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SUMMARY

Synapses are the fundamental units of information
processing in the mammalian brain. Much of our
understanding of their functional properties comes
from voltage-clamp analysis, the predominant
approach for investigating synaptic physiology.
Here, we reveal that voltage clamp is completely
ineffective for most excitatory synapses due to
spine electrical compartmentalization. Under local
dendritic voltage clamp, single-spine activation
produced large spine head depolarizations that
severely distorted measurements and recruited
voltage-dependent channels. To overcome these
voltage-clamp errors, we developed an approach to
provide new, accurate measurements of synaptic
conductance. Single-synapse AMPA conductance
was much larger than previously appreciated,
producing saturation effects on synaptic currents.
We conclude that electrical compartmentalization
profoundly shapes both synaptic function and how
that function can be assessed with electrophysiolog-
ical methods.

INTRODUCTION

Electrophysiological approaches have been instrumental in

deciphering how neurons communicate through electrical sig-

nals generated at synapses. For over thirty years, voltage clamp

has been the main approach to study synaptic physiology. This

technique has been used to deconstruct the molecular basis of

synaptic transmission and plasticity in vitro (Bekkers et al.,

1990; Bekkers and Stevens, 1990; Benke et al., 1998; Blanton

et al., 1989; Brown and Johnston, 1983; Edwards et al., 1990;

Granger et al., 2013; Guzman et al., 2016; Isaac et al., 1995;

Jonas et al., 1993; Malinow and Tsien, 1990; Matsuzaki et al.,

2001) as well as to probe input tuning and integration in vivo

(Adesnik, 2017; Adesnik and Scanziani, 2010; Borg-Graham

et al., 1998; Chadderton et al., 2014; Froemke et al., 2007; Gan

et al., 2017; Haider et al., 2006; Haider et al., 2013; Liu et al.,

2011; Petersen, 2017; Sato et al., 2016; Tan and Wehr, 2009;

Wehr and Zador, 2003; Wilent and Contreras, 2005; Wu et al.,

2008). Voltage-clamp circuits rapidly pass current to maintain

the voltage at the tip of the electrode at set values, enabling
measurement of current flow through ion channels and estima-

tion of conductance (Cole, 1949; Hamill et al., 1981). One crucial

assumption for voltage-clamp analysis is that synapses are

isopotential with the recording site (Johnston and Brown,

1983; Spruston et al., 1993; Williams and Mitchell, 2008). How-

ever, accumulating evidence indicates that dendritic spines,

where the vast majority of excitatory synapses reside (Bourne

and Harris, 2008; Ramón y Cajal, 1888), can compartmentalize

electrical signals via high spine neck resistances (Rneck) (Acker

et al., 2016; Araya et al., 2006; Bloodgood et al., 2009; Blood-

good and Sabatini, 2005; Grunditz et al., 2008; Harnett et al.,

2012; Jayant et al., 2017; Palmer and Stuart, 2009; Yuste,

2013). We reasoned that electrical isolation would prevent

voltage control of spiny synapses, thereby distorting measure-

ments and calling into question our current understanding of

synaptic function. Here, we demonstrate that spines cannot be

voltage clamped, and subsequently develop a new approach

to circumvent the problem and accurately measure synaptic

conductance at single spines.
RESULTS

High Spine Neck Resistance Prevents Synaptic Voltage
Control
We first determined the impact of Rneck on the effectiveness of

synaptic voltage clamp with a simple compartmental model

based on cortical layer 5 pyramidal neurons (Figure 1A; STAR

Methods). For an Rneck of 500 MU based on prior estimates

(Harnett et al., 2012; Jayant et al., 2017), a synaptic input

resulted in a large spine EPSP (excitatory postsynaptic potential)

and a much smaller dendritic EPSP under current clamp (Fig-

ure 1B). Under voltage clamp, the synaptic voltage was totally

unclamped, demonstrating that highRneck prevents voltage con-

trol during synaptic events. Dendritic voltage clamp recovered

the current but drastically underestimated synaptic conductance

because the spine voltage was not controlled (Figure 1C).

Synaptic conductance (gsyn), which reflects the density and

properties of glutamate receptors, is a key parameter governing

synaptic efficacy (Araya, 2014; Koch and Poggio, 1983; Koch

and Zador, 1993; Wilson, 1984). We computationally explored

how different values of Rneck and gsyn would affect these results

(Figures 1D–1F and S1). For a wide range of parameters,

synaptic voltage escape was near complete, and the magnitude

of the spine depolarization determined the fraction of synaptic

conductance recovered. Together with high Rneck, large gsyn
dramatically reduced the synaptic driving force as the spine
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Figure 1. Impact of Spine Neck Resistance

on Synaptic Voltage Clamp

(A) Equivalent circuit diagram for a spine on a

dendrite. A dendritic recording at the base of the

spine can switch between current clamp (black)

and voltage clamp (red).

