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Abstract Human visual recognition activates a dense network of overlapping feedforward and

recurrent neuronal processes, making it hard to disentangle processing in the feedforward from

the feedback direction. Here, we used ultra-rapid serial visual presentation to suppress sustained

activity that blurs the boundaries of processing steps, enabling us to resolve two distinct stages of

processing with MEG multivariate pattern classification. The first processing stage was the rapid

activation cascade of the bottom-up sweep, which terminated early as visual stimuli were

presented at progressively faster rates. The second stage was the emergence of categorical

information with peak latency that shifted later in time with progressively faster stimulus

presentations, indexing time-consuming recurrent processing. Using MEG-fMRI fusion with

representational similarity, we localized recurrent signals in early visual cortex. Together, our

findings segregated an initial bottom-up sweep from subsequent feedback processing, and

revealed the neural signature of increased recurrent processing demands for challenging viewing

conditions.

DOI: https://doi.org/10.7554/eLife.36329.001

Introduction
The human visual system interprets the external world through a cascade of visual processes that

overlap in space and time. Visual information is transformed not only feedforward, as it propagates

through ascending connections, but also from higher to lower hierarchy areas through descending

feedback connections and within the same areas through lateral connections (Ahissar et al., 2009;

Bullier, 2001; Enns and Di Lollo V, 2000; Lamme and Roelfsema, 2000; Lamme et al., 1998). This

concurrent activation of a dense network of anatomical connections poses a critical obstacle to the

reliable measurement of recurrent signals and their segregation from feedforward activity. As a

result, our knowledge on the role of recurrent processes and how they interact with feedforward

processes to solve visual recognition is still incomplete.

Here we used an ultra-rapid serial visual presentation (ultra-RSVP) of real-world images to segre-

gate early bottom-up from recurrent signals in the ventral pathway. We postulated that, under such

rapid stimulus presentations, visual processes will degrade substantially by suppressing sustained

neural signals that typically last hundreds of milliseconds. As a result, neural signals would become

transient, reducing the overlap of processes in space and time and enabling us to disentangle dis-

tinct processing steps. Recent behavioral evidence exemplified the remarkable robustness of the

human visual system to capture conceptual information in stimuli presented at similar rates
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(Broers et al., 2018; Evans et al., 2011; Potter et al., 2014). Thus the underlying neural signals,

while deprived, would still represent brain activity required to accomplish visual object recognition.

We recorded human MEG data while participants viewed ultra-RSVP sequences with rates 17 or

34 ms per picture. Confirming our hypothesis, the rapid presentation of images segregated the acti-

vation cascade of the ventral visual pathway into two temporally dissociable processing stages, dis-

entangling the initial bottom-up sweep from subsequent processing in high-level visual cortex.

Capitalizing on this dissociation, we used multivariate pattern classification of MEG data to charac-

terize the activation dynamics of the ventral pathway and address the following three challenges: we

investigated how the evolution of the bottom-up sweep predicts the formation of high-level visual

representations; we sought evidence for rapid recurrent activity that facilitates visual recognition;

and we explored whether reducing visibility with higher stimulus presentation rates increases recur-

rent processing demands. Finally, to resolve the locus of feedforward and feedback visual signals,

we tracked the spatiotemporal dynamics with a MEG-fMRI fusion approach based on representa-

tional similarity (Cichy et al., 2014, 2016a; Kriegeskorte et al., 2008).

Results
We collected MEG data while human participants (n = 17) viewed rapid sequences of 11 real-world

images presented at 17 or 34 ms per picture. The middle image (sixth image, named target) was

randomly sampled from a set of 12 face images or 12 object images, while the remaining images (1–

5 and 7–11, named masks) comprised different categories of objects (Figure 1a). Participants per-

formed a two-alternative forced choice task reporting whether a face was present in the sequence

or not.

Even though the image presentation was extremely rapid, participants performed the face detec-

tion task consistently above chance in the 17 ms per picture RSVP condition (sensitivity index d’ ±

SEM = 1.95 ± 0.11), and with high accuracy in the 34 ms per picture RSVP condition (d’ ± SEM =

3.58 ± 0.16) (Figure 1b). Behavioral performance was significantly different between the two condi-

tions (n=17; two-sided signed-rank test; P�0.001).

eLife digest The human brain can interpret the visual world in less than the blink of an eye.

Specialized brain regions process different aspects of visual objects. These regions form a hierarchy.

Areas at the base of the hierarchy process simple features such as lines and angles. They then pass

this information onto areas above them, which process more complex features, such as shapes.

Eventually the area at the top of the hierarchy identifies the object. But information does not only

flow from the bottom of the hierarchy to the top. It also flows from top to bottom. The latter is

referred to as feedback activity, but its exact role remains unclear.

Mohsenzadeh et al. used two types of imaging to map brain activity in space and time in healthy

volunteers performing a visual task. The volunteers had to decide whether a series of images that

flashed up briefly on a screen included a face or not. The results showed that the brain adapts its

visual processing strategy to suit the viewing conditions. They also revealed three key principles for

how the brain recognizes visual objects.

First, if early visual information is incomplete – for example, because the images appeared only

briefly – higher regions of the hierarchy spend more time processing the images. Second, when

visual information is incomplete, higher regions of the hierarchy send more feedback down to lower

regions. This leads to delays in identifying the object. And third, lower regions in the hierarchy –

known collectively as early visual cortex – process the feedback signals. This processing takes place

at the same time as the higher levels identify the object.

Knowing the role of feedback is critical to understanding how the visual system works. The next

step is to develop computer models of visual processing. The current findings on the role of

feedback should prove useful in designing such models. These might ultimately pave the way to

developing treatments for visual impairments caused by damage to visual areas of the brain.

DOI: https://doi.org/10.7554/eLife.36329.002
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To track how neural representations resolved stimulus information in time, we used time-resolved

multivariate pattern classification on the MEG data (Cichy and Pantazis, 2017; Cichy et al., 2014;

Isik et al., 2014; King and Dehaene, 2014). We extracted peri-stimulus MEG signals from �300 ms

to 900 ms (1 ms resolution) with respect to the target image onset. For each time point separately,

we used the MEG data to classify pairwise (50% chance level) all 24 target images. The results of the

classification (% decoding accuracy) were used to populate a time-resolved 24 � 24 decoding matrix

indexed by the target images (Figure 2a). To demonstrate the advantage of RSVP in dissociating

visual processes against other experimental paradigms, we further computed decoding matrices in a

slow visual presentation at 500 ms per picture, where the same 24 target images were presented in

isolation for 500 ms with an ISI of 1 s. The entire procedure yielded three time-resolved decoding

matrices, one for the 17, 34, and 500 ms per picture conditions respectively.

Rapid serial visual presentation disrupted the early sweep of visual
activity
To determine the time series with which individual images were discriminated by neural representa-

tions, we averaged all elements of the decoding matrix, resulting in a grand total decoding time

series (Figure 2b). First, we found that neural responses were resolved at the level of individual

images in all 3 viewing conditions. Second, decoding accuracies decreased with faster stimulus pre-

sentation rates, reflecting the challenging nature of the RSVP task with stimuli presented for very

short times. Third, peak latencies shifted earlier with faster stimulus presentation rates (Figure 2e).

