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SUMMARY

Neural mechanisms that support flexible sensori-
motor computations are not well understood. In a
dynamical system whose state is determined by
interactions among neurons, computations can be
rapidly reconfigured by controlling the system’s in-
puts and initial conditions. To investigate whether
the brain employs such control mechanisms, we
recorded from the dorsomedial frontal cortex of
monkeys trained to measure and produce time inter-
vals in two sensorimotor contexts. The geometry of
neural trajectories during the production epoch was
consistent with a mechanism wherein the measured
interval and sensorimotor context exerted control
over cortical dynamics by adjusting the system’s
initial condition and input, respectively. These ad-
justments, in turn, set the speed at which activity
evolved in the production epoch, allowing the animal
to flexibly produce different time intervals. These
results provide evidence that the language of dynam-
ical systems can be used to parsimoniously link brain
activity to sensorimotor computations.

INTRODUCTION

Humans and nonhuman primates are capable of generating a

vast array of behaviors, a feat dependent on the brain’s ability

to produce a vast repertoire of neural activity patterns. How-

ever, identifying the mechanisms by which the brain flexibly

selects neural activity patterns across a multitude of contexts

remains a fundamental and outstanding problem in systems

neuroscience.

Here, we aimed to answer this question using a dynamical

systems approach. Work in multiple modalities has provided

support for a hypothesis that neural activity can be understood

at the level of neural populations and viewed as neural trajec-

tories of a dynamical system (Fetz, 1992; Rabinovich et al.,

2008; Buonomano and Maass, 2009; Shenoy et al., 2013).

For example, recent studies have provided compelling evi-
dence that low-dimensional activity in the motor cortex can

be largely explained by inherent dynamical interactions

(Churchland et al., 2010, 2012; Michaels et al., 2016; Seely

et al., 2016). A dynamical systems view has also been used

to provide explanations for neural trajectories in premotor

and prefrontal cortical areas in various cognitive tasks (Rigotti

et al., 2010; Mante et al., 2013; Hennequin et al., 2014; Carne-

vale et al., 2015; Rajan et al., 2016; Wang et al., 2018). This line

of investigation has been complemented by efforts in devel-

oping, training, and analyzing recurrent neural network models

that can emulate a range of motor and cognitive behaviors,

leading to novel insights into the underlying latent dynamics

(Rigotti et al., 2010; Laje and Buonomano, 2013; Mante

et al., 2013; Hennequin et al., 2014; Sussillo et al., 2015; Chai-

sangmongkon et al., 2017; Wang et al., 2018). These early suc-

cesses hold promise for the development of a more ambitious

‘‘computation-through-dynamics’’ that provides a general

framework for understanding how activity patterns in the brain

support flexible behaviorally relevant computations.

The behavior of a dynamical system can be described in

terms of three factors: (1) the interaction between state

variables, (2) the system’s initial state, and (3) the external

inputs to the system. Accordingly, the hope for using the

mathematics of dynamical systems to understand flexible

generation of neural activity patterns and behavior depends

on our ability to understand the co-evolution of behavioral

and neural states in terms of these three components.

Assuming that synaptic couplings between neurons and other

biophysical properties are approximately constant on short

timescales (i.e., trial to trial), we asked whether behavioral

flexibility can be understood in terms of adjustments to initial

states and low-dimensional external inputs with minimal

dynamics.

There is evidence that certain aspects of behavioral flexibility

can be understood in terms of these factors. For example, it

has been proposed that preparatory activity prior to movement

initializes the system such that ensuing movement-related

activity follows the appropriate trajectory (Churchland et al.,

2010). Similarly, the presence of a static context input can

enable a recurrent neural network to perform flexible rule-

(Mante et al., 2013; Song et al., 2016; Wang et al., 2018) and

category-based decisions (Chaisangmongkon et al., 2017).

However, whether these initial insights would apply more
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Figure 1. The RSG Task and Behavior

(A) RSG task. On each trial, three rectangular

stimuli associated with ‘‘Ready,’’ ‘‘Set,’’ and ‘‘Go’’

events were shown on the screen arranged in a

semi-circle. Following fixation, Ready and Set

cues were extinguished. After a random delay,

first Ready and then Set stimuli were flashed

(small lines around the rectangles signify flashed

stimuli). The time interval between Ready

and Set demarcated a sample interval, ts. The

monkey’s task was to generate a saccade (‘‘Go’’)

to a visual target such that the interval between

Set and Go (produced interval, tp) was equal to

a target interval, tt, equal to ts multiplied by a

gain factor, g ðtt = gtsÞ. The animal had to

perform the task in two behavioral contexts, one in

which tt was equal to ts (g= 1 context), and one

in which tt was 50% longer than ts (g= 1:5 context).

The context was cued throughout the trial by

the color of fixation and the position of a

context stimulus (small white square below the

fixation).

(B) Reward. Animals received juice reward

when the error between tp and tt was small, and

the reward magnitude decreased with the size of error (see STAR Methods for details). On rewarded trials, the saccadic target turned green (A).

(C) Sample and target intervals. For both contexts, ts was drawn from a discrete uniform distribution with seven values equally spaced from 0.5 to 1 s (left). The

values of ts were chosen such that the corresponding values of tt across the two contexts were different but partially overlapping (right).

(D) Context blocks. The context changed across blocks of trials. The number of trials in a block was varied pseudorandomly (mean and SD shown).

(E) Behavior. tp as a function of ts for each context across both monkeys and all recording sessions. Circles indicate mean tp across all sessions, shaded regions

indicate ± one standard deviation from the mean, dashed lines indicate tt , and solid lines are the fits of a Bayesian observer model to behavior. Inset: slope of the

regression line ðb1Þ relating tp to ts in the two contexts. Regression slopes were larger in the g= 1:5 context, with a significant interaction between ts and g (p <

0.0001) for all sessions (see text; **p < 0.002 for signed-rank test). Regression intercepts ðb0Þwere also larger for the g= 1:5 context (0.14 versus 0.18 s, p = 0.04).

In all panels, different shades of gray and red are associated with g=1 and g = 1:5, respectively. See Figure S1 for individual animals.
broadly when both inputs and initial conditions change is an

important outstanding question.

For many behaviors, distinguishing the effects of synaptic

coupling, inputs, and initial conditions in neural activity patterns

is challenging. For example, neural activity during a reaching

movement is likely governed by both local recurrent interac-

tions and distal inputs from time-varying and condition-depen-

dent reafferent signals (Todorov and Jordan, 2002; Scott, 2004;

Pruszynski et al., 2011). Similarly, in many perceptual decision

making tasks, it is not straightforward to disambiguate the sen-

sory drive from recurrent activity representing the formation of

a decision and the subsequent motor plan (Mante et al., 2013;

Meister et al., 2013; Thura and Cisek, 2014). This makes it diffi-

cult to tease apart the contribution of recurrent dynamics gov-

erned by initial conditions from the contribution of dynamic in-

puts (Sussillo et al., 2016). To address this challenge, we

designed a sensorimotor task for nonhuman primates in which

animals had to measure and produce time intervals using inter-

nally generated patterns of neural activity in the absence of

potentially confounding time-varying sensory and reafferent in-

puts. Using a novel analysis of the geometry and dynamics of

in vivo activity in the dorsal medial frontal cortex (DMFC) and

in silico activity in recurrent neural network (RNN) models

trained to perform the same task, we found evidence that

behavioral flexibility is mediated by the complementary action

of inputs and initial conditions controlling the structural organi-

zation of neural trajectories.
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RESULTS

Ready, Set, Go Task
Our aim was to ask whether flexible control of internally gener-

ated dynamics could be understood in terms of systematic

adjustments made to initial conditions and external inputs of

a dynamical system. We designed a ‘‘Ready, Set, Go’’ (RSG)

timing task to directly investigate the role of these two factors.

The basic sensory and motor events in the task were as fol-

lows: after fixating a central spot, monkeys viewed two periph-

eral visual flashes (‘‘Ready’’ followed by ‘‘Set’’) separated by a

sample interval, ts, and produced an interval, tp, after Set by

making a saccade to a visual target that was presented

throughout the trial. In order to obtain juice reward, animals

had to generate tp as close as possible to a target interval, tt
(Figure 1B), which was equal to ts times a ‘‘gain factor,’’

g (tt = gts). The demand for flexibility was imposed in two

ways (Figure 1C). First, ts varied between 0.5 and 1 s on a

trial-by-trial basis (drawn from a discrete uniform ‘‘prior’’ distri-

bution). Second, g switched between 1 (g= 1 context) and

1.5 (g= 1:5 context) across blocks of trials (Figure 1D, mean

block length = 101, SD = 49 trials).

To verify that animals learned the task (Figures 1E and S1), we

used regression analyses to assess the dependence of tp on ts
and g. First, we verified that animals learned to measure ts
by analyzing the relationship between ts and tp within each

context (tp = bo + b1ts). Results indicated that tp increased



monotonically with ts (b1 > 0, p � 0.001 for all sessions). Next,

we verified that animals learned the gain by comparing regres-

sion slopes relating tp to ts across the two contexts. The slopes

ðb1Þ were significantly higher in the g= 1:5 context compared to

g= 1 context (mean b1 = 1.2 versus 0.84; signed-rank test p =

0.002, n = 10 sessions; Figure 1E, inset). As a complementary

analysis to show that animals displayed sensitivity to gain in

individual sessions, we fit a regression model to behavior

across both contexts that included additional regressors for

gain and its interaction with ts (tp = b0 + b1ts + b2g + b3gts).

Results indicated a significant positive interaction between ts
and g (mean b3 = 0.73; b3 > 0, p < 0.0001 in each session).

Finally, we asked whether animals switched between contexts

rapidly by fitting a regression model relating tp Z scored for

each ts (zp), to the number of trials n following a context switch

(zp = b0 + b1n, 1 % n % 25 trials after switches). There was no

evidence that zp changed as a function of number of trials after

switch (one-tailed test for b1, p > 0.25), suggesting that the

switching was rapid. Together, these results confirmed that an-

imals used an estimate of ts to compute tp and were able to

flexibly and rapidly adjust their responses according to the

gain information.