(B) Voltage in the spine (top) and dendrite (bottom)

in response to a synaptic conductance change.

(C) Voltage clamp recovers the current (top) but

underestimates the conductance (bottom)

because the synaptic voltage is not controlled.

(D) Spine EPSP under current clamp as a function

of gsyn for a range of Rneck values.

(E) Spine voltage escape under voltage clamp

computed as the percentage of current-clamp

spine EPSP.

(F) Recovered conductance under voltage clamp.

See also Figure S1 for additional modeling results.
voltage approached reversal potential. As a result, the current

entering the spine and flowing into the dendrite was saturated

(Figure S1). Thus, our model predicts that voltage-clamp errors

are substantial and non-uniform across synapses with varying

strength and compartmentalization.

Unclamped Recruitment of Spine Voltage-Dependent
Channels
To provide an experimental test of the efficacy of synaptic voltage

clamp, we sought to uncover evidence of voltage escape. We

hypothesized that if large unclamped spine depolarizations occur,

Ca2+ imaging would reveal the activation of voltage-dependent

channels, including NMDA receptors and voltage-gated Ca2+

channels (VGCCs), known to be present in spine heads

(Bloodgood et al., 2009; Grunditz et al., 2008; Harnett et al.,

2012; Kovalchuk et al., 2000; Sabatini et al., 2002; Yuste and

Denk, 1995). To specifically assess the impact of spine

compartmentalization independently of series resistance and

space-clamp limitations (Armstrong and Gilly, 1992; Spruston

et al., 1993;Williams andMitchell, 2008), we performed low series

resistance (11.9 ± 0.5MU, n = 70) whole-cell recordings from layer

5 pyramidal neuron apical dendrites. We first tested the effective-

ness of dendritic voltage clamp using an independent current-

clamp electrode positioned nearby (9.8 ± 1.0 mm, n = 9) on the

same dendrite (Figure 2A). With rigorous series resistance

compensation (Figure S2), the voltage-clamp electrode

accurately recovered injected currents and prevented voltage

escape (Figures 2B and 2C). We then tested whether spines
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<10 mm from the electrode could be

voltage clamped. Single spines were stim-

ulated with two-photon glutamate uncag-

ing while monitoring spine head Ca2+

signals with two-photon linescan imaging

of Fluo-4 (Figure 2D). Under the same

uncaging conditions, we observed Ca2+

signals of similar amplitudes under current

clamp and voltage clamp, indicating that

dendritic voltage clamp could not prevent

spine Ca2+ influx (Figures 2E and 2F).
To establish that these Ca2+ signals were evidence of

spine depolarization, we investigated the nature and voltage-

dependence of the ion channels recruited. Blocking NMDA

receptors (100 mM D-APV + 50 mM MK-801) drastically reduced

spine head Ca2+ signals (Figures 2G and 2H; 28.7% ± 0.1% of

baseline, n = 6), revealing that NMDA receptors are recruited dur-

ing single-spine uncaging events. With AMPA receptors blocked

(20 mM DNQX), strong membrane depolarization was needed to

observe NMDA-mediated Ca2+ signals (Figure S3). Thus, NMDA

receptor activation is evidence of unclamped AMPA-mediated

spine depolarization. Under constant blockade of NMDA

receptors, smaller Ca2+ signals could still be elicited with gluta-

mate uncaging (Figure 2I). Depleting intracellular stores of Ca2+

(30 mM CPA + 200 mM GPN) (Padamsey et al., 2017; Sabatini

et al., 2002) did not affect the transients (Figure S3). In contrast,

the application of VGCC blockers (300 mM Ni2+ + 20 mM

nimodipine) demonstrated that these Ca2+ signals were

voltage-dependent and mediated by VGCCs (Figure S3). Their

recruitment during uncaging events was again similar under

current clamp and voltage clamp (Figures 2I and 2J), providing

additional evidence of synaptic voltage escape.

Spine-to-dendrite voltage attenuation is mediated by dendritic

impedance (Gulledge et al., 2012; Harnett et al., 2012), and we

performed these experiments on low-impedance trunk dendrites

where attenuation is large. Our experimentally constrained

model suggests that dendritic properties have little influence

on voltage-clamp performance (Figure S4). Filling the dendrites

with a cesium-based intracellular solution to increase the
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Figure 2. Unclamped Spine Depolarization

Recruits Voltage-Dependent Channels

(A) Two-photon image of a dual-dendritic

recording 860 mm from the soma.

(B) Under current clamp, slow and fast EPSC-

shaped current injections depolarize the dendrite.