That is, the 500 ms per picture condition reached a peak at 121 ms (95% confidence interval: 102-

126 ms), preceded by the 34 ms per picture RSVP condition at 100 ms (94-107 ms), and finally the

17 ms per picture RSVP condition at 96 ms (93-99 ms) (all statistically different; P<0.05; two-sided

Figure 1. Rapid serial visual presentation (RSVP) task. (a) Experimental procedure. The stimulus set comprised 12 face targets, 12 object targets, and 45

masks of various objects. Participants viewed a RSVP sequence of 11 images, with the middle image (target) either a face or an object. The images

were presented at a rate of 17 ms per picture or 34 ms per picture in separate trials. Following a delay of 0.7 - 1 s to prevent motor artifacts, subjects

were prompted to respond by pressing a button whether they have seen a face or not. (Images shown are not examples of the original stimulus set due

to copyright; the exact stimulus set is visualized at https://megrsvp.github.io. Images shown are in public domain and available at pexels.com under a

Creative Commons Zero (CC0) license.) (b) Behavioral performance in the two RSVP conditions. Bars indicate d’ performance and error bars indicate

SEM. Stars above each bar and between bars indicate significant performance and significant differences between the two conditions, respectively

(n=17; two-sided signed-rank test; P�0.001).

DOI: https://doi.org/10.7554/eLife.36329.003
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Figure 2. Decoding of target images from MEG signals. (a) Multivariate pattern analysis of MEG signals. A support vector machine (SVM) classifier

learned to discriminate pairs of target images using MEG data at time point t. The decoding accuracies populated a 24 � 24 decoding matrix at each

time point t. (Images shown are not examples of the original stimulus set due to copyright; see Figure 1 caption for details) (b) Time course of grand

total target image decoding for the 500, 34, and 17 ms per picture conditions. Pairwise decoding accuracies were averaged across all elements of the

Figure 2 continued on next page
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sign permutation tests). Fourth, onset latencies shifted later with faster stimulus presentation rates

(Figure 2h). That is, the 500 ms per picture condition had onset at 28 ms (9-53 ms), followed by the

34 ms per picture RSVP condition at 64 ms (58-69 ms), and finally the 17 ms per picture RSVP condi-

tion at 70 ms (63-76 ms) (all statistically different; P<0.05; two-sided sign permutation tests).

The decreased decoding accuracy combined with the increasingly early peak latency and increas-

ingly late onset latency for the RSVP conditions indicate that visual activity was disrupted over the

first 100 ms. Even though the highest levels of the visual processing hierarchy in humans are reached

with the first 100 ms, there is little time for feedback connections from these areas to exert an effect

(Lamme and Roelfsema, 2000). Thus, neural activity during the first 100 ms has been linked to the

engagement of feedforward and local recurrent connections, rather than long-range feedback con-

nections. In line with these arguments, the early peaks at 100 and 96 ms for the 34 and 17 ms per

picture RSVP conditions, respectively, explicitly delineate the first sweep of visual activity, differenti-

ating it from later neural activity that includes feedback influences from the top of the visual hierar-

chy. Further, if early decoding would only reflect feedforward activity, we would not expect to see

onset latency differences, but we do. The fact that different stimulus durations have different onsets

suggests that interactions with recurrent activity are already incorporated when the first decoding

onsets emerge, arguing against the view that the early part of the decoding time course can be

uniquely tied to feedforward alone (Fahrenfort et al., 2012; Lamme and Roelfsema, 2000;

Ringach et al., 1997).

Next, to investigate the generalization of our findings to any pair of images, even when they

share categorical content, we evaluated whether our results hold to within-category image classifica-

tion. For this, we subdivided the decoding matrix into two partitions, corresponding to within-face

comparisons, and within-object comparisons. Averaging the elements of each partition separately

determined the time series with which individual images were resolved within the subdivision of

faces (Figure 2b) and objects (Figure 2c). We confirmed the generalization and reliability of our find-

ings, as our results were similar to the grand total decoding time series: individual images were dis-

criminated by neural responses; decoding accuracies were weaker for rapid stimulus presentations;

and peak and onset latencies had the same ordinal relationship as in the grand total analysis

(Figure 2fg). Peak and onset latencies for the grand total and within category comparisons are

shown in Table 1.

In sum, decoding accuracies decreased with progressively shorter stimulus presentation times,

indicating that neuronal signals encoded less stimulus information at rapid presentation rates. Onset

latencies shifted late with shorter presentation times, indicating that recurrent activity exerts its influ-

ence even as the first decoding onsets emerged. Importantly, the progressively earlier peak with

shorter presentation times indicated disruption of the first sweep of visual activity, thus indexing

feedforward and local recurrent processing and segregating it in time from subsequent processing

that includes feedback influences from high-level visual cortex.

Rapid serial visual presentation delayed the emergence of categorical
information
How did the disruption of the early sweep of visual activity, reported in the previous section, affect

the emergence of categorical information in the RSVP conditions? A prevalent theory posits that

core object recognition is largely solved in a feedforward manner (DiCarlo et al., 2012; Liu et al.,

Figure 2 continued

decoding matrix. Time is relative to target image onset. Color coded lines above plots indicate significant times. Color coded interval lines below plots

indicate stimuli presentation times, with thick and thin lines indicating target and mask presentations. Arrows indicate peak latencies. (c, d) Time course

of within category target image decoding for faces and objects. The decoding matrix was divided into 2 segments for pairs of within-face and within-

object comparisons, and the corresponding decoding accuracies were averaged. (e–g) Peak latency times for the above target decoding time courses

and corresponding 95% confidence intervals are depicted with bar plots and error bars, respectively. (h–j) Onset latency times for the above decoding

time courses and 95% confidence intervals. Stars above bars indicate significant differences between conditions. (n=16 for 500 ms per picture and n=17

for RSVP conditions; time courses were evaluated with one-sided sign permutation tests, cluster defining threshold P<0.05, and corrected significance

level P<0.05; bar plots were evaluated with bootstrap tests for 95% confidence intervals and two-sided hypothesis tests; false discovery rate corrected

at P<0.05).
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2002; Serre et al., 2007; Thorpe et al., 1996). If this holds under rapid presentation conditions,

then categorical signals would be expected to emerge with comparable dynamics regardless of stim-

ulus presentation rates. However, opposing theories concur that feedback activity is critical for visual

awareness and consciousness (Lamme and Roelfsema, 2000; Ahissar et al., 2009;

Fahrenfort et al., 2017, 2012). According to these theories, presenting stimuli at rapid presentation

rates would (i) afford less time for initial stimulus evidence accumulation (a process that in all likeli-

hood already incorporates some local recurrent processing, as suggested by variable onset latencies

reported in the previous section) and (ii) lead to disruption of recurrent signals of the target stimulus

due to the masking stimuli of the RSVP paradigm. These would be consistent with slowing down the

speed and extent with which category information can be resolved using recurrence (Brincat and

Connor, 2006; Tang and Kreiman, 2017).

To differentiate between those competing theories, we computed categorical division time series.

We divided the decoding matrix into partitions corresponding to within-category (face or object)

and between-category stimulus comparisons separately for each of the three viewing conditions

(Figure 3a). The difference of between-category minus within-category average decoding accuracies

served as a measure of clustering by category membership.

We found that the categorical division time series resolved face versus object information in all

three conditions (Figure 3a). Consistent with the grand total decoding results, categorical neural

representations were stronger in the 500 and 34 ms per picture conditions than the 17 ms per pic-

ture condition. Multidimensional scaling (MDS) plots (Kruskal and Wish, 1978) at peak latencies for

the three conditions, offering an intuitive visualization of the stimulus relationships, are shown in

Figure 3c. These plots revealed strong categorical division for the 500 and 34 ms per picture condi-

tions, followed by weaker but still distinct categorical division in the 17 ms per picture condition.

