decades ago, in a thought-provoking paper entitled

‘‘Can Molecules Explain Long-Term Potentiation?’’, Lichtman

and Sanes argued that long-term potentiation (LTP) may not

be straightforwardly explained in terms of its underlying molecu-

lar causes (Sanes and Lichtman, 1999). They noted several chal-

lenges: (1) many molecular causes are better construed as mod-

ulators of LTP and do not necessarily mediate it, (2) off-target

pathways can lead to spurious causal effects, (3) perturbations

can interact with uncontrolled variables in unpredictable ways,

and (4) the brain is extremely complex and not all cellular

phenomena find a coherent explanation in terms of the full list

of the underlying molecular components. The first three points

are essential for any well-designed causal experiment. The last

point identifies a deeper challenge: explaining a phenomenon
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expressed at the cellular level in terms of interactions at the

molecular level.

This tension between levels of analysis looms large in neuro-

science, and is evident across multiple spatial and temporal

scales, from molecules to neurons, from neuron to neural cir-

cuits, and from neural circuits to behavior. The challenge arises

from attempting to assess the causes of a phenomenon

observed at one scale using perturbation tools that operate at

another scale. One way such a level mismatch could occur is

when the phenomenon of interest operates below the resolution

of our perturbation tool. For example, appropriate techniques do

not yet exist to selectively perturb distinct mechanisms of

dendritic integration in vivo. In these scenarios, the most direct

solution might be to develop tools that can target the system

at progressively higher levels of spatial and temporal resolution

with sufficient specificity and reliability. This is a great challenge

but the solution is likely to come in time, as hinted by the mo-

mentumof technological advances in targeting cell types, genes,

and proteins (Adamala et al., 2016; Cong et al., 2013; Gradinaru

et al., 2010; Klapoetke et al., 2014; Marshel et al., 2010).

Another important form of mismatch occurs when perturba-

tions are able to push and pull the low-level components of the

system every which way, but the behavior depends on the

collective and coordinated interaction of those components. In

theory, this form of mismatch does not pose a fundamental

limitation. After all, if we can randomize the variables associated

with individual components, we may be able to randomize their

collective behavior as well by applying combinations of pertur-

bations (Klapoetke et al., 2014; Prigge et al., 2012). This strategy

might require searching in a large space but this is not neces-

sarily a problem. For example, in a recent study in larval

Drosophila, high-throughput random perturbations were used

to map specific movement motifs onto specific subsets of neu-

rons (Vogelstein et al., 2014). However, this bottom-up strategy

needs to address two important requirements: (1) reasonably

low-cost and high-throughput screening tools, and (2) statistical

and machine learning tools that can handle the dauntingly large

datasets that such an approach generates.

The same approach may be less effective when the search

space becomes prohibitively large, as is the case when dealing

with more complex nervous systems and more integrative and

flexible behaviors. For example, we would be hard pressed to

make a case for a one-to-one causal map between specific

genes or a small number of neurons and the ability to perceive,

move, or perform cognitive tasks. Such high-level functions typi-

cally rely on structured interactions between large groups of neu-

rons and neural circuits (Buschman and Miller, 2007; Churchland

et al., 2012; DiCarlo and Cox, 2007; Georgopoulos, 1994; Hanks

et al., 2015; Harvey et al., 2012; Jazayeri and Movshon, 2006;

Laurent et al., 2001; Lo and Wang, 2006; Mante et al., 2013; Ma

et al., 2006; Moore and Armstrong, 2003; Raposo et al., 2014;

Rigotti et al., 2013; Siegel et al., 2015; Znamenskiy and Zador,

2013), and they are thus difficult to explore by searching through

the combinatorial space of possible low-level perturbations.

Cogwheels in a Clock and Neural Codes in the Brain
Imagine aMartian aiming to study the inner workings of a human-

made clock using perturbation tools that can move around every
atom inside the clock. Although the clock is made of atoms, it

would take a gargantuan effort to understand the logic of the

most basic mechanical interactions inside the clock using

analyses at the atomic level. Perhaps a more suitable approach

would be to perturb the clock at the level of its key functional

components, such as its cogwheels and springs. To perturb a

cogwheel as a whole, the Martian has to take two constraints

into account: (1) respect the integrity of the cogwheel by not

moving the atoms of the cogwheel relative to one another,

and (2) randomize the position of the cogwheel by moving the

atoms of the cogwheel together while respecting their relative

positions.

To understand how these constraints apply to causal experi-

ments in neuroscience, let us consider individual neurons as

the atoms of the system. The main ideas in our discussion are

scalable and do not depend on the level at which the atoms

are defined, but considering the neuron as the atom will help in

developing the intuition. Imagine a subset of neurons whose ac-

tivity causally and selectively drives a behavior of interest. This is

similar to a perturbation in the clock that is able to take control of

the movements of clock hands, and it would mean that this sub-

set contains the key features (i.e., cogwheels) that drive the

behavior. Wewill refer to theminimum set of features that control

the behavior as the neural code (Johnson, 2000).

How can we use perturbations to discover the neural code?