For both gains, responses were variable, and average re-

sponses exhibited a regression to the mean (mean b1 < 1, p =

0.005 for g = 1, and mean b1 < 1.5, p = 0.0001 for g = 1:5,

one-sided signed-rank test). As with previous work (Miyazaki

et al., 2005; Jazayeri and Shadlen, 2010, 2015; Acerbi et al.,

2012), these behavioral characteristics were accurately

captured by a Bayesian model (Figure 1E; STAR Methods) indi-

cating that animals integrated their knowledge about the prior

distribution, the sample interval, and the gain to optimize their

behavior.

Neural Activity in the RSG Task
To assess the neural computations in RSG, we focused on the

dorsal region of the medial frontal cortex (DMFC) comprising

supplementary eye field, dorsal supplementary motor area (i.e.,

excluding the medial bank), and presupplementary motor area.

DMFC is a natural candidate for our task because it plays a

crucial role in timing as shown by numerous studies in humans

(Halsband et al., 1993; Rao et al., 2001; Coull et al., 2004; Pfeuty

et al., 2005; Macar et al., 2006; Cui et al., 2009), monkeys (Okano

and Tanji, 1987; Kurata and Wise, 1988; Romo and Schultz,

1992; Isoda and Tanji, 2003; Ohmae et al., 2008; Mita et al.,

2009; Merchant et al., 2011, 2013; Kunimatsu and Tanaka,

2012), and rodents (Matell et al., 2003; Kim et al., 2009, 2013;

Smith et al., 2010; Murakami et al., 2014; Xu et al., 2014), and

because it is involved in context-specific control of actions (Mat-

suzaka and Tanji, 1996; Shima et al., 1996; Brass and von Cra-

mon, 2002; Isoda and Hikosaka, 2007; Yang and Heinen, 2014;

Ray and Heinen, 2015).

We recorded from 324 units (129 frommonkey C and 195 from

monkey J) in DMFC (Figures S2 and S11). Between 11 and

82 units were recorded simultaneously in a given session;

however, in this study, we combined data across all units irre-

spective of whether they were recorded simultaneously. Firing

patterns were heterogeneous and varied across units, task

epochs, and experimental contexts. In the Ready-Set epoch,
responses were modulated by both gain and elapsed time

(e.g., units #1, 3, and 5, Figure 2A). For many units, firing rate

modulations underwent a salient change at the earliest expected

time of Set (0.5 s). For example, responses of some units

increased monotonically in the first 0.5 s but decreased after-

ward (Figure 2A, units #1 and 3).

Following Set, firing rates were characterized by a mixture of

(1) transient changes after Set (units #1 and 3), (2) sustained

modulations during the Set-Go epoch (units #1 and 5), and (3)

monotonic changes in anticipation of the saccade (units #1, 2

and 4). These characteristics were not purely sensory or motor

and varied systematically with ts and gain. For example, the

amplitude of the early transient response (unit #1) depended

on both ts and gain, indicating that it was not a visually triggered

response to Set. The same was true for the sustained modula-

tions after Set and activity modulations prior to saccade

initiation.

We also examined the representation of ts and gain across the

population by projecting the data on dimensions along which

activity was strongly modulated by context and interval in

state-space (i.e., the space spanned by the firing rates of all

324 units; see STAR Methods). Similar to individual units, popu-

lation activity wasmodulated by both elapsed time and gain dur-

ing both the Ready-Set (Figure 2B) and Set-Go (Figure 2C)

epochs. We used this rich dataset to investigate whether the

flexible adjustment of intrinsic dynamics across the population

with respect to ts and gain could be understood using the lan-

guage of dynamical systems.

Flexible Neural Computations: A Dynamical Systems
Perspective
We pursued the idea that neural computations responsible for

flexible control of saccade initiation time can be understood in

terms of the behavior of a dynamical system established by in-

teractions among neurons. To formulate a rigorous hypothesis

for how a dynamical system could confer such flexibility, we

considered the goal of the task and worked backward logi-

cally. The goal of the animal was to flexibly control the saccade

initiation time to a fixed target. Previous motor timing studies

proposed that saccade initiation is triggered when the activity

of a subpopulation of neurons with monotonically increasing

firing rates (i.e., ‘‘ramping’’) reaches a threshold (Romo and

Schultz, 1987; Hanes and Schall, 1996; Roitman and Shadlen,

2002; Tanaka, 2005; Maimon and Assad, 2006; Mita et al.,

2009; Kunimatsu and Tanaka, 2012). For these neurons, flexi-

bility requires that the slope of the ramping activity be adjusted

(Jazayeri and Shadlen, 2015). More recently, it was found that

actions are initiated when the collective activity of neurons with

both ramping and more complex activity patterns reach an

action-triggering state (Churchland et al., 2006; Wang et al.,

2018) and that flexible control of initiation time can be under-

stood in terms of the speed with which neural activity evolves

toward that terminal state (Shinomoto et al., 2011; Wang

et al., 2018).

In a dynamical system, the speed with which activity evolves

over time is determined by the derivative of the state. If we

denote the state of the system by X, the derivative is usually

specified by two factors, a function of the current state, fðXÞ,
Neuron 98, 1005–1019, June 6, 2018 1007
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Figure 2. Neural Responses in Dorsomedial

Frontal Cortex during the RSG Task

(A) Example neurons. Firing rates of 5 example

units during the various phases of the task aligned

to Ready (left column), Set (middle), and Go (right).

Responses aligned to Ready and Set were sorted

by ts. Responses aligned to Go were sorted into

5 bins, each with the same number of trials, or-

dered by tp. Gray and red lines correspond to

activity during the g= 1 and g=1:5 contexts,

respectively, with darker lines corresponding to

longer intervals.

(B) Population activity during Ready-Set. Visuali-

zation of population activity in the Ready-Set

epoch sorted by ts. The ‘‘gain axis’’ corresponds to

the axis along which responses were maximally

separated with respect to context at the time of

Set. The other two dimensions (‘‘PC1 and PC2’’)

correspond to the first two principal components

of the data after removing the context dimension.

Inset: fraction of variance explained by first

25 principal components. Dashed line indicates

100%.

(C) Population activity during Set-Go. Visualization

of population activity in the Set-Go epoch sorted

into 5 bins, each with the same number of trials,

ordered by tp. Top: activity plotted in 2 dimensions

spanned by PC1 and the dimension of maximum

variance with respect to tp within each context

(‘‘Interval axis’’). Bottom: same as top rotated 90�

(circular arrow) to visualize activity in the plane spanned by the context axis (‘‘Gain axis’’) and PC1. For plotting purposes, PCswere orthogonalizedwith respect to

the interval and gain axes. Squares, circles, and crosses in the state space plots represent Ready, Set, and Go, respectively. Percentage variance explained by

interval and gain are shown numerically near the corresponding axes. See STAR Methods for the calculation of percent variance explained by interval and gain.

See Figure S2 for individual animals and Figure S11 for different recording sites.
and an external input, U, that may be constant or context and/or

time dependent:

dX

dt
= fðXÞ+U:

When analyzing the collective activity of a specific population

of neurons, this formulation has a straightforward interpretation.
The state represents the collective firing rate of neurons under

investigation, fðXÞ accounts for the interactions among those

neurons, and U corresponds to external inputs coming from

other populations of neurons, possibly driven by external stimuli.

The only additional information needed to determine the

behavior of this system is its initial condition, X0, which specifies

the initial neural state prior to generating a desired dynamic

pattern of activity.

To assess the utility of the dynamical systems perspective for

understanding behavioral flexibility, we assumed that fðXÞ (i.e.,
synaptic coupling in DMFC) is fixed across trials. Furthermore,

we only considered external inputs U of low dimensionality and

low temporal complexity (i.e., tonic and transient inputs), as a

complex input could trivially account for the observed dynamics

without providing any meaningful insight regarding the observed

neural activity. This leaves initial conditions and low-dimensional

inputs as the only ‘‘dials’’ for achieving flexibility with respect to ts
and gain (Figure 3).

First, we focused on behavioral flexibility with respect to ts for

each gain context. How can a dynamical system adjust the
1008 Neuron 98, 1005–1019, June 6, 2018
speed at which activity during Set-Go evolves in a ts-dependent

manner? In RSG, within each context, there are no sensory in-

puts (exafferent or reafferent) that could serve as a ts-dependent

input drive. Therefore, we hypothesized that the ts-dependent

adjustment of speed in the Set-Go epoch results from a para-

metric control of initial conditions at the time of Set. Because

the speed of the dynamics at any given point in time is governed

by the current state of the system, if the initial conditions at Set

determine the path that neural activity takes through the state

space, then it follows that initial conditions control speed. The

corollary to this hypothesis is that the time-varying activity during

the Ready-Set epoch is responsible for adjusting this initial

condition based on the desired speed during the ensuing Set-

Go epoch.

Second, we asked how speed might be controlled across the

two gain contexts. One possibility is that the system uses initial

conditions to encode tt = gts, which has implicit information

about both gain and ts (i.e., X0ðgtsÞ). This would predict that neu-

ral trajectories form a single organized structure with respect to

the target time ðtt = gtsÞ. In the extreme case, neural trajectories

associated with the same value of gts across the two contexts

(e.g., 1.5 3 0.5 and 1.0 3 0.75) should terminate in the same

state at the time of Set and should evolve along identical trajec-

tories during the Set-Go epoch. We refer to this solution as A1

(Figure 3A).