Under voltage clamp, the same current injections

are faithfully recovered and there is little voltage

escape.

(C) Recovered current (white) and voltage escape

(black) for slow and fast EPSC-shaped as well as

step current injections (n = 9 dendrites). Pooled

data are represented as mean ± SEM. See also

Figure S2 for the impact of series resistance

compensation.

(D) Image of a dendritic recording 600 mm from the

soma. The yellow box shows the spine linescan

imaging (yellow line) and glutamate uncaging (yellow

dot). See also Figure S2 for uncaging resolution.

(E) Uncaging-evoked dendritic EPSP/EPSC and

corresponding spine Ca2+ signal under current

clamp (black) and voltage clamp (red).

(F) Top, relationship between EPSP and EPSC

(n = 37, 18 spines stimulated at 1–3 laser

intensities). Bottom, corresponding spine Ca2+

signals under current clamp and voltage clamp are

not different (n = 19, p = 0.58, paired t test for

highest laser intensity).

(G) Dendritic EPSCs and spine Ca2+ signals before

(red) and after the application of D-APV and

MK-801 to block NMDA receptors (orange).

(H) D-APV and MK-801 application significantly

reduced the spine Ca2+ signals (n = 6,

**p = 0.0036, paired t test). The EPSCs are not

different (n = 6, p = 0.42, paired t test), likely

because AMPA currents dominate the small

NMDA currents (Figure S3).

(I) Uncaging-evoked dendritic EPSP/EPSC and

spine Ca2+ signals mediated by VGCCs (D-APV

andMK-801arepresent toblockNMDA receptors).

See also Figure S3 for the contribution of VGCCs.

(J) Top, relationship between EPSP and EPSCwith

a control (white squares) or with a cesium-based

intracellular solution (black triangles). Bottom,

spine Ca2+ signals are not different under current

clamp and voltage clamp (control: n = 18, p = 0.90,

paired t test; cesium: n = 27, p = 0.19, paired t

test). See also Figure S4 for simulations and

experiments in higher impedance dendrites.
dendritic impedance did not improve voltage clamp (Figures 2J

and S4). In addition, we performed experiments on higher

impedance basal dendrites during somatic voltage-clamp

recordings (Figure S4). Spine depolarization, as well as dendritic

spikes, could not be prevented by voltage clamp under those

conditions. Thus, spines throughout the dendritic arbor cannot

be voltage clamped.

Measurement of Synaptic Conductance at Single Spines
Voltage clamp is ineffective at spines, but how does this affect

measurements of synaptic conductance? The answer strongly

depends on the magnitude of the unclamped spine depolariza-

tion (Figure S1). To quantitatively address this issue, we devised

a method to measure spine voltage during synaptic activation
(STAR Methods). Following Ohm’s law, the current flowing

from the spine into the dendrite is a function of Rneck and the

voltage difference between the two electrical compartments.

Under voltage clamp, the dendritic voltage is constant. There-

fore, the spine EPSP and the recovered current are linearly

related (Figure 3A). Interestingly, rather than directly reflecting

synaptic conductance, we discovered that voltage-clamp

current measurements reflect the unclamped spine EPSP

(Figure 3B). We exploited this relationship to estimate AMPA-

mediated spine EPSPs evoked by glutamate uncaging. First,

we uncaged on a single spine to elicit VGCC-mediated spine

Ca2+ transients under current clamp and voltage clamp (Figures

3D and 3E). Next, we injected artificial excitatory postsynaptic

currents (aEPSCs) with one electrode and recorded the resulting
Neuron 97, 75–82, January 3, 2018 77
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Figure 3. Measurement of Spine Voltage Escape

(A) Relationship between the spine EPSP and the recovered current under voltage clamp. See STAR Methods for details.

(B) The recovered current and the spine EPSP have identical kinetics.

(C) Image of a dual dendritic recording 490 mm from the soma.

(D) Top, yellow box from (C) expanded to show the two electrodes and the spine linescan imaging (yellow line) and glutamate uncaging (yellow dot). Uncaging-

evoked dendritic EPSP (uEPSP; middle) and spine Ca2+ signal (bottom) in the presence of TTX, D-APV, and MK-801.

(E) Top, uncaging-evoked dendritic EPSC (uEPSC). Middle, dendritic voltage escape measured with an independent electrode. Bottom, spine Ca2+ signal.

(F) Artificial EPSCs (aEPSCs; top) are injected in the dendrite to produce artificial EPSPs (aEPSPs; middle) with kinetics matching the uEPSC and spine Ca2+

signals (bottom) matching the uncaging ones.

(G) Comparison of the spine Ca2+ signals and dendritic potentials from (D)–(F).

(H) Spine head Ca2+ signals as a function of dendritic EPSP.

(I) Spine Ca2+ signals across conditions (n = 10).