Random perturbations of neurons are analogous to randomly

moving every atom of the cogwheel, and they could limit our abil-

ity to see the forest for the trees. Just like theMartian, amore effi-

cient path might be for the perturbations to respect the structure

of neural activity among those neurons that contain the neural

code. Here we propose a conceptual framework based on geo-

metric representations of neural activity and behavior that may

facilitate the process of making inferences about the results of

perturbation experiments in terms of the neural code.

Intrinsic Neural Manifold
What constrains a cogwheel is the relative position of its atoms.

In the brain, this constraint applies to the structure of responses

across subgroups of neurons that control certain desired

aspects of a behavior. We refer to the activity patterns of neurons

during a desired behavioral task and in response to a well-

defined stimulus set as the intrinsic patterns of activity. Since

neural responses are constrained by anatomy and by their

inputs, intrinsic activity is usually a small subset of all the

possible activity patterns. We can visualize the intrinsic patterns

of activity within a coordinate system in which each axis corre-

sponds to the activity of one neuron. We refer to the space

spanned by the axes as the state space and the parts of the

space that correspond to the observed activity patterns as the

intrinsic manifold (Figure 2). We use the term manifold in its

general sense and do not imply any specific constraint on its

continuity or topology. For example, a three-neuron network

(Figure 2B) would correspond to a three-dimensional state space

(Figure 2A). This representation divides the space of all possible

activity patterns to two subspaces, one that is associated with

the native activity patterns of the neurons under study (points

on the manifold) and one that those neurons do not visit (the

rest of the state space).
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Figure 2. Intrinsic Neural Response Manifold and Perturbation Experiments
(A) The coordinate system represents the space of all possible activity patterns across N neurons (shown for three neurons). Not all combinations of neural
response patterns occur during a certain behavioral task. The surface represents the subspace of activity patterns of those N neurons measured during a
behavioral task, which we refer to as the intrinsicmanifold. Perturbations are shown as arrows emanating from a point on the intrinsicmanifold. Perturbations that
respect the correlational structure of the neural activity land on the response manifold, and they are referred to as on-manifold perturbations (red arrows).
Perturbations that push the system away from the intrinsic manifold are referred to as off-manifold perturbations (blue arrows).
(B) A schematic showing a network consisting of three neurons with all to all interactions, which would create an intrinsic manifold in a three-dimensional state
space, as shown in (A). The shape of the manifold depends on the inputs to the three neurons as well as the constraints imposed by their interactions. The axes of
the intrinsic manifold correspond to the activity (i.e., output) of the three neurons.
(C) The three-dimensional coordinate system and the colored surface show the state space and the intrinsic manifold for three neurons, respectively. The gray
region shows the intrinsic manifold for neurons 2 and 3, which is a region within the two-dimensional state space spanned by those neurons. A perturbation on the
gray surface would constitute an on-manifold perturbation for neurons 2 and 3. However, as shown by the blue arrow, the same perturbation could be off the
higher-dimensional manifold that includes neuron 1. In other words, a perturbation that sets the state of the system on the intrinsic manifold of a subset of neurons
(red arrow on the gray surface) could be off the intrinsic manifold with respect to other neurons (blue arrow off the colored surface). Stated in terms of neural
activity patterns, if one perturbs without controlling for the activity of the third neuron, the overall perturbation might not respect the correlation structure of all
three neurons.
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Perturbing a clock requires that we respect the integrity of

its cogwheels. The same can be said about the brain. The geo-

metric representation of intrinsic manifolds provides a straight-

forward recipe for how this can be done: perturbations have to

remain on the intrinsic manifold characterized by correlational

measurements. The suggestion that a perturbation should

remain on the intrinsic manifold may seem inconsistent with the

idea of randomization, but it is not. Just like turning a specific

cogwheel inside a clock, a perturbation can remain on manifold

for a subset of neurons (i.e., at lower dimension) and still be off

manifold with respect to the rest of the system (i.e., higher dimen-

sions). Indeed, on-manifold perturbations that are restricted to a

subset of neurons would automatically break correlations with

neurons not included in the subset (Figure 2B). We will refer to

the manifold associated with the subset of neurons under inves-

tigation as the neural manifold of interest (NMOI), andwe empha-

size that both on- and off-manifold perturbations with respect to

NMOI are offmanifold when viewed in a higher-dimensional state

space that includes other neurons in the system.

Intrinsic Behavioral Manifold
To evaluate a causal link between neural activity and behavior, in

addition to perturbing neural activity, we need to have a solid
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framework to analyze the corresponding behavioral outcomes.