The peak of the categorical division time series revealed the time points at which categorical

information was most explicitly encoded in the neural representations (DiCarlo and Cox, 2007). The

peak latency increased as presentation rates became progressively faster. That is, the time series for

the 500 ms per picture condition peaked at 136 ms (130-139 ms), followed by the 34 ms per picture

RSVP at 169 ms (165-177 ms), and the 17 ms per picture RSVP at 197 ms (184-218 ms) (all statistically

different; P<0.05; two-sided sign permutation tests) (Figure 3b). This relationship is reverse from the

peak latency of the first sweep of visual activity reported in the previous section, further stressing

the existence of variable dynamics in the ventral pathway. This suggests that categorical information

did not arise directly in a purely feedforward mode of processing, as this would predict comparable

temporal dynamics in all conditions. Instead, it is consistent with the idea that recurrent interactions

within the ventral stream facilitate the emergence of categorical information by enhancing stimulus

Table 1. Peak and onset latency of the time series for single image decoding (Figure 2) and

categorical division decoding (Figure 3), with 95% confidence intervals in brackets.

Presentation rate Peak latency (ms) Onset latency (ms)

Grand total 500 ms per picture 121 (102–126) 28 (9–53)

34 ms per picture 100 (96–107) 64 (58–69)

17 ms per picture 96 (93–99) 70 (63–76)

Within-faces 500 ms per picture 113 (104–119) 59 (30–73)

34 ms per picture 104 (96–109) 74 (62–81)

17 ms per picture 98 (96–104) 86 (78–117)

Within-objects 500 ms per picture 102 (93–102) 48 (10–55)

34 ms per picture 97 (90–97) 60 (27–67)

17 ms per picture 94 (87–95) 70 (64–74)

Between minus
within

500 ms per picture 136 (130–139) 46 (15–51)

34 ms per picture 169 (165–177) 73 (67–78)

17 ms per picture 197 (175–218) 139 (67–155)

DOI: https://doi.org/10.7554/eLife.36329.005

Mohsenzadeh et al. eLife 2018;7:e36329. DOI: https://doi.org/10.7554/eLife.36329 6 of 23

Research article Neuroscience

https://doi.org/10.7554/eLife.36329.005
https://doi.org/10.7554/eLife.36329


information in challenging visual tasks (Brincat and Connor, 2006; Hochstein and Ahissar, 2002;

Rajaei et al., 2018; Tang and Kreiman, 2017; Tapia and Beck, 2014).

Taken together, our results revealed variable temporal neural dynamics for viewing conditions dif-

fering in presentation time. Even though the peak latency of the first sweep of visual activity shifted

earlier with higher presentation rates, as reported in the previous section, the peak latency of cate-

gorical information shifted later, stretching the time between the abrupt end of the initial visual

sweep and the emergence of categorical information. This inverse relationship in peak latencies dis-

counts a feedforward cascade as the sole explanation for categorical representations.

Figure 3. Categorical information encoded in MEG signals. (a) Time course of categorical division depending on presentation rate. For each condition,

the MEG decoding matrix was divided into 3 segments for pairs of within-face, within-object, and between-face/object comparisons, and a categorical

effect was estimated by contrasting the averaged decoding accuracies of the within from the between segments. Time is relative to target image onset.

Color coded lines above plots, interval bars below plots, and arrows same as in Figure 2. (b) Peak latency times for the categorical information time

courses and 95% confidence intervals are depicted with bar plots and error bars, respectively. Stars above bars indicate significant differences between

conditions. (c) The first two dimensions of multidimensional scaling (MDS) of the MEG decoding matrices are shown for the times of peak categorical

information for the 3 conditions. (n=16 for 500 ms per picture and n=17 for RSVP conditions; time courses were evaluated with one-sided sign

permutation tests, cluster defining threshold P<0.05, and corrected significance level P<0.05; bar plots were evaluated with bootstrap tests for 95%

confidence intervals and two-sided hypothesis tests; false discovery rate corrected at P<0.05).

DOI: https://doi.org/10.7554/eLife.36329.006

The following figure supplement is available for figure 3:

Figure supplement 1 Linear decoding of faces vs. objects category.

DOI: https://doi.org/10.7554/eLife.36329.007
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Neuronal representations became increasingly transient at rapid
stimulus presentation rates
As neuronal signals propagate along the ventral pathway, neural activity can either change rapidly at

subsequent time points, or persist for extended times. Transient activity reflects processing of differ-

ent stimulus properties over time in either a feedforward manner, as computations become more

abstract, or a recurrent manner as neurons tune their responses. On the other hand, persistent activ-

ity could maintain results of a particular neural processing stage for later use.

Our premise in introducing the ultra-RSVP task was to suppress the persistent neural activity, and

in doing so better capture the transient neural dynamics that reflect distinct neural processing steps.

To experimentally confirm that persistent neural activity was indeed suppressed with rapid presenta-

tion rates, we extended the SVM classification procedure with a temporal generalization approach

(Cichy et al., 2014; Isik et al., 2014; King and Dehaene, 2014). In particular, we used a classifier

trained on data at a time point t to evaluate discrimination at all other time points t’. Intuitively, if

neural representations are sustained across time, the classifier should generalize well across other

time points.

Temporal generalization matrices were computed by averaging decoding across all pairwise

image conditions and all subjects, thus extending over time the results presented in Figure 2b. Our

temporal generalization analysis confirmed that neural activity became increasingly transient at rapid

presentation rates (Figure 4). While the 500 ms per picture condition had maps with broad off-diag-

onal significant elements characteristic of sustained representations, the RSVP conditions had narrow

diagonal maps indicating transient neural patterns, with the 17 ms per picture RSVP narrower than

the 34 ms per picture RSVP.

The increasingly transient activity in the RSVP conditions shows that neural activity continuously

transformed stimulus information in a feedforward and feedback manner, will less neural resources

used to maintain information. Thus, the results confirmed our hypothesis that the ultra-RSVP task

would suppress persistent neural activity.

Figure 4. Temporal generalization of target image decoding for the 500, 34, and 17 ms per picture conditions. The SVM classifier was trained with

MEG data from a given time point t (training time) and tested on all other time points (testing time). The temporal generalization decoding matrix was

averaged over all image pairs and all subjects, thus corresponding to the temporal generalization of the grand total decoding time series in Figure 2b.

The black line marks the target image onset time. The gray lines mark the image offset in the 500 ms per picture condition and the RSVP sequence

onset/offset times in the rapid presentation conditions. The white contour indicates significant decoding values (n=16 for 500 ms per picture and n=17

for RSVP conditions; one-sided sign permutation tests, cluster defining threshold P<0.05, and corrected significance level P<0.05).

DOI: https://doi.org/10.7554/eLife.36329.008
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Unfolding the dynamics of feedforward and feedback processes in
space and time
The analyses presented thus far segregated the temporal dynamics of the initial bottom-up sweep

from subsequent signals incorporating recurrent activity in the ventral pathway. Furthermore, peak

latencies for early and late visual signals varied inversely, consistent with feedback processing. Here

we mapped visual signals on the cortex to identify where in the brain feedforward and feedback sig-

nal interact.