Alternatively, a tonic gain-dependent input could be respon-

sible for rapid reconfiguration of dynamics across contexts
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Figure 3. Dynamical Systems Predictions

for the RSG Task

(A and B) Schematic illustrations of two hypo-

thetical dynamical systems solutions to RSG

across contexts through manipulation of initial

conditions or external inputs. (A) The first solution

(A1). Top: in A1, the initial condition ðX0Þ depends
on the target interval tt =gts (g, gain, ts, sample

interval), and the system is driven by a gain-inde-

pendent input ðU0Þ. Middle: state trajectory be-

tween Set and Go in the plane spanned by initial

condition and time axes. After Set (open circles),

activity evolves toward an action-triggering state

(crosses) with a speed (colored arrows) fully

determined by position along the initial condition

axis (ordinate). Activity across contexts is orga-

nized according to tt = gts. Bottom: same trajec-

tories, rotated to show an oblique view. Trajec-

tories are separated only along the initial condition

axis across both contexts such that trajectory

structure reflects tt explicitly. There is no separa-

tion along the Input axis. (B) The second solution

(A2). Top: in A2, X0 depends on ts within contexts,

but the system is driven by a tonic gain-dependent input (UðgÞ; red and gray arrows for the two gains). Middle: state trajectory between Set and Go in the plane

spanned by initial condition and time axes. Because initial condition encodes ts and not tt , in this plane, trajectories associatedwith the same ts but different gains

appear overlapping. Bottom: oblique view. A context-dependent external input creates two sets of neural trajectories in the state space for the two contexts in the

Set-Go epoch. This input controls speed in conjunction with initial conditions, generating a structure which reflects ts and g explicitly, but not tt. In bothA1 and A2,

responses would be initiated when activity projected onto the time axis reaches a threshold.

(C) DMFC data. Top: unknown mechanism of RSG control in DMFC. Middle, bottom: three-dimensional projection of DMFC activity in the Set-Go epoch (from

Figure 2C).Middle: qualitative assessment indicated that neural trajectories within each context for different tp binswere associatedwith different initial conditions

and remained separate and ordered through the response. Bottom: across the two contexts, neural trajectories formed two separated sets of neural trajectories

without altering their relative organization as a function of tp. Both of these features were consistent with A2. Filled circles depict states along each trajectory at a

constant fraction of the trajectory length, illustrating speed differences across trajectories (circles are closer for the longer intervals associated with slower speed).
(Figure 3B). As exemplified by previous work, a tonic input inev-

itably pushes activity in recurrent neural network models to a

different region of the state space (Mante et al., 2013; Hennequin

et al., 2014; Sussillo et al., 2015; Song et al., 2016; Chaisang-

mongkon et al., 2017; Wang et al., 2018). This solution, which

we refer to as A2, makes the following predictions. First, it pre-

dicts that the two gains should lead to two sets of neural trajec-

tories in two different regions of the state space. Second, it pre-

dicts that neural trajectories should be organized with respect to

ts and tp (i.e., within each context) but not necessarily with

respect to tt (i.e., across contexts). Because the context informa-

tion in RSGwas provided as an external visual input (fixation cue)

and was available throughout the trial, we predict that this solu-

tion offers the more plausible prediction for how the brain might

solve the task.

We thus set out to characterize the geometry of the observed

neural trajectories quantitatively to determine the most likely

explanation for their structure. The dynamical systems perspec-

tive in RSG leads us to the following specific hypotheses: (1) the

evolution of activity in the Ready-Set epoch parametrizes the

initial conditions needed to control the speed of dynamics in

the production epoch within each context, and (2) the context

cue acts as a tonic external input leading the system to establish

structurally similar yet distinct sets of neural trajectories associ-

ated with the two gains, consistent with A2.

Visualization of neural trajectories from Set to Go in state

space (Figure 3C, same as in Figure 2C) provided qualitative sup-

port for these hypotheses. First, within each context, neural tra-
jectories for different tp bins were clearly associated with

different initial conditions and remained separate and ordered

throughout the Set-Go epoch. Second, context information

seemed to displace the entire group of neural trajectories to a

different region of neural state space without altering their rela-

tive organization as a function of tp. Third, indexing time along

nearby trajectories suggested that the speed with which re-

sponses evolved along each trajectory was systematically

related to the desired tt; i.e., slower for longer tt. To validate these

observations quantitatively, we developed an analysis technique

that we termed ‘‘kinematic analysis of neural trajectories’’

(KiNeT) that helped us measure the relative speed and position

of multiple, possibly curved (Figure S3), neural trajectories.

Control of Neural Trajectories by Initial Condition within
Contexts
We first employed KiNeT to validate that animals’ behavior was

predicted by the speed with which neural trajectories evolved

over time. We reasoned that neural states evolving faster will

reach the same destination on the trajectory in a shorter amount

of time. Therefore, we estimated relative speed across the trajec-

tories by performing a time alignment to identify the times when

neural activity reached nearby points on each trajectory (Fig-

ure 4A). We then used this approach to analyze the geometrical

structure of trajectories through the Set-Go epoch.

To perform KiNeT, we binned trials from each gain and

recording session into five groups according to tp. Neural re-

sponses from these trials were averaged, and then PCA was
Neuron 98, 1005–1019, June 6, 2018 1009
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Trajectories

(A) Illustration of kinematic analysis of neural tra-

jectories KiNeT. Top: a collection of trajectories

originate from Set, organized by initial condition.

Tick marks on the trajectories indicate unit time.

Darker trajectories evolve at a lower speed as

demonstrated by the distance between tick marks

and the dashed line connecting tick marks. KiNeT

quantifies the position of trajectories and the

speed with which states evolve along them relative

to a reference trajectory (middle trajectory, Uref ).

To do so, it finds a collection of states fsi ½ j�gj on
each Ui that are closest to Uref through time (for

visual clarity, only the first and reference trajec-

tories are illustrated). Trajectories which evolve

at a slower speed require more time to reach

those states leading to larger values of ti ½ j�. KiNet
quantifies relative position by a distance measure,

Di ½ j� (distance between Ui and Uref at ti ½ j�) that
is signed (blue arrows) and is considered positive

for the largest value of tp (see STAR Methods).

Middle: trajectories rotated such that the time

axis is normal to the plane of illustration, denoted

by a circle with an inscribed cross. Filled circles

represent the states fsi ½ j�gj aligned to sref½ j� for a
particular j. Vectors DU

i ½ j� connect states on

trajectories of shorter to longer tp. Angles qUi ½ j�
between successive DU

i ½ j� provide a measure of tp-related structure. Bottom: equations defining the relevant variables.

(B) Speed of neural trajectories compared to Uref computed for each context separately. Shortly after Set, all trajectories evolved with similar speed (unity slope).

Afterward, Ui associated with shorter ts evolved faster than Uref as indicated by a slope of less than unity (i.e., fti ½ j�gj smaller than ftref½ j�gj), and Ui associated with

longer ts evolved slower thanUref. Circles on the unity line indicate j values for which ti ½ j�f gi was significantly correlatedwith i (bootstrap test, r > 0, p < 0.05, n = 100).

(C) Relative position of adjacent neural trajectories computed for each context separately. hqUi ½ j�ii (angle brackets with subscript i signify average across tra-

jectories) were significantly smaller than 90� (circles) for the majority of the Set-Go epoch (bootstrap test, hqUi ½ j�ii < 90, p < 0.05, n = 100) indicating that DU
i ½ j�were

similar across Ui.

(D) Distance of neural trajectories to Uref computed for each context separately. Distance measures ðDi ½ j�Þ indicated that fUigi had the same ordering as the

corresponding tp values. The magnitude of Di ½ j� decreased with time, indicating that trajectories coalesce as they get closer to the time of Go. When trajectories

coalesce, small deviations in their relative position due to variability in firing rate estimates may cause trajectories to appear disorganized. This is consistent with

the observation that hqUi ½ j�ii were closer to 90� near the time of Go (C). Shaded regions represent 90% bootstrap confidence intervals. Significance was tested

using bootstrap samples for each j (p < 0.05, n = 100). See Figure S5 for individual animals and Figure S11 for different recording sites.
applied to generate five neural trajectories within the state space

spanned by the first 10 PCs that explained 89% of variance. We

denote each trajectory after the time of Set by Ui (see Table S1

for an abridged list of notations and symbols) where the

subscript i indexes the trajectory. We use curly brackets to refer

to a collection of trajectories ðfUigiÞ. We estimated speed and

position along each Ui relative to the trajectory associated with

the middle (third) bin, which we refer to as the reference trajec-

tory, Uref. We denoted neural states on the reference trajectory

by sref½ j�, where j indexes states through time along Uref. We

also use curly brackets to refer to a collection indices over times.

For example, fsref½ j�gj refers to all states onUref, and ftref½ j�gj cor-
responds to time points on Uref associated with those states.

For each sref½ j�, we found the nearest point on all non-refer-

ence trajectories ðisrefÞ as measured by Euclidean distance.

We denoted the collection of the nearest states on Ui to Uref by

fsi½ j�gj, and the corresponding time points by fti½ j�gj. The corre-

sponding time points along different trajectories provided the

means for comparing speed: if fti½ j�gj were systematically

greater than ftref½ j�gj, we could conclude that Ui evolves at a

slower speed compared to Uref (Figure 4A). This relationship

can be readily inferred from the slope of the line that relates
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fti½ j�gj to ftref½ j�gj. While a unity slope indicates that the speeds

are the same, higher and lower values would indicate slower

and faster speeds of Ui compared to Uref, respectively.

Applying KiNeT to neural trajectories in the Set-Go epoch indi-

cated thatUi evolved at similar speeds immediately following the

Set cue (unity slope). Later, speed profiles diverged such that

neural trajectories associated with longer intervals slowed

down and trajectories associated with shorter intervals sped

up for both gain contexts (Figure 4B). This is consistent with pre-

vious work that the key variable predicting tp is the speed with

which neural trajectories evolve (Wang et al., 2018). One com-

mon concern in this type of analysis is that averaging firing rates

across trials of slightly different duration could lead to a biased

estimate of neural trajectory. To ensure that our estimates of

average speed were robust, we applied KiNeT to neural trajec-

tories while aligning trials to Go instead of Set. Results remained

unchanged and confirmed that the speed of neural trajectories

predicted tp across trials (Figure S4).