(J) Distribution of spine EPSP and uEPSC.

(K) Method to calculate Rneck.

(L) Rneck estimates. Pooled data are represented as mean ± SEM.
artificial EPSPs (aEPSPs) with a nearby second electrode (Fig-

ure 3F; STAR Methods). The kinetics and amplitude of the

aEPSPs were calibrated to have a similar temporal profile as

the uncaging EPSC (uEPSC) (Figure 3K) and to elicit spine
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Ca2+ signals matching those produced by the glutamate uncag-

ing (Figures 3G–3I). We performed these experiments with a

cesium-based intracellular solution and in the presence of TTX

(0.5 mM), D-APV (50–100 mM), and MK-801 (10–25 mM) to isolate
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Figure 4. Single-Spine AMPA Conductance

(A) Driving force during the synaptic event from Figure 3K.

(B) Estimated AMPA conductance (blue) and distorted conductance recovered by voltage clamp (red).

(C) Left, comparison of recovered (red) and estimated AMPA conductance (blue) (n = 10, **p = 0.0020, Wilcoxon paired test).

(D) Left, percentage of conductance recovered by voltage clamp. Right, percentage of current saturation. Pooled data are represented as mean ± SEM.

(E) Dendritic recording 618 mm from the soma. A second pipette (green) filled with high-osmolality sucrose-aCSF to evoke mEPSPs is positioned extracellularly

nearby.

(F) Baseline recording (top) and recording during the application of sucrose-aCSF (bottom).

(G) Recorded mEPSPs with the average in black.

(H) Distribution of mEPSP amplitudes (n = 2285 events from 4 neurons).

(I) Transfer function from mEPSP to gsyn for a constant Rneck of 590 MU. See also Figure S1.

(J) Inferred distribution of gsyn based on the distribution of mEPSPs in (H) and the transfer function in (I).

(K) Current saturation for the inferred distribution of gsyn in (J). The saturation of the current is directly proportional to the spine EPSP. See also Figure S5.
AMPA-mediated potentials and VGCC-mediated Ca2+ signals.

Owing to the lack of attenuation from the dendrite to the spine

(Harnett et al., 2012; Koch and Zador, 1993; Rall, 1974), the

matched aEPSP provided an accurate estimate of the spine

voltage during glutamate uncaging. Despite effective dendritic

voltage clamp (4.6% ± 1.7% dendritic voltage escape, n = 10),

we computed very large uncaging-evoked spine EPSP

(Figure 3J; 55.3 ± 3.9 mV, n = 10), suggesting strong electrical

isolation imposed by high Rneck values (Figures 3K and 3L;

588 ± 89 MU, n = 10).

Using our measurements of uncaging-evoked spine EPSPs,

we estimated single-spine AMPA conductance. Conductance
is a function of the current and the driving force, which is the

difference between the synaptic voltage and the reversal poten-

tial (we measured Esyn to be 18.2 ± 2.0 mV under our conditions,

n = 11). Because of the large unclamped spine depolarization,

the driving force drops substantially during synaptic events (Fig-

ure 4A). We reasoned that gsyn could be reconstructed from the

time-varying driving force and the recovered current (Figure 4B;

STARMethods).We found single-spine synaptic conductance to

be much larger than what was recovered by voltage clamp (Fig-

ures 4B–4D), providing concrete evidence that voltage-clamp

measurements are severely distorted. Strikingly, this conduc-

tance substantially saturated the synaptic currents (Figure 4D;
Neuron 97, 75–82, January 3, 2018 79



71.9% ± 4.7%, n = 10), reducing the dendritic and somatic

impact of the synapse.

Finally, we estimated physiological AMPAconductance evoked

bypresynaptic vesicle release.Wefirst recordedminiature EPSPs

(mEPSPs) (Figures 4E–4H) induced by focal application of high-

osmolality sucrose-aCSF (Bekkers et al., 1990; Larkum et al.,

2009; Magee and Cook, 2000). Based on our measurement of

Rneck and dendritic properties (Figure S1), we then built a transfer

function to relate spine AMPA conductance to dendritic mEPSP

(Figures 4I and S1). We inferred that physiological single-synapse

AMPA conductance is much larger (Figure 4J; median, 1.47 nS;

Q1–Q3, 0.95–2.53 nS; n = 2,285) than previously estimated

(Bekkers et al., 1990; Guzman et al., 2016). Moreover, saturation

was still substantial (Figure 4K; median, 42.4%; Q1–Q3, 32.2%–

55.9%; n = 2,285). Together, these data directly demonstrate

that spine saturation of synaptic currents distorts voltage-clamp

accuracy under physiological conditions, which will affect many

common synaptic analyses, including excitatory-inhibitory bal-

ance and synaptic plasticity (Figure S5).