To map the spatiotemporal dynamics of the visual processes we used a MEG-fMRI fusion method

based on representational similarity (Cichy et al., 2014, 2016a). For this, we first localized the MEG

signals on the cortex and derived the time series from all source elements within two regions-of-

interest (ROIs): early visual cortex (EVC) and inferior temporal cortex (IT). We selected EVC as the

first region of the cortical feedforward sweep, and IT as the end point where neural patterns have

been found to indicate object category (Cichy et al., 2014). We then performed time-resolved multi-

variate pattern classification on the MEG data following the same procedure described earlier, only

now we created pattern vectors by concatenating activation values from sources within a given ROI,

instead of concatenating the whole-head sensor measurements. This procedure resulted in one MEG

RDM for each ROI and time point.

We compared the representational similarity between the time-resolved MEG RDMs for the two

cortical regions (EVC and IT) and the fMRI RDMs for the same regions (Figure a and b). This yielded

two time series of MEG-fMRI representational similarity, one for EVC and one for IT. In all conditions,

consistent with the view of visual processing as a spatiotemporal cascade (Cichy et al., 2014), the

time series peaked earlier for EVC than IT (Figure 5c–h). The peak-to-peak latency between EVC

and IT increased as viewing conditions became increasingly challenging with faster presentation

rates: D=27 ms for the 500 ms per picture condition; D=79 ms for the 34 ms per picture RSVP; and

D=115 ms for the 17 ms per picture RSVP (all statistically different; two-sided bootstrap hypothesis

tests; P<0.05). This latency difference was the compounded effect of two factors. First, the EVC

peak had progressively shorter latencies (104 vs. 87 vs. 80 ms for the 3 conditions), and second the

IT peak had progressively longer latencies (131 vs. 166 vs. 195 ms for the three conditions). This

inverse relationship between the EVC and IT peaks corroborated the findings of the previous sec-

tions, namely that a disrupted first sweep of visual activity was associated with a delayed emergence

of categorical division information. It further bound the processing stages in time to the V1 and IT

locations in space.

Importantly, while EVC had a single peak at 104 ms and persistent representations over hundreds

of milliseconds for the 500 ms per picture condition, its dynamics were transient and bimodal for the

RSVP conditions. For the 34 ms per picture RSVP condition, an early peak at 87 ms was immediately

followed by weak MEG-fMRI representational similarities, and then a second peak at 169 ms. For the

17 ms per picture RSVP condition, we observed similar dynamics with an early peak at 80 ms and a

second peak at 202 ms, though in this case the second peak was not strictly defined because the

time course did not reach significance, possibly due to compromised neural representations at such

fast stimulus presentation rates. The second peak in EVC occurred at similar times as the peak in IT

(D=3 ms for the 34 ms per picture RSVP condition, p=0.06; and D=7 ms for the 17 ms per picture

RSVP condition, p�0.001; two-sided bootstrap hypothesis tests). This is consistent with feedback

activity in EVC at the same time as IT solves visual object recognition. Table 2 summarizes latencies

and 95% confidence intervals for all conditions. We note here that resolving feedback activity in EVC

was possible with MEG-fMRI fusion because MEG activation patterns disentangled slow fMRI hemo-

dynamic responses in EVC that correspond to the combined contributions of feedforward and feed-

back visual activity.

In sum, the combination of the RSVP paradigm with MEG-fMRI representational similarity

resolved bimodal dynamics for EVC. The first EVC peak offered evidence that disruption of early

visual activity resulted in delayed categorical division information in IT. The second EVC peak

occurred at approximately the same time as the peak in IT and is consistent with feedback activity

from IT to EVC.

Mohsenzadeh et al. eLife 2018;7:e36329. DOI: https://doi.org/10.7554/eLife.36329 9 of 23

Research article Neuroscience

https://doi.org/10.7554/eLife.36329


Figure 5. Representational similarity of MEG to fMRI signals at EVC and IT. (a) For every time point t, the EVC-specific MEG RDM was compared

(Spearman’s rho) with the EVC-specific fMRI RDM, yielding a time series of MEG-fMRI representational similarity at EVC. (b) Same as in (a) but for IT. (c–

e) Time series of MEG-fMRI representational similarity at EVC and IT for the 3 conditions. Time is shown relative to target image onset. Color coded

lines below plots indicate significant times. Peak latencies are indicated with arrows. While the 202 ms peak of the EVC time series in (e) is not

significant, it is marked to indicate comparable temporal dynamics with the 34 ms per picture condition. (f–h) Peak latency times for the

representational similarity time courses and 95% confidence intervals are depicted with bar plots and error bars, respectively. Stars above bars indicate

significant differences between conditions. (n=16 for 500 ms per picture and n=17 for RSVP conditions; time courses were evaluated with one-sided

sign permutation tests, cluster defining threshold P<0.05, and corrected significance level P<0.05; bar plots were evaluated with bootstrap tests for 95%

confidence intervals and two-sided hypothesis tests; false discovery rate corrected at P<0.05).

DOI: https://doi.org/10.7554/eLife.36329.010
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Discussion
Using an ultra-RSVP task, we dissected the ventral pathway activation cascade into two temporally

distinct processing stages: the initial bottom-up sweep and the subsequent emergence of categori-

cal information. For the first stage, we found a progressively earlier peak with decreasing viewing

times, indicating an early disruption of visual activity (Figure 2). For the second stage, we found a

progressively later peak with decreasing viewing times, indicating a delayed emergence of categori-

cal information at high-level visual cortex (Figure 3). This reverse relation of the peak latencies

between the two processing stages has two critical implications: first, the extent of disruption of the

initial sweep is related to longer processing times at subsequent stages to solve visual recognition;

and second, such variable temporal dynamics index the existence of recurrent activity in the ventral

pathway that takes up additional processing time to solve visual recognition when initial signals are

limited in time. Finally, using MEG-fMRI fusion we pinpointed the locus where recurrent activity

becomes effective to EVC (Figure 5), with temporal onset overlapping with the dynamics of the

emergence of categorical information in high-level cortex.

While a large body of literature has investigated recurrent processing in the visual cortex, our

work goes beyond and complements prior studies in several dimensions. First, consistent with

behavioral and transcranial magnetic stimulation experiments that postulated the locus of recurrent

activity signals in V1/V2 (Camprodon et al., 2010; Drewes et al., 2016; Koivisto et al., 2011;

Wokke et al., 2013), we mapped the locus of rapid feedback activity in early visual cortex. Second,

our study elucidates the functional nature of recurrent connections in vision. Recurrent connections

have often been thought to subserve slower top-down attentional modulations from frontoparietal

sites once recognition has been solved (Bar et al., 2006; Hopf et al., 2006; Sehatpour et al.,

2008). In contrast, our study corroborates growing experimental evidence suggesting that recurrent

signals also originate from within the ventral pathway as recognition unfolds, and can exert their

influence before attentional modulations (Boehler et al., 2008; Wyatte et al., 2014). Third, while

extensive evidence suggests the existence of rapid feedback signals using highly controlled artificial

stimuli, such as Kanizsa-type illusory figures, motion of random dots, and oriented bars

(Halgren et al., 2003; Hupé et al., 1998; Lamme et al., 2002; Murray et al., 2002; Ringach et al.,

1997; Wokke et al., 2012, 2013; Yoshino et al., 2006), it is not clear whether these results general-

ize to real-world situations. Since our target stimuli were natural images of objects and faces, we

demonstrated the existence of feedback activity in early visual cortex under more ecologically valid

conditions. Fourth, even though temporal delays in processing stimulus information have been

observed when visibility conditions were impoverished (Tang and Kreiman, 2017), here we explicitly

related bottom-up and feedback dynamics to each other and offered well-defined temporal signa-

tures for both mechanisms. Last, rather than using unimodal data to study recurrent activity that

reveals either spatial or temporal aspects of brain activity, we applied a novel way to investigate ven-

tral neural dynamics by coupling MEG and fMRI data to holistically capture the spatiotemporal

dynamics of brain activation (Cichy et al., 2014, 2016a).