Having validated speed as the key variable for predicting tp,

we focused on our first hypothesis that the evolution of activity

in the Ready-Set epoch parametrizes the initial conditions to

control the speed of dynamics in the production epoch for
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Figure 5. Neural Trajectories across Contexts Do Not Form a Single

Structure Reflecting tp
(A) A schematic illustrating neural trajectories across the two contexts after

Set. Top: the expected geometrical structure under A1. Neural trajectories for

the gain of 1 (gray) and 1.5 (red) are organized along a single initial condition

axis and ordered with respect to tp. Tick marks indicate unit time. Bottom: a

rotation of the top showing neural trajectories with the time axis normal to the

plane of illustration. If the neural trajectories were organized as such, then the

angle between vectors connecting nearby points (e.g., qU3 ½ j�) would be less

than 90 (A1, Figure 3A).

(B) Left: orientation of vectors connecting adjacent neural trajectories com-

bined across the two contexts. Right: possible geometrical structures A1

(bottom), and A2 (top). hqUi ½ j�ii was larger than 90� for all j in the Set-Go interval,

consistent with A2. Shaded regions represent 90% bootstrap confidence in-

tervals. See Figure S6 for individual animals and Figure S11 for different

recording sites.
each context. Because speed is a scalar variable and has an

orderly relationship to tp, this hypothesis predicts that the neural

trajectories (and their initial conditions) should also have an

orderly organizational structure with respect to tp. In other

words, there should be a systematic relationship between the

vectors connecting nearest points across neural trajectories

and the tp to which they correspond. We tested this prediction

in two complementary ways. First, we performed an analysis of

direction testing whether the vectors connecting nearby trajec-

tories were more aligned than expected by chance. Second,

we performed an analysis of distance asking whether the dis-

tance between the reference trajectory and the other trajectories

respected the distance between the corresponding speeds.
Analysis of Direction

We used KiNeT to measure the angle between vectors connect-

ing nearest points (Euclidean distance) across consecutive tra-

jectories ordered by tp. We used DU
i ½ j� to denote the vector

connecting nearest points across trajectories (superscriptU) be-

tween si½ j� and si + 1½ j�. According to our hypothesis, the direction

of DU
i ½ j� should be similar to DU

i +1½ j� connecting si + 1½ j� to si +2½ j�.
To test this, we measured the angle between these two vectors,

denoted by qUi ½ j�. The null hypothesis of unordered trajectories

predicts that DU
i ½ j� and DU

i + 1½ j� should be unaligned on average

(hqUi ½ j�ii = 90�; angle brackets with the subscript i signify average

over index i). Results indicated that qUi ½ j� was substantially

smaller than 90� for both contexts (Figures 4C and S5). This pro-

vides the first line of quantitative evidence for an orderly organi-

zation of neural trajectories with respect to tp.

Analysis of Distance

We used KiNeT to measure the length of the vectors connecting

nearest points on Ui and Uref, denoted by Di½ j�, at different

time points. This analysis revealed that trajectories evolving

faster than Uref and those evolving slower than Uref were located

on the opposite sides of Uref and that the magnitude of Di½ j�
increased progressively for larger speed differences (Figures

4D and S5). This analysis provided evidence that, for each

context, the relative position of neural trajectories and their initial

conditions in the state space were orderly and predictive of tp.

Control of Neural Trajectories across Contexts by
External Input
To identify the mechanism by which speed might be controlled

across contexts, we first tested whether tt =gts was encoded by

initial conditions (A1). According to this alternative, neural trajec-

tories should follow the organization of tp across both contexts

(Figure 3A), in addition to within each context (Figure 4C). To test

A1, we sorted neural trajectories across the two contexts accord-

ing to tp (Figure 5A, top), and asked whether the angle between

vectors connecting nearest points ðqUi ½ j�Þ was significantly less

than90� (Figure5A,bottom).Unlike thewithin-context results (Fig-

ure 4C), when neural trajectories from both contexts were com-

bined, the angle between nearby neural trajectories was not less

than90� (Figures5BandS6).This indicates that trajectoriesacross

contextsdonot haveanorderly relationship to tt (A1: less than90
�).

Next, we investigated the hypothesis that the context cue acts

as a tonic external input (A2; Figure 3B), leading the system to

establish structurally similar but distinct collections of neural tra-

jectories across contexts (Figures 6A and 6B). This hypothesis

imposes a set of specific geometrical constraints on neural tra-

jectories in the Set-Go epoch. We determined whether the

data met these constraints by testing whether the converse of

each could be rejected, as illustrated in Figures 6C–6F. If we

denote the collection of neural trajectories in the two contexts

by fUg= 1
i gi and fUg=1:5

i gi, these constraints and tests can be

formalized as follows.

(1) fUg=1
i gi and fUg= 1:5

i gi should evolve in the same direction

as a function of time with different average speeds (i.e., slower

for fUg=1:5
i gi). If the converse were true (i.e., trajectories evolving

in different directions, Figure 6C, left), we would expect no sys-

tematic relationship between time points across the two con-

texts. Results from KiNeT across contexts (see STAR Methods)
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Figure 6. Neural Trajectories Comprise

Distinct but Similar Structures across Gains

(A) A schematic showing the organization of neural

trajectories in a subspace spanned by Input, Initial

condition, and Time if context were controlled by

tonic external input. If DMFC were to receive a

gain-dependent input, we would expect neural

trajectories from Set to Go to be separated along

an input subspace, generating two similar but

separated tp-related structures for each context

(A2, Figure 3B). We verified this geometrical

structure by excluding alternative structures

(interdictory circles indicate rejected alternatives).

(B) An illustration of neural trajectories for g= 1

(gray filled circle) and g= 1:5 (red filled circle) with

the time axis normal to the plane of illustration.

Gray and red arrows show vectors connecting

nearby points in each context independently

(DU;g=1:5 and DU;g= 1). When the neural trajectories

associated with the two gains are structured

similarly, these vectors are aligned and the angle

between them ðqgÞ is less than 90�. We used KiNeT

to test this possibility (see STAR Methods).

(C) Left: schematic illustrating a condition in which

the time axes for trajectories in the two contexts

(gray and red) are not aligned. Right: ftg=1
ref ½ j�gj

increased monotonically with ftg=1:5
ref ½ j�gj, indi-

cating that the time axes across contexts were

aligned. Values of ftg= 1:5
ref ½ j�gj above the unity line

indicate that activity evolved at a slower speed in

the g= 1:5 context. The dashed gray line represents unity and the dashed red line represent expected values for ftg=1:5
ref ½ j�gj if speeds were scaled perfectly by a

factor of 1.5.

(D) Left: schematic illustrating an example configuration in which fUg=1
i gi and fUg=1:5

i gi establish dissimilar tp-related structures. Right: hqUi ½ j�ii was significantly

less than 90� for all j indicating that the tp-structure was similar across the two contexts.

(E). Left: schematic illustrating a condition in which fUg=1
i gi and fUg=1:5

i gi are overlapping. Right: the minimum distance Dg across contexts (black line) was

substantially larger than that found between subsets of trajectories within contexts (red and gray lines, see STAR Methods), indicating that the two sets of

trajectories were not overlapping.

(F) Left: schematic illustrating a condition in which fUg=1
i gi and fUg= 1:5

i gi are separated along the same direction that neural trajectories within each context were

separated. Right: the vector associated with the minimum distance between the two manifolds (Dg½ j�) was orthogonal to the vector connecting nearby states for

both g= 1 (gray, hDU;g= 1
i ½ j�ii ) and g= 1:5 (red, hDU;g= 1:5

i ½ j�ii ). In (C)–(E), shaded regions represent 90% bootstrap confidence intervals, and circles represent

statistical significance (p < 0.05, bootstrap test, n = 100). See Figure S7 for individual animals and Figure S11 for different recording sites.
revealed a monotonically increasing relationship between

ftg= 1
ref ½ j�gj and ftg=1:5

ref ½ j�gj, confirming that Set-Go trajectories

across contexts evolved in the same direction (Figures 6C, right,

S7A, and S7E). Moreover, ftg=1:5
ref ½ j�gj had a higher rate of change

than ftg=1
ref ½ j�gj indicating that average speeds were slower in the

g= 1:5 condition. This suggests that speed control played a

consistent role across contexts (Figure 6A). Consistent with the

within-gain analyses (Figure 4B), KiNeT indicated thatUi evolved

at similar speeds across context immediately following the Set

cue (unity slope).

(2) fUg=1
i gi and fUg=1:5

i gi should be organized similarly with

respect to tp. In other words, the vector that connects nearby

points in fUg= 1
i gi should be aligned to its counterpart that con-

nect nearby points in fUg= 1:5
i gi. To evaluate this constraint, we

used the angle between pairs of vectors that connect nearby

points within each context. We use an example to illustrate the

procedure (Figure 6B). Consider one vector connecting nearby

points in two successive neural trajectories in the gain of 1

(e.g., Ug= 1
1 and Ug=1

2 ), and another vector connecting the corre-

sponding points in the gain of 1.5 (e.g., Ug= 1:5
1 and U

g= 1:5
2 ). A

similar orientation between the two groups of trajectories (Fig-
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ure 6A) would cause the angle between these vectors ðqg1Þ to

be significantly smaller than 90�. If instead, fUg=1
i gi and

fUg= 1:5
i gi were oriented differently (Figure 6D, left) or had no

consistent relationship, these vectors would be on average

orthogonal. Using KiNeT, we found that this angle ðqgi ½ j�Þ was

consistently smaller than 90� throughout the Set-Go epoch (Fig-

ures 6D, right, S7B, and S7F), providing quantitative evidence

that the collection of neural trajectories associated with the

two gains were structurally similar (Figure 6A).

(3) If context information is provided as a tonic input, fUg=1
i gi

and fUg=1:5
i gi should be separated in state space along a context

axis throughout the Set-Go epoch. To verify this constraint, we

assumed that neural trajectories for each context were

embedded in distinct manifolds and compared theminimumdis-

tance between the two manifolds ðDgÞ to an analogous distance

metric within each manifold (Figure 6B; see STAR Methods).