This is a critical aspect of causal experiments as many measur-

able behavioral outcomes of perturbations may be uninterpret-

able. For example, if perturbing a certain region of the basal

ganglia were to alter movement kinematics, it would not neces-

sarily follow that the basal ganglia is directly involved in the control

of kinematics. Therefore, causal experiments are incomplete un-

lesswehaveclear hypothesesabout thespaceofpossiblebehav-

ioral outcomes. To characterize behavior, one has to choose a

specific set of variables (position, speed, choice, reaction time,

etc.), and one has to measure them during the experimental con-

ditions of interest (i.e., in the absence of anyperturbation).Wecan

represent a set of desired behavioral variables during an experi-

ment by an intrinsic behavioral manifold whose axes correspond

to themeasured variables (Figure 3). The form and dimensionality

of this manifold depend on the experimental paradigm. As a gen-

eral rule, the more complex the behavior is and the more aspects

of behavior one wishes to explain, the higher dimensional the

behavioral manifold would become. Similar to NMOI, we define

the behavioral manifold of interest (BMOI) as the manifold that

characterizes the behavioral variables that are under investiga-

tion. Naturally, one’s success in examining the neural basis of

behavior depends on a prudent choice of behavioral readout.
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Knowledge about NMOI and BMOI and the correspondence

between them provides a basis for assessing the behavioral

outcome of perturbations. In what follows, we provide an in-

depth analysis of what inferences one can make when either

the neural perturbations or their behavioral outcomes remain

on or move off the corresponding intrinsic manifolds.

On-Manifold Neural Perturbations
The simplest causal experiments to analyze are those in which

the neural perturbations are on manifold (i.e., the perturbed

state corresponds to a point on the NMOI). Again, recall that

this is an on-manifold perturbation with respect to the NMOI

and an off-manifold one with respect to the rest of the brain.

An on-manifold perturbation can lead to one of several possible

behavioral outcomes. One possibility is that the behavior asso-

ciated with the perturbed state follows directly from the corre-

lational link between the NMOI and BMOI (Figure 4A, a). This

would indicate that the NMOI contains a neural code. However,

it is possible that some of the neurons included in the NMOI are

not necessary to drive the behavior. As such, selective control

of behavior by an on-manifold perturbation invites a search for

smaller subsets of neurons that might contain the key relevant

features.

For example, let us assume that we successfully control a

monkey’s behavior in a face gender discrimination task by

controlling the activity across the whole ventral visual pathway.

We would then use on-manifold perturbations to target local re-

gions within that pathway, such as the inferotemporal cortex,

and, with success, we could move further to find neural clusters

or cell types that continue to contain the neural code. The search

for lower-dimensional neural manifolds continues until it is no

longer possible to control the behavior selectively. At that stage,

wemay be close to the smallest dimensional neural manifold that

contains the neural code. We note that the dimensionality of the

neural code may still be smaller than the smallest NMOI. We will

come back to this point in later sections.

Another possibility is that an on-manifold neural perturbation

leads to no change in behavior (Figure 4A, c). This is, in effect,

a negative result. Yet, because the perturbation was respectful

of the intrinsic manifold, the negative result is meaningful. It sug-

gests that either the correlation to behavior is epiphenomenal
(i.e., does not contain the neural code) or perturbation of other

or more neurons is needed to take control of the behavior. There-

fore, in contrast to the previous case, an on-manifold perturba-

tion with no behavioral effect invites a search for the neural

code at higher dimensions.

On-manifold perturbations can also lead to other behavioral

effects. For example, they may create non-selective changes

in the behavior (Figure 4A, b) or push the behavior off the

BMOI (Figure 4A, d). Although an exhaustive discussion of all

possible behavioral outcomes is beyond the scope of this paper,

we note that analyses along these lines could greatly enrich the

interpretation of causal experiments.

Challenges in Performing On-Manifold Perturbations
In reality, our perturbation techniques are relatively crude. Not

only do we not have precise control over the perturbation vector

but also we rarely can fully characterize a perturbed state. More-

over, even when we have a reasonably precise perturbation tool,

the system’s internal constraints might redirect an intended on-

manifold perturbation vector off the manifold. Let us use an

example to clarify this point. Imagine an NMOI that corresponds

to the coordinated activity of ten different neuron types in a brain

area. Let us assume that we want to evaluate the causal effect of

type 1 neuron on the behavior. To do so, we use a cell type-spe-

cific perturbation tool to randomly increase or decrease the

activity of type 1 neurons. In this case, our intended perturbation

vector is one that moves the state within the subspace spanned

by neurons of type 1.What would be the direction of the resulting

perturbation vector? Would it remain within the desired sub-

space or would the network interactions cause other neuron

types to also change their activity? The answer depends on

how the perturbation interacts with the system’s intrinsic con-

straints. Imagine that perturbing type 1 neurons leads to a

measurable behavioral effect. With this observation, we can

safely argue that type 1 neurons causally influence the behavior.

However, this statement can be difficult to interpret if the

behavior is controlled by type 2 neurons that are influenced by

perturbing type 1 neurons (Figure 5).