Table 2. Peak and onset latency of the time series for MEG-fMRI fusion at EVC and IT, with 95%

confidence intervals in brackets.

Peak latency (ms) Onset latency (ms)

500 ms per picture IT 131 (127–135) 63 (50–75)

EVC 104 (93–120) 53 (50–57)

34 ms per picture IT 166 (162–173) 70 (50–88)

EVC 87 (83–97) and
169 (164-176)*

71 (61–81)

17 ms per picture IT 195 (170–203) 162 (55–183)

EVC 80 (75–100) and
202 (190-219)*

71 (50–76)

*Time series had two early peaks.

DOI: https://doi.org/10.7554/eLife.36329.009
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Our results thus allow the identification of three fundamental processing principles of object rec-

ognition: (i) the brain compensates for early disruptions of the initial sweep through longer process-

ing times at subsequent stages; (ii) delays in solving object recognition are an index of increased

recurrent processing; and (iii) such recurrent processing takes place in early visual cortex and coin-

cides in time with the emergence of categorical information in inferior-temporal cortex.

Sequencing the processing cascade in the ventral visual pathway
Here we discuss the nature of visual processing and the role of recurrent dynamics for each of the

two temporally distinct stages of visual processing revealed by the ultra-RSVP task.

First stage - feedforward activity
The first wave of visual responses we observed peaked at approximately 100 ms for the RSVP condi-

tions (Figure 2b). This latency falls within the time range during which the feedforward sweep is

expected to reach the top of the visual hierarchy, but leaves little time for substantial contributions

from high-level feedback connections (Lamme and Roelfsema, 2000; Tapia and Beck, 2014;

Wyatte et al., 2014). Therefore, responses up to 100 ms tracked a feedforward process with contri-

butions from local recurrent circuits, but separate from later feedback signals emerging from high-

level visual cortex.

First stage - early recurrent activity
The first sweep of visual activity was characterized by a ramping process with a peak latency approx-

imately 100 ms for the RSVP conditions (Figure 2b). Such extended latencies, though too short to

include substantial feedback signals from the top of the visual hierarchy, permit incorporation of

information from local recurrent connections. In typical viewing conditions, such as the 500 ms per

picture condition used here, neurons are known to remain active even after their initial contribution

in the feedforward sweep, with their responses modulated with contextual information both within

and outside their receptive fields (Lamme and Roelfsema, 2000). Examples include the dynamic ori-

entation tuning of V1 cell responses, which is shaped by horizontal intracortical connections

(Ringach et al., 1997), and the segregation of texture, which is shaped by feedback signals from

extrastriate areas (Hupé et al., 1998; Lamme et al., 1998). Experiments using transcranial magnetic

stimulation (Camprodon et al., 2010; Koivisto et al., 2011), backward masking (Boehler et al.,

2008; Fahrenfort et al., 2007; Kovács et al., 1995; Lamme et al., 2002), and reversible cooling

(Hupé et al., 1998) offer evidence that rapid feedback circuits in the ventral pathway are engaged

within the first 80–150 ms of vision, with local feedback signals from extrastriate areas to V1 emerg-

ing within 80–110 ms (Wyatte et al., 2014).

Was the first wave in the ultra-RSVP conditions shaped by local recurrent connections? While our

results cannot discount such influences, it is reasonable to construe the first wave in the RSVP condi-

tions as disproportionately characterized by feedforward propagating signals rather than local recur-

rent activity. This is because EVC time series had strong MEG-fMRI representational similarities over

hundreds of milliseconds for the 500 ms per picture condition, whereas weak dynamics with early

peak latencies (80 and 87 ms) for the RSVP conditions (Figure 5c–e). This suggests any possible

recurrent processes in EVC for the 500 ms per picture condition were suppressed in the RSVP condi-

tions immediately after 80 or 87 ms.

Reduced early recurrent activity in the RSVP conditions could be due to two reasons. First, shorter

stimulus presentation times resulted in limited stimulus evidence accumulation. This may be reflected

in the progressively later onset latencies with decreasing viewing times in Figure 2h–j, which suggest

that local recurrent interactions have a rapid influence in the ventral stream dynamics. And second,

the mask stimuli disrupted recurrent processing of the target in the RSVP conditions. This may be

reflected in the more transient dynamics for the RSVP conditions in Figure 4.

Second stage - delayed emergence of categorical information
The first sweep of visual activity was temporally dissociated from a second processing stage at which

categorical information emerged. The peak latency and strength of the early visual sweep were

inversely related with the timing of categorical representations. Thus, compromised visual signals

early in the ventral stream resulted in delays in the emergence of categorical information. This is
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consistent with recurrent visual processes requiring additional time to interpret the face target

images within the RSVP sequences. Such delays in neural responses have been used as an indicator

of recurrent computations in previous studies, including object selective responses in human fusiform

gyri for partially visible images (Tang and Kreiman, 2017) and the integration of object parts into a

coherent representation in macaque posterior IT (Brincat and Connor, 2006).

An alternative explanation of the variable peak latencies due to delayed propagation of feedfor-

ward signals is unlikely. Instead of observing a graded increase in latencies, the peaks in the feedfor-

ward sweep were inversely related to the peaks in categorical information, stretching the time

difference between the two processing stage and discounting a purely feedforward explanation.

Second stage - recurrent activity in EVC
Categorical signals for the two RSVP conditions (Figure 3a) were associated with the onset of IT

responses and the synchronous reengagement of EVC (Figure 5c–e). This reengagement of EVC at

the same time categorical information emerged in high-level visual cortex suggests recurrent pro-

cesses as its basis.

Reengagement of EVC is consistent with theories positing that feedback signals serve to add

details in an initially established scene (Hochstein and Ahissar, 2002; Peyrin et al., 2010;

Tapia and Beck, 2014). According to these theories, when stimuli are degraded, partial, or other-

wise ambiguous, recurrent processes fill-in stimulus information by propagating partial responses

back to EVC and activating neurons that would normally respond to the complete stimulus

(Muckli et al., 2015; O’Reilly et al., 2013; Tang and Kreiman, 2017; Wyatte et al., 2014). Thus,

here recurrent activity may have filled-in missing visual information necessary to recognize the face

target images. Such information is probably behaviorally relevant, as even relatively modest shifts in

the latency of categorical information encoded rapidly in the ventral stream have been linked to cor-

responding shifts in behavioral response delays (Cauchoix et al., 2016). Future work could benefit

from our neuroimaging methodology to investigate the precise role of recurrent activity in EVC.

While the recurrent signals reported here could also reflect attentional modulations (Hopf et al.,

2006; Tsotsos et al., 1995), this explanation is less likely. Rapid recurrent signals originating within

the ventral pathway are involuntary (Roland et al., 2006) and temporally dissociable from top-down

attentional signals that are typically reported at later times (Boehler et al., 2008; Wyatte et al.,

2014).