These distance measures should be the same if the groups of

trajectories associated with the two contexts overlap in state

space (Figure 6E, left). However, we found distances to be sub-

stantially larger across contexts compared to within contexts

(Figures 6E, right, S7C, and S7G). This confirms that the groups



of trajectories associated with the two contexts were separated

in state space (Figure 6A).

(4) The results so far reject a number of alternative hypotheses

(Figures 6C–6E) and leave two possibilities: either fUg= 1
i gi and

fUg= 1:5
i gi are separated along the same dimension that sepa-

rates trajectories within each context (Figure 6F, left), or they

are separated along a distinct input axis in accordance with A2

(Figure 6A). To distinguish between these two, we askedwhether

the vector associated with the minimum distance Dg½ j� ðDg½ j�Þ
between the two manifolds was aligned to vectors connecting

nearby states within each context ðfDU
i ½ j�giÞ. Analysis of the

angle between these vectors ðqg;U½ j�Þ indicated that the two

were orthogonal for almost all j (Figures 6F, right, S7D, and

S7H). This ruled out the remaining possibility that trajectories

across contexts were separated along the same dimension as

within context (Figure 6F, left).

Having validated these constraints quantitatively, we con-

cluded that population activity across gains formed two groups

of isomorphic speed-dependent neural trajectories (Figure 6A).

These results support our primary hypothesis that flexible control

of speed based on gain context was established by a context-

dependent tonic external input (Figure 3B).

Variability in Neural Trajectories Systematically
Predicted Behavioral Variability
To further substantiate the link between the geometry of neural

trajectories and behavior, we asked whether variability in tp for

each ts and gain could be explained in terms of systematic fluc-

tuations of speed and location of neural trajectories in the space.

Considering the orderly structure of nearby neural trajectories,

we reasoned that two types of deviations along neural trajec-

tories should lead to systematic biases in tp. First, on trials in

which the trajectory deviates toward the trajectory associated

with a shorter (or longer) ts, the trial should result in a shorter

(or longer) tp. Second, when a trajectory evolves too slowly

(closer to its positions at Set) or too fast (closer to its positions

at Go), the trial should result in a longer (or shorter) tp. We tested

this by using KiNeT to examine the relative geometrical organiza-

tion of neural trajectories associated with larger and smaller

values of tp for the same ts and gain. If we denote deviations

across trajectories by ε
U and deviations along trajectories by ε

t

(Figure 7A), these predictions can be formalized as follows.

(P1) Deviations ε
U off of one trajectory toward a trajectory

associated with longer ts should lead to longer tp, and vice versa

(Figure 7B). To test P1, we divided trials for each ts into two bins.

One bin contained all trials in which tp was shorter than median

tp, and the other contained all trials in which tp was longer than

median tp. We computed neural trajectories for the short and

long tp bins and denoted the corresponding states by sshorti ½ j�
and slongi ½ j�, respectively. If P1 is correct, then the geometric rela-

tionship between sshorti ½ j� and slongi ½ j� should be similar to that be-

tween si�1½ j� (shorter ts) and si +1½ j� (longer ts). Therefore, the vec-
tor pointing from sshorti ½ j� to slongi ½ j� ðDp

i ½ j�Þ and the vector pointing

from si�1½ j� to si + 1½ j� ðDU
i ½ j�Þ should be aligned, and the angle be-

tween them, denoted by q
p;U
i ½ j�, should be acute. See STAR

Methods description for calculation of DU
i ½ j� for ts.

Consistent with P1, we found that average q
p;U
i ½ j� ðhqp;Ui ½ j�iiÞ

was less than 90� throughout the Set-Go epoch (Figures 7D,
7E, S8A, and S8C blue trace). This result indicates that neural

trajectories that correspond to larger values of tp were shifted

in state space toward larger values of ts. Notably, the systematic

relationship between tp and neural activity was already present

at the time of the Set, indicating that tp was influenced by vari-

ability during the Ready-Set measurement epoch and thus the

initial condition in the production epoch.

(P2) Deviations ε
t along trajectories should influence the time it

takes for activity to reach the Go state and should therefore influ-

ence tp (Afshar et al., 2011; Michaels et al., 2015). If P2 is correct,

then sshorti ½ j� should be ahead of slongi ½ j�. Therefore, Dp
i ½ j� should

point backward in time, and the angle between Dp
i ½ j� and Dt

i ½ j�
that connects si½ j � 1� to si½ j + 1�, denoted by q

p;t
i ½ j�, should be

obtuse. See STAR Methods description for calculation of Dt
i ½ j�.

Consistent with P2, we found that hqp;ti ½ j�ii was greater than

90�. This result indicates that tp was larger (smaller) when speed

along the neural trajectory was slower (faster) (Figures 7D, S8B,

and S8D, green trace). The angle hqp;ti ½ j�ii was initially close to 90�

consistent with the observation that trajectories evolved at

similar speeds early in the Set-Go epoch (Figure 4B). We also

measured the angle between DU
i ½ j� and Dt

i ½ j�, denoted by

q
U;t
i ½ j�. hqU;ti ½ j�ii was not significantly different than expected by

chance (90�) for most time points.

We also considered whether deviations of neural trajectories

along the gain axis that presumably reflect variability in the

context-dependent input might be related to systematic

changes in tp. We did not find evidence that this was the case.

While there was statistically significant alignment between

Dp
i ½ j� and vectors connecting trajectories of identical ts across

gains ðDg
i ½ j�Þ, this alignment was explained by the component

of Dg
i ½ j� along the direction of DU

i ½ j� (Figure S9).

This analysis extends the correspondence between behavior

and the organization of neural trajectories to include animals’

within-condition variability. Together, these results provide evi-

dence for our hypothesis that activity during Ready-Set epoch

parametrically adjusts the system’s initial condition (i.e., neural

state at the time of Set) within contexts, which in turn controls

the speed of neural trajectory in the Set-Go epoch and the

consequent tp.

RNN Models Recapitulate the Predictions of Inputs and
Initial Conditions
The geometry and dynamics of DMFC responses were consis-

tent with the hypothesis that behavioral flexibility in the RSG

task relies on systematic adjustments of initial conditions and

external inputs of a dynamical system. Motivated by recent ad-

vances in the use of recurrent neural networks (RNNs) as a tool

for testing hypotheses about cortical dynamics (Mante et al.,

2013; Hennequin et al., 2014; Sussillo et al., 2015; Chaisang-

mongkon et al., 2017; Wang et al., 2018), we investigated

whether RNNs trained to perform the RSG task would establish

similar geometrical structures and dynamics.

We created RNNs with two different architectures, one in

which the gain information was provided by the magnitude of a

tonic input, and another in which the gain information was pro-

vided by the magnitude of a transient pulse before the Ready

cue. We refer to these networks as tonic-input RNNs and

transient-input RNNs, respectively (Figure 8A). We used the
Neuron 98, 1005–1019, June 6, 2018 1013
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Figure 7. Relating Neural Variability to

Behavioral Variability

(A) Schematic showing states (filled circles) along

three neural trajectories (gray lines) between Set

(circle) and Go (cross) associated with three

different ts values. The light and dark stars depict

two neural states that are deviated from the

average neural trajectory (the middle trajectory).

The light star corresponds to trials in which tp was

shorter than median tp ðsshorti ½ j�Þ, and the dark star

to trials in which tp was longer than median

ðslongi ½ j�Þ. sshorti ½ j� is deviated from the average tra-

jectory in the direction of shorter ts (toward si�1½ j�
by vector εU) and in the direction of the Go state

(toward si ½ j + 1� by vector εt ). The opposite is true

for slongi ½ j�.
(B) Prediction 1 (P1): deviations ε

U off of one

trajectory toward a trajectory associated with

longer ts should lead to longer tp, and vice versa.

The dashed arrow represents Dp
i ½ j�, the vector

pointing from sshorti ½ j� to slongi ½ j�, and the blue arrow

represents DU
i ½ j�, the vector pointing from si�1½ j� to

si + 1½ j�. P1 is satisfied if the angle between these

vectors, denoted by q
p;U
i ½ j�, is acute.

(C) Prediction 2 (P2): deviations ε
t along trajectories

should influence the time it takes for activity to

reach the Go state and should therefore influence

tp. The green arrow represents DU
i ½ j�, the vector

that connects si ½ j � 1� to si ½ j + 1�. If P2 is correct,

the angle q
p;t
i ½ j� between Dp

i ½ j� and Dt
i ½ j� should be

obtuse.

(D and E) Testing P1 and P2 for the g= 1 (D) and

g= 1:5 (E) contexts. Consistent with P1, average

q
p;U
i ½ j� (hqp;Ui ½ j�ii, blue) was less than 90� from Set

to Go indicating that tp was longer (shorter) when

neural states deviated toward a trajectory asso-

ciated with a longer (shorter) ts. Consistent

with P2, hqp;ti ½ j�ii (green) was greater than 90�,
indicating that tp was longer (shorter) when speed

along the neural trajectory was slower (faster).

The average angle between DU
i ½ j� and Dt

i ½ j�
hqU;ti ½ j�ii (yellow) was not significantly different

than expected by chance (90�) for most time

points. We determined when (at what j) an angle

was significantly different from 90� (p < 0.05) by

comparing angles to the corresponding null distribution derived from 100 random shuffles with respect to tp. Angles that were significantly different from

90� are shown by darker circles. See Figure S8 for individual animals and Figure S11 for different recording sites.
tonic-input RNN as a direct test of whether a network with a

context-dependent tonic input could emulate the geometrical

structure of responses in DMFC. The transient-input RNN, on

the other hand, tested whether this structure would naturally

emerge in a network without such an input.

All networks comprised synaptically coupled nonlinear units

that received nonspecific background activity and were

provided an input encoding Ready and Set as two brief pulses

separated by ts. We trained these RNNs to generate a linear

output function after Set that reached a threshold (Go) at the

desired production interval, tt =gts on average. Within-context

analysis of successfully trained RNNs revealed that they

controlled tp by adjusting the speed of neural trajectories within

a low-dimensional geometrical structure parameterized by initial

conditions (Figures 8B, 8C, and S10). These results are qualita-

tively similar to what we found in DMFC (Figures 2C and 4).
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See Figure S10 for a more detailed treatment of the networks’

response properties.