DISCUSSION

Key to assessing synaptic properties with voltage clamp is

keeping the membrane potential constant. Here we demonstrate

that this is not possible for most excitatory synapses because

they reside on electrically isolated spines. Unlike space-clamp

limitations that are often thought to mainly affect distal inputs in

large neurons, spine compartmentalization results in total voltage

escape regardless of dendritic location in all neurons with com-

partmentalized spines, including cortical pyramidal neurons,

CA1 pyramidal neurons (Harnett et al., 2012), dopaminergic neu-

rons (Hage et al., 2016) and olfactory granule cells (Bywalez et al.,

2015). Our results thus question the utility of whole-cell voltage

clamp in spiny neurons. In addition to preventing accurate

measurements of conductance and conductance-voltage

relationships, the inability to voltage clamp spines has important

implications for numerous common analyses in synaptic physi-

ology. First, analyses requiring precise measurements, such as

nonstationary fluctuation analysis (NSFA), will be heavily distorted

by spine compartmentalization. NSFA analyzes the amplitude

and variance of synaptic currents to estimate parameters such

as the number and unitary conductance of synaptic receptors

(Benke et al., 1998; Benke et al., 2001; L€uthi et al., 1999;

Matsuzaki et al., 2001; Smith et al., 2003). Synaptic voltage

escape will change the driving force and the amplitude of

single-channel currents. As a result, the peak and slope of the

current-variance curve will be profoundly altered, precluding

accurate measurements. Second, assessments of excitatory (E)

to inhibitory (I) ratio, which is thought to play a central role in con-

trolling circuit dynamics (Adesnik, 2017; Adesnik and Scanziani,

2010; Borg-Graham et al., 1998; Froemke et al., 2007; Gan

et al., 2017; Haider et al., 2006; Haider et al., 2013; Liu et al.,

2011; Sato et al., 2016; Tan and Wehr, 2009; Wehr and Zador,

2003; Wilent and Contreras, 2005; Wu et al., 2008), will be

severely compromised.Most inhibitory inputs are located directly

onto dendrites and will not be affected by spine compartmental-

ization. Thus, recordings will be distorted for excitatory synapses

but not for shaft inhibitory synapses, drastically shifting the
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perceived E/I ratio (Figure S5). Moreover, inhibitory synapses

located directly on spines (Chen et al., 2012; Chiu et al., 2013;

Villa et al., 2016) will interact with excitatory ones (Poleg-Polsky

and Diamond, 2011), further distorting both E and I measure-

ments (Figure S5). Finally, changes in Rneck and other spine con-

ductances will affect voltage-clamp currents at hyperpolarized

potentials (Figure S5), which are thought to reflect AMPA conduc-

tance. Consequently, postsynaptic plasticity phenomena often

ascribed to changes in the number or properties of AMPA recep-

tors (Malenka and Bear, 2004;Malinow andMalenka, 2002; Nicoll

and Roche, 2013) may have alternative explanations.

By estimating Rneck and gsyn for individual dendritic spines, we

provide new insights into the electrical impact of spines on

synaptic transmission. Early theoretical inquiries indicated that

the relative magnitude of gneck (1/Rneck) and gsyn controls the

electrical behavior of synapses (Harris and Stevens, 1989;

Koch and Poggio, 1983; Koch and Zador, 1993; Miller et al.,

1985; Wilson, 1984). If gsyn is very small relative to gneck, spines

behave as current sources, and the magnitude of the dendritic

event is governed by gsyn. However, if gsyn is much larger, spines

can be approximated as voltage sources, and gneck controls the

dendritic depolarization. It remains unclear until now under

which regime spines operate because Rneck has been a matter

of debate (Acker et al., 2016; Araya et al., 2006; Araya et al.,

2014; Bloodgood et al., 2009; Bloodgood and Sabatini, 2005;

Grunditz et al., 2008; Harnett et al., 2012; Jayant et al., 2017;

Kwon et al., 2017; Palmer and Stuart, 2009; Popovic et al.,

2015; Svoboda et al., 1996; Tønnesen et al., 2014; Yuste,

2013) and gsyn has not been well defined at single spines.

Here, we demonstrate that large spine depolarizations recruit

voltage-dependent channels without dendritic depolarization.

This can only be explained by strong electrical isolation via

high Rneck (�300–1000 MU), which is consistent with recent

electrical recordings from dendritic spines (Jayant et al., 2017).