Our study used a fixed button mapping for the yes/no responses on faces in the RSVP task, which

in principle may introduce motor plan-related signals in the MEG responses. However we believe it

is unlikely our results are confounded by motor-related signals for the following reasons: First, our

experimental design used a delayed response design for the RSVP conditions (response was

prompted 0.7–1 s after the offset of the stimulus), and no response for the 500 ms per picture condi-

tion. Thus any motor artifacts, including motor preparation signals, should have been delayed con-

siderably for the RSVP conditions, and are completely absent in the 500 ms per picture condition.

Second, we believe that our analysis to localize these processes with fMRI-MEG fusion supports the

source of categorical information in IT. Third, previous studies have shown that motor-preparation

signals occurs considerably later (300-400 ms after stimulus onset) (Thorpe et al., 1996). Thus it is

unlikely the effects before 200 ms from stimulus onset reported in our data are related to motor

preparation.

Taken together, the ultra-RSVP task enabled us to demarcate two different processing stages in

the ventral stream, segregate the initial bottom-up sweep from late categorical signals, characterize

the delay of the emergence of categorical information as an index of increased recurrent processing

demands, and localize feedback activity in EVC. Our findings can motivate future experiments inves-

tigating the functional role of visual processes in the ventral pathway, capitalizing from the segrega-

tion of early and late processes achieved from the ultra-RSVP paradigm.

Statiotemporal bounds for computational models of vision
Most popular computer vision models, such as deep neural networks (LeCun et al., 2015) and

HMAX (Riesenhuber and Poggio, 1999), have adopted a feedforward architecture to sequentially

transform visual signals into complex representations, akin to the human ventral stream. Recent

work has shown that these models not only achieve accuracy in par with human performance in
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many tasks (He et al., 2015), but also share a hierarchical correspondence with neural object repre-

sentations (Cichy et al., 2016b; Martin Cichy et al., 2017; Yamins et al., 2014).

Even though models with purely feedforward architecture can easily recognize whole objects

(Serre et al., 2007), they often mislabel objects in challenging conditions, such as incongruent

object-background pairings, or ambiguous and partially occluded inputs (Johnson and Olshausen,

2005; O’Reilly et al., 2013). Instead, models that incorporate recurrent connections are robust to

partially occluded objects (O’Reilly et al., 2013; Rajaei et al., 2018), suggesting the importance of

recurrent processing for object recognition.

Unlike other studies that use stimuli that are occluded or camouflaged (Spoerer et al., 2017;

Tang and Kreiman, 2017), our RSVP task offers no obvious computation that can be embued to

feedback processes when presentation times are shortened. That is, our study does not inform on

the precise nature of computations needed for stimulus evidence accumulation when presentation

times are extremely short. Despite this fact, our findings on the duration and sequencing of ventral

stream processes can still offer insights for developing computational models with recursive architec-

ture. First, such models should solve object categorization within the first couple hundred millisec-

onds, even when the feedforward and feedback pathways are compromised as in the ultra-RSVP

task. Second, the timing of recurrent processes should not be predetermined and fixed, but vary

depending on viewing conditions, as in the case of onset and peak latency shifts in the RSVP decod-

ing time series. Here viewing conditions related to the speed of the RSVP task, but it is reasonable

to expect other challenging conditions, such as ambiguous or partial stimuli, to exert time delays,

though possibly longer (Tang and Kreiman, 2017). Third, the timing and strength of the early visual

signals should inversely determine the timing of categorical representations. And fourth, feedback

processes in deep models should activate early layers of the model at the same time object repre-

sentations are emerging at the last layers. Despite these insights, future research is needed to

understand what recurrent computations are exactly carried out by the brain to solve visual recogni-

tion under RSVP-like presentation conditions.

Ultra-fast rapid serial visual presentation as an experimental model to
study recurrent neural processing
Since its conception (Potter and Levy, 1969), the RSVP paradigm has been implemented with stim-

ulus rates about 100 ms per item or slower. Inherent to the design, RSVP experiments have revealed

the temporal limitations of human perception (Spence, 2002), attention (Nieuwenstein and Potter,

2006), and memory (Potter, 1993). Recently however, behavioral investigations have been explor-

ing even faster presentation rates in ultra-RSVP tasks (Broers et al., 2018; Evans et al., 2011;

Potter et al., 2014). These experiments found that observers can detect target images at rates 13

to 20 ms per picture.

Due to its effectiveness in masking stimuli by combining forward and backward masking, the

ultra-RSVP paradigm could be used to address the question whether recurrent processing is neces-

sary for recognition of objects. One view posits that a purely feedforward mode of processing is suf-

ficient to extract meaning from complex natural scenes (DiCarlo et al., 2012). High behavioral

performance in the ultra-RSVP task has been used as an argument to support this view. Specifically,

such rapid presentations of stimuli have been presumed to block recurrent activity, since low level

visual representations are immediately overwritten by subsequent images and time is too short to

allow multiple synaptic transmissions (Tovée, 1994).

However, this interpretation has been challenged both here, with the reengagement of EVC late

in the processing stream, and by the finding that the ability to detect and categorize images at such

speeds depends on the efficacy of the images to mask one another (Maguire and Howe, 2016).

Thus, it still remains an open question whether recurrent activity is necessary to extract conceptual

meaning (Howe, 2017).

Though our study did not address whether such recurrent activity can arise in more effective

masking conditions that suppress visibility (Maguire and Howe, 2016), it paves the way for future

studies to explore the link between stimulus visibility and recurrent neuronal processes. Such studies

could vary the effectiveness of forward and backward masking to segregate the early from late visual

signals, as accomplished here, and investigate under what conditions (e.g. ambiguous or occluded

input) stimulus visibility (King et al., 2016; Salti et al., 2015) is associated with feedback activity. As

ultra-RSVP reduces visibility, future studies could also investigate whether recurrent activity is an
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integral component of the neural correlates of consciousness, defined as the minimum neuronal

mechanisms jointly sufficient for a conscious percept (Koch et al., 2016).

Materials and methods

Participants
Seventeen healthy subjects (12 female; 16 right-handed and one left-handed; age mean ± s.d.

27.2 ± 5.7 years) with normal or corrected to normal vision participated in the RSVP experiment.

They all signed an informed consent form and were compensated for their participation. The study

was approved by the Institutional Review Board of the Massachusetts Institute of Technology and

followed the principles of the Declaration of Helsinki.

Experimental design and stimulus set
RSVP experiment
The stimulus set comprised 24 target images (12 faces and 12 objects) and 45 mask images of vari-

ous object categories (Figure 1a). Images shown are not examples of the original stimulus set due

to copyright; the exact stimulus set is visualized at https://megrsvp.github.io. We chose this stimulus

set because it enabled comparison with MEG and fMRI data of a previous study (Cichy et al., 2014).

Participants viewed RSVP sequences of 11 images presented at a rate of 17 ms per picture or 34

ms per picture in separate trials. The middle image was randomly sampled from the set of 24 target

images, and the surrounding images from the set of mask images. The stimuli were presented at the

center of the screen against a gray background and subtended 2.9˚ of visual angle.
Each trial included a 0.5 s baseline time preceding the 17 ms per picture or 34 ms per picture

RSVP sequence. At the end of the sequence a blank screen was presented for 0.7–1 s (uniformly dis-

tributed), which served to prevent motor artifacts, and then subjects were prompted to perform a

two-alternative forced choice task reporting whether a face image was present in the sequence.