Using PCA and KiNeT to analyze activity across contexts, we

found that neural trajectories in the tonic- and transient-input

networks were structured differently. In the tonic-input RNN, tra-

jectories formed two isomorphic structures separated along the

dimension associated with the gain-dependent tonic input (Fig-

ure 8B). In contrast, trajectories generated by the transient-input

RNN were better described as coalescing toward a single struc-

ture parameterized by initial condition (Figure 8C). To verify these

observations quantitatively, we evaluated the geometry of neural

trajectories in the two RNN variants using the same analyses that

we performed on DMFC activity. In particular, we sorted trajec-

tories with respect to tp across the two gain contexts (g= 1 and

g = 1:5) and quantified the angle between vectors connecting

nearest points ðqUi ½ j�Þ. As noted in the analysis of DMFC, this
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Figure 8. RNNs with Tonic but Not Transient Input Captured the

Structure of Activity in DMFC

(A) Schematic illustration of the RNNs. The networks receive brief Ready and

Set pulses separated in time by ts. Additionally, each network is provided

with a context-dependent ‘‘input’’ that either terminates prior to Ready

(‘‘Transient input,’’ top) or persists throughout the trial (‘‘Tonic input,’’ bot-

tom). All networks were trained so that the output (z) would generate a ramp

after Set that would reach a threshold (dashed line) at the context-depen-

dent tt.

(B) Top: state-space projections of tonic-input RNN activity in the Set-Go

epoch. The axes for 3D projections were identified using the same method as

in Figure 2C.

(C) Same as (B) for the transient-input RNN.

(D) Analysis of direction in the tonic-input RNN with the same format as Fig-

ure 5B. hqUi ½ j�ii was larger than 90� for the entire the Set-Go epoch. This in-

dicates that the tonic network forms two separate context-specific sets of

isomorphic neural trajectories (inset).

(E) Same as (D) for the transient-input network. hqUi ½ j�ii was consistently less

than 90� consistent with a geometry in which neural trajectories are organized

with respect to tp regardless of the gain context (inset).

(F and G) Trajectory separation ðDgÞ across contexts for the tonic-input

(F) and transient-input (G) networks with the same format as Figure 6E.

Dg was substantially larger through the Set-Go epoch in the tonic-input

network (F). In (D)–(G), shaded regions represent 90% bootstrap confidence
angle is expected to be acute if trajectories form a single struc-

ture (A1: hqUi ½ j�ii < 90�), and obtuse if trajectories form two

gain-dependent structures (A2: hqUi ½ j�ii R 90�). As predicted,

the tonic-input RNNs formed two isomorphic structures (A2)

indicating that when a tonic gain-dependent input is present,

RNNs rely on a solution with separate gain-dependent geomet-

rical structures (Figure 8E). In contrast, in the transient-input

RNNs, angles between consecutive trajectories were acute

(A1). This result underscores the importance of a tonic gain-

dependent input in establishing separate isomorphic structures

(Figure 8D).

We also compared the two RNNs in terms of the distance be-

tween trajectories across the two contexts using the same

metric ðDgÞ we used previously for the analysis of DMFC (Fig-

ure 6E). The minimum distance between fUg= 1
i gi and fUg=1:5

i gi
at the time of Set was consistently smaller in the transient-input

RNNs compared to tonic-input RNNs (Figures 8F and 8G). We

compared values of Dg in each RNN normalized by the distance

between the trajectories that correspond to the shortest and

longest tp bin for the g= 1 context in the same RNN. In the tonic

networks, theminimumnormalized distance ranged between 0.4

and 1.6, which was at least 10 times larger than the that

observed in the transient networks (0.003 to 0.04). Furthermore,

trajectories in all transient networks gradually established a

tt-related structure consistent with A1. In contrast, trajectories

in the tonic networks, like the DMFC data, were characterized

by two separate tp-related structures, one for each context.

These results provide an important theoretical corroboration of

our intuition that when gain information is provided as tonic input,

a natural solution is for the system to establish distinct and

isomorphic gain-dependent sets of neural trajectories.

DISCUSSION

Our results indicate that flexible control of behavior could be

parsed in terms of systematic adjustments to initial conditions

and simple external inputs of a dynamical system. Activity struc-

ture within each gain context was consistent with the hypothesis

that the system’s initial conditions controlled tp by parameter-

izing the speed of neural trajectories (Shinomoto et al., 2011; Ja-

zayeri and Shadlen, 2015; Wang et al., 2018). The displacement

of neural trajectories in DMFC state space (Shinomoto et al.,

2011; Wang et al., 2018) as a function of gain, and the lack of

structural representation of tp across both gains suggested

that neurons received the gain information as a context-depen-

dent tonic input. Following recent advances in using RNNs to

generate and test hypotheses about dynamical systems (Rigotti

et al., 2010; Mante et al., 2013; Hennequin et al., 2014; Sussillo

et al., 2015; Rajan et al., 2016; Chaisangmongkon et al., 2017;

Wang et al., 2018), we corroborated this interpretation

by analyzing the behavior of different RNN models trained

to perform the RSG taskwith either tonic or transient context-de-

pendent inputs. Although both types of networks used initial
intervals, and circles represent statistical significance (p < 0.05,

bootstrap test, n = 100). See Figure S10 for a more detailed analysis of RNN

results.
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conditions to set the speed of neural trajectories within contexts,

only the tonic-input RNNs reliably established and maintained

separate structures of neural trajectories across gains, similar

to what we found in DMFC.

Although we do not know the constraints that led the brain to

establish separate geometrical structures, we speculate about

potential computational advantages associated with this partic-

ular solution. First and foremost, this may be a particularly robust

solution; as the gain information was provided by a persistent vi-

sual cue, the brain could use this input as a reliable signal to

modulate neural dynamics in RSG. This solution may also reflect

animals’ learning strategy. We trained monkeys to perform the

RSG taskswith two gain contexts. At one extreme, animals could

have treated these as completely different tasks leading to

completely unrelated response structures for the two gains. At

the other extreme, animals could have established a single para-

metric solution that would enable the animal to perform the two

contexts as part of a single continuum (e.g., represent tt).

DMFC responses, however, did not match either extreme.

Instead, the system established what might be viewed as a

modular solution comprised of two separate isomorphic struc-

tures. We take this as evidence that the brain sought similar

solutions for the two contexts, but it did so while keeping the

solutions separated in the state space. This strategy preserves

a separable, unambiguous representation of gain and ts at

the population level (Machens et al., 2010; Mante et al., 2013;

Kobak et al., 2016) and provides the additional flexibility of

parametric adjustments to the two parameters independently.

Future extensions of our experimental paradigm to cases where

context information is not present throughout the trial (e.g., inter-

nally inferred rules) might provide a more direct test of these

possibilities.

Regardless of the learning strategies and constraints that

shaped DMFC responses, our results highlight an important

computational role for inputs that deviate from traditional views.

We found that changing the level of a static input can be used to

generalize an arbitrary stimulus response mapping in the RSG

task to multiple contexts while preserving the computational

mechanisms within contexts. Similar inferences can be made

from other recent studies that have evaluated the computational

utility of inputs that encode task rules and behavioral contexts

(Mante et al., 2013; Song et al., 2016; Chaisangmongkon et al.,

2017; Wang et al., 2018). Extending this idea, it may be possible

for the system to use multiple orthogonal input vectors to flexibly

and rapidly switch between sensorimotor mappings along

different dimensions. Together, these findings suggest that a

key function of cortical inputs may be to flexibly reconfigure

the intrinsic dynamics of cortical circuits by driving the system

to different regions of the state space. This allows the same

group of neurons to access a reservoir of latent dynamics

needed to perform different task-relevant computations.

Our results raise a number of additional important questions.

First, future work should confirm the existence of and identify

the source of the putative context-dependent input in the RSG

task among candidate cortical and subcortical areas (Bates

and Goldman-Rakic, 1993; Lu et al., 1994; Wallis et al., 2001;

Wang et al., 2005; Akkal et al., 2007). The mechanism by which

such putative input modulates cortical activity is also unknown.
1016 Neuron 98, 1005–1019, June 6, 2018
In our RNN models, context information was provided by an

external drive and the model was agnostic with respect to the

exact mechanism. In the cortex, control of speed of dynamics

may be mediated by an input that either drives cortical neurons

toward their saturating nonlinearity (Wang et al., 2018) or modu-

lates the synaptic properties or activation functions of a subset of

cortical neurons (Harris and Thiele, 2011; Nadim and Bucher,

2014; Dipoppa et al., 2018). Second, while the signals recorded

in this study were consistent with a prominent role for DMFC in

RSG, other brain areas such as the thalamus (Guo et al., 2017;

Schmitt et al., 2017) and prefrontal cortex (Miller and Cohen,

2001) are also likely to help maintain the observed dynamics.