In general, two classes of factors can redirect an intended

perturbation vector: off-target and secondary effects. Off-target

effects correspond to changes of variables that the perturbation
Neuron 93, March 8, 2017 1007
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Figure 4. Behavioral Outcomes for On-
Manifold and Off-Manifold Perturbations
(A and B) An intrinsic neural manifold of interest
(NMOI) as a surface in a 3D coordinate system for
three neurons. (A) This manifold with two sets of
on-manifold perturbations (square and circle) is
shown. For each set, the perturbations are shown
as arrows moving the state of the system from
arbitrary positions (open symbols) to a desired
target state (filled symbols). (B) The same for two
off-manifold perturbations is shown. The dotted
arrows in (B) correspond to the projection of the
off-manifold perturbations on the surface to
convey the idea that these perturbations might
lead to meaningful movements on the manifold.
(a–e) The intrinsic behavioral manifold of interest
(BMOI) as a surface in a 3D coordinate system for
three measured behavioral variables. The colors,
arrows, and symbols in each panel of the BMOI
represent one type of behavioral outcome. (a)
represents an outcome in which the two sets of
perturbations can selectively control the behav-
ioral variables on their intrinsic manifold. (b) rep-
resents an outcome in which the three converging
neural perturbations do not lead to converging
behavioral outcomes but the behavioral effects
remain on the manifold. This would amount to a
non-selective change in the behavior. As an
example, (b) shows the case where all the per-
turbations cause a shift along a specific direction
on the behavioral manifold. In practice, this could
be a non-selective bias in behavior, or a non-se-
lective increase in reaction time, or any other non-
selective change in behavior. (c) represents the

case where the neural perturbations are ineffective and have nomeasurable behavioral outcomes. (d) and (e) represent two cases where the perturbation pushes
the behavior off its intrinsic manifold, by either causing an unexpected but selective behavioral outcome (d) or by causing a non-selective behavioral outcome (e).
Both on- (A) and off-manifold (B) neural perturbations could lead to any of the hypothetical behavioral outcomes (a–e), and each combination of neural
perturbation and behavioral outcome will have its own interpretation.
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directly interacts with but are not the intended target (e.g., stim-

ulating the axons of passage when microstimulating a cluster of

neurons). Secondary effects are effects downstream of the

intended target that may or may not be the key variables influ-

encing the behavior (Otchy et al., 2015). Identifying and rectifying

these unintended effects may be easy in simple systems with

a few interacting nodes, but they would become challenging

when the NMOI and BMOI are high dimensional.

One way to evaluate the potential concerns about off-target

and secondary effects is to use causal belief networks (Figure 6).

A belief network is a graphical model with nodes representing the

variables of interest and arrows indicating presumed causal

relationships between those variables. In this representation,

the effect of randomization is unambiguous. Randomization dis-

sociates the randomized variable (e.g., firing rate of cell type A)

from all its parents (variables that causally influence it), but it

allows it to exert its effect on all its children (variables it influ-

ences). This can be directly linked to our discussion of on- and

off-manifold perturbations. When a variable is randomized, its

parent nodes cannot exert any influence on the perturbation

vector. However, the perturbation vector can be redirected along

the axes that correspond to the children nodes of the random-

ized variable (second-order effect). In other words, the causal

belief network and the intrinsic manifold provide a rigorous

graphical and geometrical interpretation of how perturbations

change the state of the system and how that change can be eval-

uated with respect to the native activity patterns in the system.
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Another reason on-manifold perturbations may be challenging

is that many behaviors we study in the laboratory are relatively

low dimensional (i.e., BMOI is low dimensional). These behaviors

are likely to rely on similarly low-dimensional patterns of neural

activity (Brody et al., 2003; Churchland et al., 2012; Cunningham

and Yu, 2014; Fitzgerald et al., 2013; Ganguli et al., 2008; Holde-

fer and Miller, 2002; Kaufman et al., 2014; Kobak et al., 2016; Li

et al., 2016; Mante et al., 2013; Sadtler et al., 2014). Since our

current perturbation tools cannot be tuned for a specific NMOI,

when the manifold is low dimensional, random perturbations

are more likely to target states that are off the manifold. Stated

more quantitatively, the magnitude of the projection of a random

N-dimensional vector onto its lower-dimensional subspaces

drops rapidly as N gets larger. This could render a search via

random perturbations ineffective even when the underlying neu-

ral manifold contains the neural code. This problemmay be recti-

fied by adopting more sensitive behavioral metrics or expanding

the range of behavioral tasks and variables we monitor. This

would increase the dimensionality of both the behavioral and

neural manifolds. Perhaps the best example of this strategy

comes from the groundbreaking cortical mapping experiments

of Penfield and Jasper, where they directly asked subjects to

report the percepts evoked by cortical stimulation (Penfield

and Jasper, 1954). Penfield’s experiments additionally benefited

from the fact that the cortex has a modular organization. In other

words, not only the behavioral readout was associated with a

large intrinsic manifold but also the perturbation respected the
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Figure 5. Second-Order Effects as Redirecting the Perturbation
Vector
Model 1 represents a system of three independent neurons. The shape of the
intrinsic manifold of this system is directly dictated by its input pattern. Stim-
ulation of neuron 2 (black curved arrow) is intended to clamp the activity of
neuron 2 to a high value independent of its input (black arrow on the manifold).
Since the three neurons in model 1 do not interact, the actual perturbation
vector (red arrow) would follow the intended direction (along the neuron 2 axis).
Model 2 depicts a system with a lateral connection: neuron 2 activates
neuron 1. The shape of the intrinsic manifold of this system is determined by a
combination of its input pattern and the lateral interaction. The flat part of the
manifold along the neuron 2 axis corresponds to a region where the activity of
neuron 1 does not change (i.e., the two inputs to neuron 1 cancel out). In model
2, the same intended perturbation disrupts the balance of inputs to neuron 1
and leads to a perturbation vector (blue arrow) that has an unintended pro-
jection along the neuron 1 axis. The colored circles show the neurons that are
affected by the perturbation in each of the two models.
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coarse grain structure of the manifold and only went off it with

respect to details that did not interfere with the behavioral

outcome.