Previous somatic voltage-clamp experiments have reported

conductance around 0.2–0.5 nS for unitary synaptic contacts

(Bekkers et al., 1990; Guzman et al., 2016). Our results indicate

that single spiny synapses are much stronger (�1–2.5 nS), satu-

rating postsynaptic events (�42%) and significantly reducing

their ultimate somatic impact. Interestingly, we observed that

the ratio of gneck to gsyn is close to 1 (mean gneck = 1.70 ns;

median gsyn = 1.47 ns). With comparable magnitude, gneck and

gsyn control synaptic current and spine EPSP. Moreover,

coordinated changes of both parameters can potently increase

synaptic current while maintaining constant spine depolarization

(Figure S5), whichmay be important to ensure consistent recruit-

ment of spine voltage-dependent conductances. Thus, Rneck

and gsyn are within an optimal functional range allowing both

synaptic receptors and spine neck to tightly control spine and

dendritic EPSPs to govern synaptic efficacy and plasticity.

In summary, we report that voltage-clamp analysis is

incompatible with excitatory synapses on spines, highlighting

the critical need to consider the compartmentalized nature of

synaptic integration in designing and interpreting electrophysio-

logical experiments. Our results provide important constraints

for biophysically realistic modeling of neuronal circuits and

have significant implications for future experimental approaches

to analyze synaptic function.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sprague Dawley rats (obtained from Charles River) were used for all experiments in accordance with NIH and the Massachusetts

Institute of Technology Committee on Animal Care guidelines. Male rats were housed in pairs or singly and used for experimentation

at 4.5-15 weeks of age.

METHOD DETAILS

Cortical Slice Preparation
Coronal brain slices (300 mm) from the somatosensory cortex were prepared from 4.5 to 15 week-old male Sprague-Dawley rats.

Animals were deeply anesthetized with isoflurane prior to cardiac perfusion (using slicing solution described below) or immediate

decapitation. Slicing was performed with a Vibratome (Leica) in ice-cold slicing solution containing (in mM): sucrose 90, NaCl 60,

NaHCO3 26.5, KCl 2.75, NaH2PO4 1.25, CaCl2 1.1, MgCl2 5, glucose 9, sodium pyruvate 3, and ascorbic acid 1, saturated with

95% O2 and 5% CO2. Slices were incubated in artificial cerebrospinal fluid (aCSF) containing (in mM): NaCl 120, KCl 3, NaHCO3

25, NaH2PO4 1.25, CaCl2 1.2, MgCl2 1.2, glucose 11, sodium pyruvate 3, and ascorbic acid 1, saturated with 95% O2 and 5%

CO2 at 35.5
�C for 25-30 min and then stored at 20 �C. All recordings were performed at 33–37 �C in aCSF.

Patch-Clamp Recording
An Olympus BX-61 epifluorescent microscope with infrared Dodt optics and a water-immersion lens (603, 0.9 NA; Olympus) was

used to visualize cells. Patch-clamp recordings were performed from apical trunk dendrites of layer 5 pyramidal neurons for most

experiments. For experiments in Figures 3 and 4, recordings were restricted to large trunk dendrites close to the first branch point

(659 ± 34 mm from soma, n = 11). Somatic recordings were used for experiments in Figure S4. Recordings were performed at resting

membrane potential (zero injected current) for most experiments. Cells were held at�65 mV (< 1 nA holding current) for experiments

in Figures 2D–2F and S4 when NMDA receptors were not blocked with D-APV and MK-801. Membrane potential was adjusted as

indicated through steady-state current injections for experiments in Figures S3A–S3E.
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Voltage-clamp whole-cell recordings were performed with an Axopatch 200B amplifier. Unless mentioned otherwise, series resis-

tance and whole-cell capacitance were predicted and compensated >90%with lag < 10 ms. The prediction and compensation were

set as high as possible with the lag as short as possible (up until the recording began oscillating) such that less than 1 MU was left

uncompensated.Wewere able to fully compensate, and even overcompensate in some cases the series resistance (recoveringmore

current than injected and causing negative voltage deflections). Current-clamp recordings were performed in bridge mode with an

Axopatch 200B or a Dagan BVC-700 amplifier with bridge fully balanced. Current and voltage signals were filtered at 10 kHz and

digitized at 20 kHz. Patch pipettesmade out of thick-wall glass (1.5 O.D., 0.75 I.D.) were used for voltage-clamp recordings to reduce

capacitance. Current-clamp patch pipettes were prepared with thick-wall or thin-wall glass (1.5 O.D., 1.1 I.D.). Pipettes had resis-

tances ranging from 2 to 8 MU and the capacitance was fully neutralized prior to break in. Particular care was taken to keep series

resistances very low; it ranged from 3 to 20MU and the recording was aborted if it rose above 20MU. In dual dendritic recordings, the

voltage waveform on the voltage measuring electrode was used as an independent reference to adjust the series resistance on the

current-passing electrode with both electrodes in current clamp. Final adjustments for the series resistance were made offline to

correct for small residual errors (< 1.25 MU) for experiments in Figures 2A–2C and S2A–S2G.