In particular, while we argue that the initial conditions in DMFC

appear sufficient to set the speed of the dynamics within

contexts, other areas may provide interval-dependent input

during the Set-Go epoch (Wang et al., 2018). Recording from

these areas would test this possibility. Third, although we

assumed that recurrent interactions were fixed during our

experiment, it is almost certain that synaptic plasticity plays a

key role as the network learns to incorporate context-dependent

inputs (Pascual-Leone et al., 1995; Kleim et al., 1998; Xu et al.,

2009; Yang et al., 2014). Finally, it is possible that factors not

measured by extracellular recording (e.g., short-term synaptic

plasticity) contribute to both interval (Buonomano and Merze-

nich, 1995; Karmarkar and Buonomano, 2007; Murray and

Escola, 2017) and contextual control (Stokes et al., 2013) in

RSG. These open questions aside, our results provide a novel

‘‘computation through dynamics’’ framework to link neural activ-

ity to behavior.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Rhesus macaque (Macaca mulatta) Alpha Genesis N/A

Software and Algorithms

MATLAB MathWorks https://www.mathworks.com/products/matlab.html

KiloSort Pachitariu et al., 2016 https://github.com/cortex-lab/KiloSort

Other

Cerebus system Blackrock Microsystems http://blackrockmicro.com/neuroscience-research-

products/neural-data-acquisition-systems/cerebus-

daq-system/

Plexon V-Probes Plexon https://plexon.com/products/plexon-v-probe/

Eyelink 1000 eye tracker SR Research https://www.sr-research.com/products/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mehrdad

Jazayeri (mjaz@mit.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures conformed to the guidelines of the National Institutes of Health and were approved by the Committee of

Animal Care at the Massachusetts Institute of Technology. Two adult monkeys (Macaca mulatta), one female (C) and one male (J),

were trained to perform the Ready, Set, Go (RSG) behavioral task. Both subjects were pair housed and had not participated in

previous studies. Monkeys were seated comfortably in a dark and quiet room. Stimuli and behavioral contingencies were controlled

using MWorks (https://mworks.github.io/) on a 2012 Mac Pro computer. Visual stimuli were presented on a frontoparallel 23-inch

Acer H236HL monitor at a resolution of 1920x1080 at a refresh rate of 60 Hz, and auditory stimuli were played from the computer’s

internal speaker. Eye positions were tracked with an infrared camera (Eyelink 1000; SR Research Ltd, Ontario, Canada) and sampled

at 1 kHz.

METHOD DETAILS

RSG Task
Task contingencies

Monkeys had tomeasure a sample interval, ts, and subsequently produce a target interval tt whose relationship to ts was specified by

a context-dependent gain parameter (tt = gain 3 ts) which was set to either 1 (g= 1 context) or 1.5 (g= 1:5 context). On each trial, ts
was drawn from a discrete uniform prior distribution (7 values, minimum = 500 ms, maximum = 1000 ms), and gain (g) was switched

across blocks of trials (101 ± 49 trials; mean ± std).

Trial structure

Each trial beganwith the presentation of a central fixation point (FP, circular, 0.5 deg diameter), a secondary context cue (CC, square,

0.5 degwidth, 3-5 deg below FP), an open circle centered at FP (OC, radius 8-10 deg, line width 0.05 deg, gray) and three rectangular

stimuli (2.0x0.5 deg, gray) placed 90 deg apart over the perimeter of OC with their long side oriented radially (Figure 1A). FP was red

for the g= 1 context and purple for the g= 1:5 context. CC was placed directly below FP in the g= 1 context, and was shifted 0.5 deg

rightward in the g= 1:5 context. Two of the rectangular stimuli were presented only briefly and served as placeholders for the sub-

sequent ‘Ready’ and ‘Set’ flashes. The third rectangle served as the saccadic target (‘Go’), which together with FP, CC, and OC re-

mained visible throughout the trial. Ready was always positioned to the right or left of FP (3 o’clock or 9 o’clock position). Set was

positioned 90 deg clockwise with respect to Ready and the saccadic target was placed opposite to Ready.

Monkeys had tomaintain their gazewithin an electronic window around FP (2.5 and 5.5 degwindow for C and J, respectively) or the

trial was aborted. After a random delay (uniform hazard), first the Ready and then the Set cues were flashed (83 ms, white). The two

flashes were accompanied by a short auditory cue (the ‘‘pop’’ system sound), andwere separated by ts. The produced interval tp was
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defined as the interval between the onset of the Set cue and the time the eye position entered a 5-deg electronic window around the

saccadic target. Following saccade, the response was deemed a ‘‘hit’’ if the error ε=
��tp � tt

�� was smaller than a tt-dependent

threshold εthresh =att + bwhere awas between 0.2 and 0.25, and bwas 25ms. The exact choice of these parameters were not critical

for performing the task or for the observed behavior; instead, they were chosen to maintain the animals motivated and willing to work

for more trials per session. On hit trials animals received juice reward and the target turned green. The reward amount, as a fraction of

maximum possible reward, decreased with increasing error according to ððεthresh � ε=εthreshÞ1:5, with a minimum fraction 0.1 (Fig-

ure 1B). Trials in which tp wasmore than 3.5 times themedian absolute deviation (MAD) away from themeanwere considered outliers

and were excluded from further analyses.

As an initial analysis of whether monkeys learned the RSG task across gains, we fit linear regression models to the behavior sepa-

rately for each gain to quantify the difference in slopes between the two contexts:

tp = bo + b1ts

We also fit models with an interaction term across both contexts:

tp = b0 + b1ts + b2g+ b3gts

If the animals successfully learned to apply the gain, b3 should be positive.

We further applied a Bayesian observer model (Miyazaki et al., 2005; Jazayeri and Shadlen, 2010, 2015; Acerbi et al., 2012), which

captured the behavior in both contexts (Figure 1E). Full details of the model can be found in previous work (Jazayeri and Shadlen,

2010, 2015). Briefly, we assumed that both measurement and production of time intervals are noisy. Measurement and production

noise were modeled as zero-mean Gaussian with standard deviation proportional to the base interval (Rakitin et al., 1998), with

constant of proportionality of of wm and wp, respectively. A Bayesian model observer produced tp after deriving an optimal estimate

of tt from the mean of the posterior. To account for the possibility that the mental operation of mapping ts to tt according to the gain

factor might be noisier in the g= 1:5 context than in the g= 1 context (Remington and Jazayeri, 2017), we allowed wm and wp to vary

across contexts.

Recording
We recorded neural activity in dorsomedial frontal cortex (DMFC) with 24-channel linear probes (Plexon). Recording locations were

selected according to stereotaxic coordinates with reference to previous studies recording from the supplementary eye field (SEF;

Schlag and Schlag-Rey, 1987; Huerta and Kaas, 1990; Shook et al., 1991; Fujii et al., 2002) and presupplementary motor area

(Pre-SMA; Matsuzaka et al., 1992; Fujii et al., 2002), and the existence of task-relevant modulation of neural activity. We sampled

DMFC starting from the center of the stereotaxically identified region and moved outward a quasi-systematic fashion looking for re-

gions with strong modulation during either epoch of the RSG task. In monkey C, recordings were made using single probes in seven

sessions between 3 mm to 7 mm lateral of the midline and 0.5 mm posterior to 5.5 mm anterior of the genu of the arcuate sulcus. In

monkey J, we recorded using paired probes (48 total channels, 1.5 mm separation between probes) in three sessions from between

3 mm to 4.5 mm lateral of the midline and 0.75 mm to 5 mm anterior of the genu of the arcuate sulcus. We conservatively refer to the

recorded regions as dorsomedial frontal cortex (DMFC), potentially comprising SEF, Pre-SMA and dorsal SMA (no recordings were

made in the medial bank). Recording sites are shown in Figures S2 and S11. Data were recorded and stored using a Cerebus Neural

Signal Processor (NSP; BlackrockMicrosystems). Preliminary spike sorting was performed online using the Blackrock NSP, followed

by offline sorting using the Phy spike sorting software package using the spikedetekt, klusta, and kilosort algorithms (Pachitariu et al.,

2016; Rossant et al., 2016). Sorted spikes were then analyzed using custom code in MATLAB (The MathWorks).

Analysis of DMFC data
Average firing rates of individual neurons were estimated using a 150 ms smoothing filter applied to spike counts in 1 ms time bins.

We used PCA to visualize and analyze recorded activity patterns. For both animals, neural trajectories (Figure S2) and the KiNeT

results (Figures S5–S8) were qualitatively similar. We thus performed the main analyses on the combined population of neurons

across animals. Combined analysis would not be warranted if results were substantially different across animals. PCA was applied

after a soft normalization: spike counts measured in 10 ms bins were divided by the square root of the maximum spike count across

all bins and conditions. The normalization was implemented to minimize the possibility of high firing rate neurons dominating the

analysis.

When binning data according to increasing values of tp, we ensured that all bins had equal number of trials, independently for each

session. To average firing rates across trials within a group, we truncated trials to themedian tp and averaged firing rates with attrition.

Analyses of neural data were applied to all 10 sessions across both monkeys. For most analyses, we included neurons for which at

least 15 trials were recorded in each condition and which had a minimum unsmoothed modulation depth of 15 spikes per second.

Because the comparison of ts- versus tp-related structure (Figure 7) required grouping trials into substantially more bins than the other

analyses (14 versus 7 or 5), we reduced theminimumnumber of trials required to 10 for this analysis (273 units; 95 frommonkey C and

178 from monkey J). We did not find that the results of any of the analyses were dependent on the specific threshold chosen, and

results were similar in individual subjects. We did not separately analyze trials immediately following context switches due to the

low number of context switches per session (mean = 6.8 switches).
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For visualization of neural trajectories in state space, we projected population firing rates onto axes along which responses were

maximally separated with respect to context (‘‘gain axis,’’ Figures 2B and 2C and ‘‘input,’’ Figure 3C) and additionally with respect to

interval within context (‘‘interval axis,’’ Figures 2B and 2C, and ‘‘initial condition,’’ Figure 3C) for the Set-Go epoch. For the Ready-Set

epoch (Figure 2B), the gain axis was defined as the vector connecting population firing rates averaged over ts across contexts at the

time of Set. For the Set-Go epoch, the interval axis was defined as the vector between neural activity for the shortest and longest

tp averaged over time and context. This component of the activity was then subtracted away from the full activity, and the gain

axis was defined as the vector between neural activity for the two contexts averaged over time and tp. For the Ready-Set epoch,

we additionally plotted PCs 1 and 2 with the context component removed (Figure 2B). For the Set-Go epoch, we additionally plotted

PC 1 with the context and tp components removed (Figures 2C and 3C). Axes used to plot the RNN activity were calculated using the

same method (Figures 8B and 8C).

Kinematic analysis of neural trajectories (KiNeT)
We developed KiNeT to compare the geometry, relative speed, and relative position along a group of neural trajectories that have an

orderly organization and change smoothly with time. To describe KiNeT rigorously, we developed the following symbolic notations.