Behavioral Outcomes of Off-Manifold Perturbations
Let us first consider an off-manifold perturbation that alters

behavior selectively (Figure 4B, a). Similar to the case of a selec-

tive on-manifold perturbation (Figure 4A, a), this finding suggests

that the neural manifold contains a neural code, but it may

provide more information than an on-manifold perturbation. It

may additionally reveal that the dimensions along which the

perturbation went off themanifold were not relevant, which could

further constrain the search for the neural code.

Many successful perturbation studies exploit structural and

functional regularities in the system to stay close to the manifold.

One property that can help is spatial clustering of neurons repre-

senting relevant dimensions of the intrinsic manifold. A salient

example is the columnar organization of sensory cortical neu-

rons, such as orientation-selective columns in the primary visual
cortex (V1) and direction-selective columns in themiddle tempo-

ral area (area MT, also known as V5). When neurons within a

columnar structure have similar tuning properties, the intrinsic

manifold associated with that column becomes approximately

one-dimensional. Moreover, because these neurons are

spatially clustered, we can control the relevant dimension by

increasing or decreasing the overall ensemble activity. The

coupling of low dimensionality with spatial clustering allows

crude techniques that operate at the level of the column to set

the state of the system near its intrinsic manifold. For example,

Salzman and Newsome exploited prior knowledge about the

clustered nature of direction-tuning neurons in the MT area

(Maunsell and Van Essen, 1983; Mikami et al., 1986) to establish

a causal role for area MT in motion perception using electrical

microstimulation (Salzman et al., 1990). This logic has been

used to assess the function of local clusters of neurons in

many brain systems in nonhuman primates (Afraz et al., 2006,

2015; Graziano et al., 2002; Klein et al., 2016; Moore and

Armstrong, 2003; Robinson, 1972; Robinson and Fuchs, 1969;

Romo et al., 1998; Smolyanskaya et al., 2015; Thier and Ander-

sen, 1998; Verhoef et al., 2012) and rodents (Aravanis et al.,

2007; Liu et al., 2012; Steinberg et al., 2013; Tye et al., 2011;

Witten et al., 2010). We note, however, that, for both electrical

microstimulation (Histed et al., 2009, 2013; Tehovnik et al.,

2006; Tolias et al., 2005) and optogenetics (Christie et al.,

2013; Lin et al., 2005;Mahn et al., 2016;Mattis et al., 2011; Yizhar

et al., 2011), the reliability of the interpretations depends on how

far the perturbation deviates from what was intended.

Another salient example is the effect of electrical microstimula-

tion and optogenetic activation in V1 (Jazayeri et al., 2012; Te-

hovnik et al., 2003). Such stimulations evoke patterns of activity

that do not match the system’s intrinsic manifold, as evidenced

by human reports that the stimulation causes an unfamiliar phos-

phene percept (Foerster, 1929) (in Brindley and Lewin, 1968).

Nonetheless, when the stimulation is sufficiently strong, it causes

a reflexive orienting behavior, suggesting that the perturbation

can penetrate downstream areas despite being off manifold.

This suggests that not all dimensions of the intrinsic manifold in

V1 are needed to control the animal’s orienting behavior.

Many advanced optogenetic experiments aim tomaintain per-

turbations close to the NMOI by targeting specific signaling

pathways (Gradinaru et al., 2010; Janak and Tye, 2015; Yizhar

et al., 2011). An elegant example comes from a study of cortico-

striatal processing in auditory discrimination in rats (Znamenskiy

and Zador, 2013), where the behavior was influenced by either a

non-selective perturbation of the auditory cortex or a selective

perturbation of projections from the auditory cortex to the stria-

tum. Remarkably, perturbations of the auditory cortex led to non-

selective changes in the animal’s performance (e.g., drop of

sensitivity), which is analogous to moving off the BMOI. In

contrast, targeted corticostriatal projections were able to bias

decisions in the direction predicted by the frequency tuning of

the stimulated neurons. This experiment demonstrates the

importance of avoiding secondary effects to selectively control

the behavior.