The standard intracellular solution contained (in mM): potassium gluconate 134, KCl 6, HEPES buffer 10, NaCl 4, Mg2ATP 4,

NaGTP 3, phosphocreatine di (tris) 14. For experiments in Figures 3, 4, S1I–S1K, S2H–S2N andS3F–S3I, a cesium-based intracellular

solution was used (in mM): Cs-methanesulfonate 140, KCl 3, HEPES buffer 10, NaCl 4, Mg2ATP 4, NaGTP 3, phosphocreatine di (tris)

14. Depending on the experiment, 0.05 Alexa 594, 0.1 Alexa 488 and/or 0.2 Fluo-4 mM (Invitrogen) were added to the intracellular

solution. Liquid junction potentials (16.2 and 12.3 mV for standard and cesium intracellular, respectively) were not corrected for.

Two-Photon Imaging and Uncaging
A two-photon laser scanning system (Prairie Technologies) with dual galvanometers and two Mai Tai DeepSee lasers were used to

simultaneously image and uncage glutamate. One path was used to image Alexa 594 at 880 nm or Fluo-4 and Alexa 488 at

920 nm (separated via dichroic mirrors to independent GaAsP PMTs). Linescan imaging of spines and dendrites was performed at

700-1300 Hz with dwell times of 8 ms for < 400 ms. The other path was used to photolyse 4-methoxy-7-nitroindolinyl-caged-L-gluta-

mate (MNI-glutamate) at 720 nM. StockMNI solutions (50mM)were freshly diluted in aCSF to 10mMand applied via pressure ejection

through a large glass pipette above the slice. Laser beam intensity was independently controlled with electro-optical modulators

(model 350-50; Conoptics). Uncaging dwell time was 0.2 ms. For experiments involving near-simultaneous activation of multiple

spines (Figure S4), the interval between spines was 0.32 ms (0.2 ms dwell time and 0.12 ms moving time). A passive 8X pulse splitter

in the uncaging path was used to reduce photodamage (Harnett et al., 2013; Ji et al., 2008). Experiments were terminated if signs of

photodamage were detected (increase in basal fluorescence, loss of transient signals and/or depolarization). Given the resolution of

two-photon microscopy and the high brightness of large layer 5 apical dendrites, spine morphology could not be quantitatively

assessed. Thus, no attemptwasmade at correlating physiological resultswithmorphological parameters. Selected spineswerewithin

10 mm from the voltage-clamp electrode unless mentioned otherwise. Care was taken to ensure that the selected spines were well

isolated (no spines within 1 mm laterally and no spines above or below in z; Figure S2).

Pharmacology
TTX, D-APV, MK-801 and DNQX dissolved in water, nimodipine dissolved in methanol as well as cyclopiazonic acid (CPA) and

Gly-Phe b-naphthylamide (GPN) dissolved in DMSO were prepared as stock solutions stored at �20 �C and diluted directly to the

aCSF on the day of the experiment. NiCl2 and CdCl2 were weighed and freshly dissolved in aCSF. Picrotoxin was weighed, dissolved

in aCSF and sonicated on the day of the experiment. For all experiments, 0.5 mM TTX was added to the recording aCSF to block

voltage-gated sodium channels. For constant blockade of NMDA receptors (Figures 3, 4, S2H-S2N, S3F-S3I and where noted

in S4), 50–100 mMD-APV and 10-25 mMMK-801 were present in both the aCSF and the glutamate puffer pipette. For acute blockade

of NMDA receptors (Figures 2G and 2H), 100 mMD-APV and 50 mMMK-801 were washed on for over 10 min through the bath. DNQX

(20 mM), nimodipine (20 mM) and NiCl2 (300 mM) were present for experiments in Figures S3A–S3E. For Figures S3F and S3G, nimo-

dipine (20 mM) and NiCl2 (300 mM) were washed on through the bath for >10 min and the glutamate puffer pipette was exchanged to

include the drugs. CPA (30 mM) and GPN (200 mM) were washed on for over 30min through the bath in Figures S3H and S3I. Reversal

potential (Esyn) was measured with CdCl2 (200 mM) in the bath solution to prevent Ca2+ spikes and stabilize the membrane potential.

For recording mEPSPs, a patch pipette filled with aCSF plus 300 mOsm of sucrose (�600 mOsm final) and Alexa 488 was brought

close to the dendrite (�5 mm from the recording electrode). Low-pressure ejection was used to create a �10 mm cloud around the

recording pipette to locally induce presynaptic release. Picrotoxin (100 mM) was added to the bath solution for recording mEPSPs.