Square and curly brackets refer to individual items and groups of items, respectively.

The algorithm for applying KiNeT can be broken down into the following steps: 1) Choose a Euclidean coordinate system to analyze

the neural trajectories. We chose the first 10 PCs in the Set-Go epoch, which captured 89% of the variance in the data. 2) Designate

one trajectory as reference, Uref. We used the trajectory associated with the middle tp bin as reference. 3) On each of the non-refer-

ence trajectories Ui ðisrefÞ, find fsi½ j�gj with minimum Euclidean distance to fsref½ j�gj and their associated times fti½ j�gj according to

the following equations:

ti½ j�= arg min
t

kUiðtÞ � sref½ j� k
si½ j�=Uiðti½ j�Þ

Organization of trajectories in state space
The distances fDi½ j�gj were used to characterize positions in neural state space of each Ui relative toUref. The magnitude of Di½ j�was

defined as the norm of the vector connecting si½ j� to sref½ j�, which we refer to as Dref
i ½ j�. The sign of Di½ j�was defined as follows: for the

trajectory U1 associated with the shortest tp, and U5 associated with the longest, Di½ j� was defined to be negative and positive,

respectively. For all other trajectories, Di½ j� was positive if the angle between Dref
i ½ j� and Dref

5 ½ j� was smaller than the angle between

Dref
i ½ j� and Dref

1 ½ j�, and negative otherwise.

Analysis of neural trajectories across contexts
We initially applied the KiNeT procedure to the trajectories ordered by duration irrespective of context (Figure 5). Next, we analyzed

the relationships between the sets of trajectories for the two contexts. This required aligning the activity between the two contexts in

time. To do this, we started with the aligned times foundwithin each context, and using successive groups of neural states in the g= 1

context indexed by ftg=1
ref ½ j�gj, found the reference time ftg= 1:5

ref ½ j�gj in the g= 1:5 context for which themean distances between neural

states in paired trajectories (i.e., the first tp bins of both gains, second tp bins, etc.) were smallest. This resulted in an array of times

from ftg= 1:5
ref ½ j�gj, indexed by ftg= 1

ref ½ j�gj, such that the trajectories across gains were aligned in time for subsequent analyses (Fig-

ure 6C). We also measured the distance Dg between the structures using the across-context time alignment. For successive j, we

measured the minimum distance between line segments connecting consecutive trajectories within each context. For five tp bins,

this meant four line segments for each context, and 42 = 16 distances. We chose the minimum of these distance values as the value

of Dg between the two structures. As a point of comparison, we generated set of ‘‘null’’ distances by splitting trajectories from each

context into odd- and even- numbered trajectories and calculating the minimum distance between the sets of connecting line seg-

ments (Figure 6E).

Using KiNeT to calculate variance explained by interval and gain
To quantify the fraction of variance explained by task parameters, we used a marginalization procedure described previously (Kobak

et al., 2016). Briefly, this is done by successively subtracting away neural activity averaged over each task parameter to create

centered signals, thenmeasuring the variance of these centered signals. This marginalization procedure, however, cannot be directly

applied to neural activity when trajectories are of different duration. In the Ready-Set epoch, we tackled this problem by concate-

nating trajectories across ts to create one trajectory for each gain.

For the Set-Go epoch, we first used KiNeT to transform all trajectories to sequences of states ðfsi½ j�gjÞ of equal length, and

applied the marginalization on the resulting same-length sequences. With this procedure, we were able to compute variance

associated with different factors. Interval (i.e., the five tp bins) accounted for 21% of the variance in the full dataset, and 18% of

the variance in PCs 1-10 used for KiNeT-related analyses. Gain accounted for 8% of the variance in the full dataset, and 7% of
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the variance in PCs 1-10. The interaction between Interval and Gain accounted for 6% and 1.5%, respectively, while condition-in-

dependent (i.e., time-related) variability accounted for 65% and 73% of the variance. This is consistent with previous studies which

have found time varying, condition-independent signals to account for a large percentage of variance of neural responses in frontal

cortex (Kaufman et al., 2016; Kobak et al., 2016).

Calculation of DU
i ½ j� for comparing variability within and across neural trajectories

For the analyses in Figure 7, we binned trials according to ts, rather than tp, and redefined DU
i ½ j� such that there was one vector for

each DU
i ½ j� trajectory Ui, instead of one fewer (Figure 4A). For most values of i, this vector was calculated as:

DU
i ½ j�= si +1½ j� � si�1½ j�

Because there was a finite number of ts values, we could not compute DU
i ½ j� for i = 1 and i = 7 (si�1½ j� was not defined for i = 1 and

si +1½ j� was not defined for i = 7). Therefore, for the shortest ts, we defined DU
i ½ j� as s2½ j� � s1½ j� (instead of s2½ j� � s0½ j�), and for the

longest ts, as s7½ j� � s6½ j� (instead of s8½ j� � s6½ j�).

Calculation of Dt
i ½ j� for comparing variability within and across neural trajectories

For the analyses in Figure 7, Dt
i ½ j� was calculated similarly to DU

i ½ j�, with:

Dt
i ½ j�= si½ j + 1� � si½ j � 1�

Because there was a finite number of time points, we could not compute Dt
i ½ j� for j = 1 and j =N (where N is the number of states in

Uref; si½ j � 1� was not defined for j = 1 and si½ j + 1� was not defined for j = N). Therefore, for the first time point, we defined Dt
i ½ j� as

si½2� � si½1� (instead of si½2� � si½0�), and for the last time point, to si½N� � si½N� 1� (instead of si½N + 1� � si½N� 1�).

Recurrent neural network
We constructed a firing rate recurrent neural network (RNN) model with N = 200 nonlinear units. The network dynamics were gov-

erned by the following differential equation:

t _xðtÞ= � xðtÞ+ JrðtÞ+Bu+cx +rxðtÞ
rðtÞ= tanh½xðtÞ�
xðtÞ is a vector containing the activity of all units. and rðtÞ represents the firing rates of those units by transforming x through a tanh

nonlinearity. Time t was sampled every millisecond for a duration of T = 3300 ms. The time constant of decay for each unit was set to

t = 10ms. The unit activations also contain an offset cx and white noise rxðtÞ at each time step with standard deviation in the range

[0.01-0.015]. The matrix J represents recurrent connections in the network. The network received multi-dimensional input u through

synaptic weights B = ½bc;bs�. The input u was comprised of a gain-dependent context cue ucðtÞ and an input usðtÞ that provided
Ready and Set pulses. In usðtÞ Ready and Set were encoded as 20 ms pulses with a magnitude of 0.4 that were separated by

time ts.

Two classes of networks were trained to perform the RSG task with multiple gains. In the tonic-input RNNs, the gain-dependent

input ucðtÞ was set to a fixed offset for the entire duration of the trial. In contrast, in the transient-input RNNs, ucðtÞ was active tran-

siently for 440 ms and was terminated 50-130 ms before the onset of the Ready pulse. The amplitude of ucðtÞwas set to 0.3 for g= 1

and 0.4 for g = 1:5. The transient network received an additional gain-independent tonic input of magnitude 0.4, similar to the tonic

networks. Both types of networks produced a one-dimensional output zðtÞ through summation of units with weights wo and a

bias term.

zðtÞ=wT
orðtÞ+ cz

Network Training

Prior to training, model parameters ðqÞ, which comprised J,B,wo, cx and cz were initialized. Initial values of matrix Jwere drawn from

a normal distribution with zero mean and variance 1/N, following previous work (Rajan and Abbott, 2006). Synaptic weights

B= ½bc;bs� and the initial state vector x0 and unit biases cx were initialized to random values drawn from a uniform distribution

with range [-1,1]. The output weights, wo and bias cz, were initialized to zero. During training, model parameters were optimized

by truncated Newton methods using backpropagation-through-time (Werbos, 1990) by minimizing a squared loss function between

the network output ziðtÞ and a target function fiðtÞ, as defined by:

HðqÞ= 1

jTI j
X
i

X
t

ðziðtÞ � fiðtÞÞ2
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Here i indexes different trials in a training set (I = different gains ðgÞ x intervals (ts) x repetitions (r)). The target function fiðtÞwas only

defined in the Set-Go epoch (the output of the network was not constrained during the Ready-Set epoch). The value of fiðtÞwas zero

during the Set pulse. After Set, the target function was governed by two parameters that could be adjusted to make fiðtÞ nonlinear,
scaling, non-scaling or approximately linear:

fiðtÞ=A
�
e

t
att � 1

�

For the networks reported, fiðtÞwas an approximately linear ramp function parametrized by A = 3 and a = 2.8. Variable tt represents

the transformed interval for a given ts and gain g. Solutions were robust with respect to the parametric variations of the target function

(e.g., nonlinear and non-scaling target functions). In trained networks, the production time, tp was defined as the time between the Set

pulse and when the output ramped to a fixed threshold ðzi = 1Þ.
During training, we employed two strategies to obtain robust solutions. First, we trained the networks to flexibly switch between

three gain contexts, the two original values (g= 1 and g = 1:5) and an additional intermediate value of g= 1:25 for which the amplitude

of ucðtÞ was set to 0.35. However, the behavior of networks trained with the two original gains were qualitatively similar. Second, we

set rðtÞ to zero, and instead, the context-dependent input, ucðtÞ received white noise with standard deviation of 0.005, per unit time

ðDt = 0Þ.

QUANTIFICATION AND STATISTICAL ANALYSIS

Confidence intervals for KiNeT performed on trajectories binned according to tp were computed by a bootstrapping procedure,

randomly selecting trials with replacement 100 times. To test for statistical significance of metrics generated through the KiNeT pro-

cedure, we used bootstrap tests, where p was the fraction of bootstrap iterations for which the metric was consistent with the null

hypothesis. For analyses relating neural variability to behavioral variability, we performed permutation tests in which null distributions

were derived from 100 random shuffles with respect to tp. Unless otherwise stated, significance of a measure for individual time

points was set to p < 0.05. The results of KiNeT were similar for different methods of data smoothing.
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