That is, participants performed a yes/no task on faces without being informed on the alternative

object (fruit/vegetable) target images. Responses were given with the right index finger using a

MEG-compatible response box and a fixed button mapping for the face present and non-present

response.

Trials were presented in random order in 12 blocks of 120 trials each, comprising both the 17 ms

per picture and 34 ms per picture speed conditions interleaved randomly. In total, we collected 30

trials for each of the 24 target images and each of the two RSVP rates. The whole experiment lasted

around 70 min. To avoid eye movement artifacts, the subjects were asked to fixate on a black cross

presented at the center of the screen and blink only when pressing a button and not during the

RSVP sequences.

Since the RSVP task was extremely challenging, before the experiment we trained participants for

5 min using a slower rate of 50 ms per picture. This assured the participants understood the task

and could perform well during the higher presentation speeds.

500 ms per picture experiment
In a separate MEG experiment, a different cohort of 16 healthy participants view the same 24 target

images in isolation. Images were presented in random order for 500 ms with an ISI of 1 s. Partici-

pants were instructed to press a button and blink their eyes in response to a paper clip that was

shown randomly every 3 to 5 trials. Participants completed 10–15 runs, with each image presented

twice per run. We thus collected a total of 20–30 trials per target image. Note that the MEG data

acquired for the 500 ms per picture experiment were part of a larger 92-image data set that has

been previously published (Cichy et al., 2014).

fMRI experiment
The same 24 target images were also presented to a different cohort of 15 healthy participants in an

fMRI experiment. In particular, images were presented in random order for 500 ms with an ISI of 2.5

s. Participants completed 2 sessions of 10 to 14 runs each, and each image was presented once per

run. Thirty null trials with no stimulus presentation were randomly interspersed, during which the fix-

ation cross turned darker for 100 ms and participants reported the change with a button press. This
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resulted in 20–28 trials per target image. The fMRI data set was also part of a larger 92-image data

set that has been previously published (Cichy et al., 2014).

MEG acquisition and preprocessing
We collected MEG data using a 306-channel Elekta Triux system with a 1000 Hz sampling rate. The

data was band-pass filtered with cut-off frequencies of 0.03 and 330 Hz. The MEG system contained

102 triple sensor elements (2 gradiometers and one magnetometer each) organized on a helmet

shaped array. The location of the head was measured continuously during MEG recording by activat-

ing a set of 5 head position indicator coils placed over the head.

The raw MEG data was preprocessed with the Maxfilter software (Elekta, Stockholm) to compen-

sate for head movements and denoise the data using spatiotemporal filters (Taulu and Simola,

2006; Taulu et al., 2004). The Brainstorm software (Tadel et al., 2011) was then used to extract tri-

als from �300 ms to 900 ms with respect to target onset. Every trial was baseline-corrected to

remove the mean from each channel during the baseline period, defined as the time before the

onset of the first mask stimulus for the RSVP task, or the target image for the 500 ms per picture

condition. A 6000 fT peak-to-peak rejection threshold was set to discard bad trials, and the remain-

ing trials were smoothed with a 20 Hz low-pass filter. Eye blink artifacts were automatically detected

from frontal sensor MEG data, and then principal component analysis was used to remove these

artifacts.

MEG multivariate pattern analysis
Sensor space
To extract information about visual stimuli from the MEG data, we used multivariate pattern analysis.

The procedure was based on linear support vector machines (SVM) using the libsvm software imple-

mentation (Chang and Lin, 2011) with a fixed regularization parameter C = 1. Before classification,

the MEG trials for each target image were sub-averaged in groups of 3 with random assignment to

reduce computational load, yielding M trials per target image (M was about 9–10 for the RVSP

experiment when considering bad trials, and varied between 6 to 10 per subject for the 500 ms per

picture condition).

The SVM analysis was performed separately for each subject in a time-resolved manner. Specifi-

cally, for each time point t (from �300 ms to 900 ms in 1 ms steps) the MEG sensor data were

arranged in 306-dimensional pattern vectors, yielding M pattern vectors per time point and target

image. Then for each time point and pair of images separately, we measured the performance of

the classifier to discriminate between images using leave-one-out cross-validation: M-1 vectors were

randomly assigned to the training set, and the left-out vector to the training set to evaluate the clas-

sifier decoding accuracy. By repeating the classification procedure 100 times, each with random trial

sub-averaging, and averaging decoding accuracies over repetitions, we populated a time-resolved

24 � 24 decoding matrix, indexed in rows and columns by the classified target images (Figure 2a).

This decoding matrix, termed representational dissimilarity matrix (RDM), is symmetric and has an

undefined diagonal (no classification within image). The entire procedure created one MEG RDM for

each time point and subject.

Categorical division time series were constructed by dividing the MEG RDM matrix into partitions

corresponding to within-category (face or object) and between-category stimulus comparisons. The

difference of between-category minus within-category average decoding accuracies served as a

measure of clustering by category membership. An alternate approach to computing categorical

information time series is to directly train a classifier to discriminate face vs. object stimuli. While

such methodological approach may be sensitive to different aspects of categorical stimulus informa-

tion in general, it yielded consistent results in our data (Figure 3—figure supplement 1).

Source space
To perform multivariate pattern analysis on the cortex and localize representational information on

regions of interest (ROIs), we mapped MEG signals on source space. Source activation maps were

computed on cortical surfaces derived from Freesurfer automatic segmentation (Fischl et al., 2004)

of the Colin27 default anatomy (Holmes et al., 1998). The forward model was calculated using an

overlapping spheres model (Huang et al., 1999). MEG signals were then mapped on a grid
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of ~15000 cortical sources using a dynamic statistical parametric mapping approach (dSPM)

(Dale et al., 2000) and time series were derived from sources within early visual cortex (EVC) and

inferior temporal cortex (IT) (Desikan et al., 2006).

Source-based multivariate pattern analysis for the two cortical ROIs, EVC and IT, was performed

exactly as in sensor space, however time-resolved pattern vectors were created by concatenating

activation values from cortical sources within a given ROI, rather than concatenating the whole-head

sensor measurements. This procedure resulted in one MEG RDM for each time point, ROI, and

subject.

Multidimensional scaling
To visualize the complex patterns of the 24 � 24 MEG RDMs, which capture the relations across the

neural patterns elicited by the 24 target images, we used the first two dimensions of multidimen-

sional scaling (MDS) (Kruskal and Wish, 1978; Shepard, 1980). MDS is an unsupervised method to

visualize the level of similarity between different images contained in a distance matrix. Intuitively,

MDS plotted the data in two dimensions where similar images were grouped together and different

images far apart. fMRI data acquisition and analysis

The fMRI data was collected using a 3T Trio Siemens Scanner and 32-channel head coil. The struc-

tural images were acquired in the beginning of each session using T1-weighted sequences with

TR = 1900 ms, TE = 2.52 ms, flip angle = 9˚, FOV = 256 mm2, and 192 sagittal slices. Functional

data was acquired with high spatial resolution but partial coverage of the brain covering occipital

and temporal lobe using gradient-echo EPI sequence with TR = 2000 ms, TE = 31 ms, flip

angle = 80˚, FOV read = 192 mm, FOV phase = 100%, ascending acquisition, gap = 10%, resolu-

tion = 2 mm isotropic, and slices = 25.