Compartmental Modeling
Simulations were performed in MATLAB. Themodel consisted of a cylindrical soma (diameter = 25 mm, length = 25 mm) and a 1.2 mm

apical dendrite (tapered diameter from 7 to 4 mm). The parameters were set to reflect the apical trunk of L5 dendrites under the exper-

imental conditions of Figures 3 and 4 where NMDA, voltage-gated sodium channels and voltage-gated potassium channels were

blocked (Figures S1I–S1K). A spine with a head diameter of 0.5 mmwas attached on the dendrite 600 mm from the soma. The model

included a membrane capacitance of 1.2 mF cm�2 and an axial resistivity of 100 U*cm. The membrane resistivity was 20,000 U*cm2
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at the soma and dropped linearly as a function of distance to 3000 U*cm2 at a distance of 566 mm and beyond. Spine capacitance as

well as spine head resistance had negligible impacts on the dynamics studied (< 0.2% change with 5-fold manipulations).

Restingmembrane potential was�80mV. AMPA synapses were simulated as rapid conductance changes in the spine head, while

a dendritic electrode was in current clamp, where the membrane voltage could fluctuate freely, or ideal voltage clamp, where the

voltage is kept constant. Voltage clamp was implemented in the dendritic compartment adjacent to the spine. AMPA conductance

wasmodeled as a double-exponential function (Harnett et al., 2012) with 0.1 ms rise time constant, 0.75 ms decay time constant and

reversal potential at 0 mV to produce EPSPs with kinetics matching the experimental mEPSPs (Figure S1K). Inhibitory synapses (Fig-

ure S5) were simulated like AMPA synapses but the reversal potential was set to �80mV.

Determination of Rneck and gsyn

The synaptic conductance is a function of the time-varying synaptic current and the driving force:

gsyn =
Isyn

Esyn � Vspine

(1)

Considering the spine and the dendrite as two compartments linked by Rneck, the current flowing across the neck is a function of

the voltage difference between the two compartments and the resistance linking them:

Idend =
Vspine � Vdend

Rneck

(2)

Under dendritic voltage clamp, the current entering the dendrite is faithfully recovered (Irec) and the dendritic voltage is kept con-

stant (DVdend = 0; Figure S1 and S2). The difference between Vspine and Vdend thus corresponds to the unclamped spine EPSP. Equa-

tion 2 can therefore be simplified to Equation 3, which is illustrated in Figures 3A and 3B:

Irec =
Spine EPSP

Rneck

(3)

The current entering the spine flows into the dendrite without loss or time delay (Figure S1; (Koch and Poggio, 1983; Wilson, 1984)).

Thus Isyn = Irec. From Equations 1 and 3, we get Equation 4, which is illustrated in Figure 4B:

gsyn =
Irec

Esyn � Vspine

(4)

For estimating the spine EPSPwith dendritic current injections, several criteria were used to ensure a good fit in terms of the aEPSP

kinetics and Ca2+ signal amplitude. For the aEPSP matching the kinetics of the uEPSC, the correlation coefficient threshold

was >0.95. For Ca2+ signals, the difference was < 0.05 DF/F. 10 out of 16 spines analyzed met those criteria. When Esyn - Vspine

approaches 0, gsyn estimates are more prone to errors. To avoid such errors, we only computed gsyn when saturation was below

80% (7 out of 10 spines). For 3 spines with saturation above 80%, we made a conservative estimate that synaptic conductance

was >8 nS based on the relationship between gsyn and saturation in our model (see Figures 1 and S1).

QUANTIFICATION AND STATISTICAL ANALYSES

Analysis was performed using custom-written MATLAB codes. Current and voltage signals were filtered at 2 kHz with zero-phase

filtering using the MATLAB function filtfilt for some experiments. Linescan signals were smoothed using a 3-point moving average.

Some imaging trials exhibited a light artifact from the uncaging laser, which was excised. 2-5 trials were acquired per condition and

averaged for both electrophysiological and optical traces (see Figure S2N). Morphological and distance measurements were

performed using ImageJ/FIJI (National Institutes of Health) on two-dimensional maximal intensity projections of 1–2 mm Z series

collected at the end of the experiment. Miniature EPSPs were detected by fitting template EPSPs to events with fast 20%–80%

rise times (median: 0.55 ms, Q1-Q3: 0.45-0.65 ms, n = 2285; excluded if >1.5 ms).

Statistical analysis was performed inMATLAB. D’Agostino-Pearson test was used to assess normality. For normal data, results are

presented as mean ± SEM and two-tailed t test was used for statistical analyses. For skewed data, the median and the lower and

upper quartiles (Q1-Q3) are reported and Wilcoxon paired test was used for statistical comparisons. Statistical details can be found

in the figure legends and in the Results. Reported n values refer to the number of spines unless indicated otherwise.
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