The case of a negative result (no change in behavior) for an off-

manifold perturbation can be more challenging to interpret

(Figure 4B, c). Conventional statistics compels us to view the
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A belief network is a graphical model composed
of a set of nodes. The nodes do not correspond
to physical components of the system, such as
genes and neurons; instead, they represent
propositional variables of interest, some of which
we may be able to measure and/or perturb, such
as firing rates and behavioral variables. Arrows
connect the variables and each arrow represents
a presumed causal relationship. We focus on
directed acyclic graphs (DAGs) where the network
does not contain cyclic motifs. The relationships
between any pair of variables is quantified by a
conditional probability (i.e., the probability distri-
bution of one variable given knowledge of another
variable). Any two nodes that are connected

directly are conditionally dependent, and any two nodes that are not connected directly are conditionally independent (although they may be statistically
dependent). Using simple probability rules, the network supports the computation of the probabilities of any subset of variables given evidence about any other
subset.
(A) A belief network with six variables (n1–n6) and their presumed causal interactions (solid arrows).
(B) The same network in a causal experiment in which variable n2 is experimentally randomized (schematically shown by the red die). This randomization dis-
connects n2 from its parent nodes (dashed arrows from n1, n3, and n5), and it creates a reduced graph in which the causal influence of n2 on n6 can be examined.
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null in a state of suspended disbelief and state conservatively

that the experiment fails to reject it (Wagenmakers, 2007). But

the nature of this null result is different from an experiment

involving an on-manifold perturbation. When we formulate a

null hypothesis of the form ‘‘variable X does not influence

behavior,’’ we implicitly assume that the causal experiment

would not put the variable X in a state that the system never

visits. Therefore, among the null results, those that arise in the

context of off-manifold perturbations are among the least infor-

mative. Such observations can be attributed to many different

possibilities including the following: (1) the areamay be irrelevant

for the behavior; (2) the dimensionality of the neural space might

be too low to control the behavior; and (3) the perturbation might

not be suitably targeting the neural code, even if the targeted

neurons contain it.

More generally, off-manifold perturbations demand additional

hypotheses and possibilities to be evaluated. For instance,

consider a double dissociation experiment in which optogenetic

activation of a cell type X (but not Y) causes a change in behavior

A (but not B), and vice versa. Under most circumstances, we

would take this as strong evidence that cell type X plays a causal

role in behavior A and cell type Y in B, and not vice versa. But

what if the null effects were because the perturbation was off

manifold? What if cell type X is causally involved in behavior B,

but the perturbation technique does not mimic the way cell

type X functions in that behavior? A recent study in the premotor

cortex of mice demonstrates the difficulty of a null effect for off-

manifold perturbations (Li et al., 2016). There, it was shown that

large-scale unilateral silencing of the premotor cortex had no

effect on the selectivity of motor preparatory activity. However,

upon more scrutiny, it was found that bilateral silencing strongly

disrupted the selectivity of motor preparatory activity. Impor-

tantly, this was not simply a matter of silencing a larger volume;

bilateral perturbations were more effective even when the

volume was accounted for. Evidently, the reason why bilateral

inactivation was necessary was that the two hemispheres were

tightly coupled and one would compensate for the other. In other

words, the intrinsicmanifold was constrained by coordinated ac-

tivity of the two hemispheres, which is presumably why an off-
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manifold silencing of one hemisphere was not able to alter the

behavior. In this case, it was necessary to alter the coordinated

activity of both hemispheres to turn the system’s cogwheel.

Finally, off-manifold perturbations can engage extraneous

pathways that may interfere with the behavior or modulate it in

unexpected ways. Therefore, we need to be more sensitive to

the possibility of observing non-selective changes in the

behavior (Figure 4B, b) or outcomes that are off the intrinsic

behavioral manifold (Figure 4B, d and e). An example of how

off-manifold perturbations can lead to off-manifold behavioral

outcomes is an experiment in which adaptive optics was used

to stimulate the retina at a resolution near the width of an individ-

ual cone (Hofer et al., 2005). Because the spatial scale of this

stimulus is below what the eye sees naturally, one might expect

that the cortical circuitry might be blind to it (i.e., no behavioral

effect). But single-cone stimulation led to a wide range of color

percepts, including some that were never experienced before.

While this experiment is extremely valuable in the context of

what we currently know about color vision, had we begun to

study color perception by randomly perturbing individual cones,

we could have conceivably missed the overarching principle of

trichromaticity.With this example inmind, we think that off-mani-

fold perturbations are likely to bemore useful in dissecting neural

systems and behaviors wherewe have a systematic understand-

ing of the relevant intrinsic manifold.

Intrinsic Manifolds in the Presence of Dynamics
Many behaviors are intrinsically dynamic and, therefore, rely on

dynamic patterns of neural activity. Movements with fine tempo-

ral structure, cognitive functions such as deliberation and

integration (de Lafuente et al., 2015; Hanks et al., 2015;Merchant

and Georgopoulos, 2006; Roitman and Shadlen, 2002; Shadlen

and Gold, 2004; Thura and Cisek, 2014), and behaviors that

depend on knowledge of elapsed time (Eagleman et al., 2005;

Finnerty et al., 2015; Janssen and Shadlen, 2005; Jazayeri and

Shadlen, 2015; Karmarkar and Buonomano, 2007; Leon and

Shadlen, 2003; Merchant et al., 2011, 2013) fall into this

category. When the neural code depends on dynamics, causal

experiments have to employ perturbations that take those
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dynamics into account. It is customary to envision dynamics as

movements along neural trajectories on a fixed manifold

(Churchland et al., 2012; Cunningham and Yu, 2014; Laurent

et al., 2001; Mante et al., 2013; Raposo et al., 2014). This is an

intuitive representation but it makes the discussion of on- and

off-manifold perturbations complicated. Let us consider the evo-

lution of activity during a single trial going fromA1 to A2 to A3 to.
to AN. In this representation, points Ai and Aj correspond to two

different times during a trial. Let us now consider a perturbation

that moves the state from A3 to A10; i.e., a perturbation that

advances the trial through time. Should we consider this pertur-

bation on or off manifold? If we assume dynamics as trajectories

on a fixed manifold, then this perturbation should be considered

on manifold. However, this is not consistent with our basic defi-

nition of intrinsic manifold corresponding to correlational mea-

sures with behavior—the behavior never takes a trajectory

from A3 to A10. Similarly, if we consider all points in time as

part of the same manifold, some perturbations would corre-

spond to moving back in time (i.e., Ai to Aj with i > j), which we

would like to consider as off manifold.

To facilitate the assessment of on- versus off-manifold pertur-

bations, we adopt a different representation in which time is

added as an independent axis. In this way, the system is associ-

ated with one intrinsic manifold at each time point. In this formu-

lation, a fully on-manifold perturbation not only has to respect the

instantaneous patterns of neural activity but also should do so

over time and within the appropriate timescale.

Creating on-manifold perturbations that respect the dy-

namics can be remarkably difficult as we do not have suitable

techniques to control brain activity over time. It is, therefore,

important to ask, in what situations and to what extent do per-

turbations have to respect the dynamics? Should we treat per-

turbations that are off manifold with respect to time the same

way we treat off-manifold perturbations with respect to the

ongoing activity patterns? As we mentioned in our discussion

of static intrinsic manifolds, if an off-manifold perturbation is

capable of controlling the behavioral variables of interest, we

could infer that the neural manifold contains the neural code

and we may proceed to search for the relevant features within

lower-dimensional state spaces. The analogous idea applies in

time: if a perturbation of dynamics at a certain temporal scale

controls the behavior, we may not need to analyze behavior at

a higher temporal resolution. For example, let us consider an

experiment with a trial-based structure in which controlling

the average firing rates during the trial controls the behavior

selectively. This perturbation is clearly off manifold as it does

not respect the higher-order dynamics of firing rates during

the trial. However, since it can control the behavior selectively,

the experimenter might not need to focus on higher-order

dynamics (Histed and Maunsell, 2014). Those dynamics

might be extremely important for understanding circuits,

biophysics, and possibly other behavioral variables that the

experimenter did not measure, but not for understanding the

neural code driving the variables on the BMOI. In contrast, if

the perturbation fails to control the behavior selectively

(Figure 4B, a–c) or leads to unexpected behavioral outcomes

(Figure 4B, d and e), the experimenter has to consider the pos-

sibility that the reason for failure might be related to the fact
that the perturbation did not respect the more fine-grained as-

pects of the dynamics.

An example of off-manifold perturbation of dynamics that led

to a selective control of behavior came from the study of song

production in the birdsong. In this system, the temporal preci-

sion of the song is attributed to a sparse sequence of bursts

in the premotor nucleus higher vocal center (HVC) (Hahnloser

et al., 2002; Leonardo and Fee, 2005). Long and Fee devised

an elegant perturbation using a cooling device to slow down

the underlying dynamics. This perturbation is clearly off mani-

fold with respect to the axis of time but remains on manifold

for individual time slices of the neural activity (Long and Fee,

2008). By specifically perturbing the temporal structure of the

neural code, they were able to demonstrate that the HVC caus-

ally controls the speed of the song without altering its over-

all profile.

From State Space to Neural Manifold to Neural Code
Consider an experiment aiming to find the neural code for M

behavioral variables in a specific behavioral task among N

neurons (i.e., an N-dimensional neural state space). Correlational

measurements in the absence of any perturbation would charac-

terize the NMOI and BMOI. If we denote the dimensionality of the

NMOI and BMOI by h and c, respectively, we would expect h%

N and c % M.

After characterizing the correlational correspondence be-

tween the NMOI and BMOI (see Figure 3), the experimenter pro-

ceeds with using on-manifold perturbations in search of the

relevant dimensions that contain the neural code. Let us evaluate

two potential outcomes of such perturbations. In one scenario,

on-manifold perturbations fail to control the behavior selectively.

Since the perturbations are on manifold, this failure means that

additional/other neurons must be considered. Note that the

same inference cannot be made for off-manifold perturbations.

In other words, the failure to control behavior requires the exper-

imenter to increase the dimensionality of the neural state space

to increase the probability of targeting the relevant neurons.

In the second scenario, the on-manifold perturbations suc-

cessfully control the behavior. In this case, the dimensionality

of the neural manifold, h, must be at least as large as the dimen-

sionality of the behavioral manifold, c. When h = c, the intrinsic

manifold contains a compact representation of the neural

code. When h > c, it may be possible to continue the search at

a lower-dimensional state space. In other words, the success

of the on-manifold perturbations invites the experimenter to

decrease N.

These two scenarios inform the search for the neural codewith

respect to the dimensionality of the NMOI (Figure 7). Successful

perturbations motivate follow-up experiments on state spaces

with reduced dimensionality, and failed perturbations (i.e., inef-

fective or unselective behavioral outcomes) call for exploration

of dimensions not included in the original state space. Note

that the choice of the dimensionality of the NMOI may depend

on other practical factors. For example, a smaller state space

may be preferred as it would facilitate on-manifold perturbations

from a technical perspective. This benefit, however, may be

offset by reduced selectivity or variance explained with respect

to the behavior.
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Figure 7. Neurons, Behavior, and the Dimensionality of
Neural Codes
The abscissa represents the number of neurons included in a recording/
perturbation study; in theory, this number can range from a single neuron to all
neurons in the brain. The scale bar is schematic and does not depict the actual
scale magnification within this large range. The ordinate represents dimen-
sionality and is used to show the dimensionality of both neural and behavioral
measures. The gray unity line indicates that the dimensionality of the neural
state space is the same as the number of neurons (by definition). The purple
line shows that the dimensionality of the neural intrinsic manifold also in-
creases with the number of neurons. The upper bound of this dimensionality is
set by the neural state space (gray line), but, in practice, it can be much lower
(see text). The horizontal blue line shows the dimensionality of the behavioral
manifold. This dimensionality is independent of the number of neurons, and it is
instead dictated by the behavioral paradigm and the number of behavioral
variables that are measured experimentally. Dimensionality of the behavioral
manifold is typically far lower than that of the neural state space, although
using complex behaviors and more behavioral variables can increase this
number (gray upward arrow). The vertical red line represents the smallest state
space in which on-manifold perturbations can control the behavior selectively.
Note that on-manifold perturbations at this scale are off manifold in state
spaces that include other neurons (Figure 2C). The position of the red line may
vary depending on the behavioral manifold of interest. It may shifts to the far
left (small state spaces), if only a few neurons could selectively control the
behavior, or to the far right (larger state spaces), if the behavior is controlled by
the coordinated activity of many neurons in the brain. The crossing point be-
tween the red line and the purple line represents the minimum dimension with
respect to the neural manifold of interest, which is an upper bound for the
dimensionality of the key features (i.e., neural code) (orange bracket).
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In thinking about the relevant dimensions of analysis, it may be

useful to develop benchmarks for the dimensions of intrinsic

manifolds and the neural code with respect to the state space.

Naturally, the primary determinant of the lower bound on N is

the dimensionality of the behavioral manifold c. However, in re-

ality, N is usually much larger than c for two reasons. First,

many behaviors depend on converging and redundant signals

from large populations of similarly behaving neurons (Cohen

and Maunsell, 2009; Froudarakis et al., 2014; Jazayeri and Mov-

shon, 2006; Priebe and Lisberger, 2004; Rust et al., 2006; Shad-

len et al., 1996; Zohary et al., 1994). Second, neurons in the state

space are usually correlated (i.e., due to interactions and/or

common input), such that h is much smaller than N.

Note that, our representation of intrinsic manifold implicitly as-

sumes that a single variable (e.g., firing rate) captures what each
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neuron encodes. If it were the case that a neuron could convey

information in more than one way, in effect, acting like multiple

single-variable neurons, then the dimensionality of the state

space would become larger than the number of neurons. How-

ever, the dimensionality of the NMOI, h, would still be bounded

from below by c.

As a final point, we note that the lowest dimensional neural

intrinsic manifold that contains a neural code may still have

more dimensions than needed to capture the behavioral vari-

ables. In other words, it is possible that multiple neural states

would correspond to the same measured behavioral variables.

Many factors could contribute to such phenomenon. For

example, neural activity might control aspects of behavior

(e.g., prior expectations) that are not measured or included on

the BMOI (e.g., choice behavior). Similarly, neural activity might

be modulated by nuisance variables (e.g., contrast of a stimulus)

that is not relevant for a certain behavioral paradigm and, thus,

not accounted for by the experimenter. The presence of such

factors renders the smallest h that contains a neural code an up-

per bound for the dimensionality of the neural code (Figure 7).

Concluding Remarks
Our aimwas to provide a critical assessment of how correlational

and causal approaches advance our understanding of the neural

codes that link the brain to behavior. Noting that the full state

space is enormous, we proposed that the search space can be

shrunk by looking at intrinsic manifolds (i.e., subspaces that

are characterized by correlations). Additionally, we used the

analogy of the cogwheel to argue that perturbations can power-

fully expose structure and logic of the neural code when (1) they

interface with the system at an appropriate scale and (2) they

respect the intrinsic patterns of activity at the scale at which

they are applied. This process might need new tools that go

beyond targeting individual genes, cell types, and local ensem-

bles of neurons. The next generation of tools we envision would

be able to randomize correlated patterns of activity and navigate

the state space through coordinated perturbations that may

span multiple elements of the circuit simultaneously.
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