The details of fMRI analysis can be found in (Cichy et al., 2014) and here we explain it briefly.

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) was used to analyze the fMRI data. The data was realigned,

re-sliced, and co-registered with the structural images for each subject and session separately. Then

a general linear model analysis was used to estimate t-value maps for each of the 24 target images.

We further defined two volumetric ROIs for fMRI data analysis, V1 and IT. V1 was defined separately

for each participant using an anatomical eccentricity template (Benson et al., 2012), and corre-

sponded to a 0–6˚ visual angle. IT was defined using a mask comprising bilateral fusiform and infe-

rior temporal cortex (Maldjian et al., 2003), keeping the most strongly 361 activated voxels from a

cross-validated dataset to match the size of IT to the average size of V1.

fMRI multivariate pattern analysis
To assess the relations between brain fMRI responses across the 24 target images, we constructed

space-resolved fMRI RDMs using a correlation-based method. We conducted two types of analyses:

(1) ROI-based and (2) spatially unbiased using a searchlight approach.

For the ROI-based analysis, we extracted and concatenated the V1 or IT voxel t-values to form

ROI-specific fMRI pattern vectors. For each pair of images, we then calculated the dissimilarity (one

minus Pearson’s rho) between the fMRI pattern vectors, resulting in a 24 � 24 fMRI RDM indexed by

the compared images. This procedure resulted in one fMRI RDM for each ROI and subject.

For the searchlight-based analysis (Kriegeskorte et al., 2006), we constructed fMRI RDMs for

each voxel in the brain. In particular, for each voxel v we extracted fMRI activation values in a sphere

centered at v with a radius of 4 voxels (searchlight at v) and arranged them into fMRI pattern vectors.

For each pair of images, we then calculated the pairwise dissimilarity (one minus Pearson’s rho)

between fMRI pattern vectors, resulting in a 24 � 24 fMRI RDM indexed by the compared images.

This procedure yielded one fMRI RDM for each voxel in the brain and subject.

fMRI-MEG fusion using representational similarity analysis
To assess the spatiotemporal dynamics of EVC and IT, we applied a fMRI-MEG fusion approach

based on representational similarity analysis (RSA) (Kriegeskorte et al., 2008; Cichy et al., 2014).

The basic idea is that if two stimuli are similarly represented in MEG patterns, they should also be

similarly represented in fMRI patterns, a correspondence that can be directly evaluated using the

RDMs. Thus, we computed the similarity (Spearman’s rho) between time-resolved MEG RDMs and

space-resolved fMRI RDMs.
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For ROI-based fMRI-MEG fusion, we used fMRI RDMs and MEG RDMs from the corresponding

ROIs. In particular, for each time point we computed the similarity (Spearman’s rho) between the

subject-averaged MEG RDM and the subject-specific fMRI RDM. This procedure yielded n = 14 time

courses of MEG-fMRI representational similarity for each ROI and subject.

Temporal generalization of multivariate pattern analysis
To investigate whether maintenance of stimulus information was compromised in the RSVP relative

to the 500 ms per picture condition, we extended the SVM classification procedure using a temporal

generalization approach (Cichy et al., 2014; Isik et al., 2014; King and Dehaene, 2014;

Pantazis et al., 2017). This method involved training the SVM classifier at a given time point t, as

before, but testing across all other time points. Intuitively, if representations are stable over time,

the classifier should successfully discriminate signals not only at the trained time t, but also over

extended periods of time that share the same neuronal representations. We repeated this temporal

generalization analysis for every pair of stimuli, and the results were averaged across compared

images and subjects, yielding 2-dimensional temporal generalization matrices with the x-axis denot-

ing training time and the y-axis testing time.

Peak latency analysis
For statistical assessment of peak and onset latency of the time series, we performed bootstrap

tests. The subject-specific time series were bootstrapped 1000 times and the empirical distribution

of the peak latency of the subject-averaged time series was used to define 95% confidence intervals.

A similar procedure was used to define 95% confidence intervals for onset latency. For peak-to-peak

latency differences, we obtained 1000 bootstrapped samples of the difference between the two

peaks, which resulted in an empirical distribution of peak-to-peak latency differences. We then used

the tail of this empirical distribution to evaluate the number of bootstrap samples that crossed 0,

which allowed us to compute a p-value for the peak-to-peak latency difference. Finally, the p-values

were corrected for multiple comparisons using false discovery rate at a 0.05 level. A similar proce-

dure was used for onset-to-onset differences.

We had one cohort of subjects for the RSVP conditions, and another for the 500 ms per picture

condition. For consistency, we performed between-subject comparisons in all comparisons across

the 17, 34, and 500 ms per picture conditions.

Statistical inference
Statistical inference relied on non-parametric statistical tests that do not make assumptions on the

distributions of the data (Maris and Oostenveld, 2007; Pantazis et al., 2005). Specifically, for the

statistical assessment of classification time series, temporal generalization matrices, and MEG-fMRI

representational similarities we performed permutation-based cluster-size inference. The null

hypothesis was equal to 50% chance level for decoding results, and 0 for decoding differences or

correlation values. In all cases we could permute the condition labels of the MEG data, which was

equivalent to a sign permutation test that randomly multiplied subject responses by +1 or �1. We

used 1000 permutations, 0.05 cluster defining threshold and 0.05 cluster threshold for time series

and temporal generalization maps.

Source data and code
Data and Matlab code used for statistical analyses and producing results in main Figures 2, 3 and

5, are available as a Source data one file with this article.

Acknowledgements
We are thankful to Aude Oliva and Molly Potter for discussions on the interpretations of results. This

work was funded by the McGovern Institute Neurotechnology Program to DP and an Emmy Noether

Award (CI241/1-1) to RMC. Data collection was conducted at the Athinoula A Martinos Imaging

Center at the McGovern Institute for Brain Research, MIT.

Mohsenzadeh et al. eLife 2018;7:e36329. DOI: https://doi.org/10.7554/eLife.36329 18 of 23

Research article Neuroscience

https://doi.org/10.7554/eLife.36329


Additional information

Funding

Funder Grant reference number Author

McGovern Institute Neurotechnology Program Dimitrios Pantazis

Emmy Noether Award CI241/1-1 Radoslaw M Cichy

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Yalda Mohsenzadeh, Wrote the paper. Assisted with designing the experiments, Conducting the

experiments, Analyzing the data, Preparing the manuscript; Sheng Qin, Assisted with designing the

experiments, Conducting the experiments, Analyzing the data; Radoslaw M Cichy, Assisted with

designing the experiments, And preparing the manuscript; Dimitrios Pantazis, Designed the experi-

ment. Wrote the paper. Assisted with conducting the experiments, Analyzing the data, Preparing

the manuscript

Author ORCIDs

Yalda Mohsenzadeh https://orcid.org/0000-0001-8525-957X

Dimitrios Pantazis http://orcid.org/0000-0001-8246-8878

Ethics

Human subjects: The study was approved by the Institutional Review Board of the Massachusetts

Institute of Technology and followed the principles of the Declaration of Helsinki. All subjects signed

an informed consent form and were compensated for their participation.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.36329.015

Author response https://doi.org/10.7554/eLife.36329.016

Additional files

Supplementary files
. Source data 1. Figures 2, 3 and 5 source data and code. Decoding target images; resolving cate-

gorical information; and computing MEG-fMRI representational similarities.

DOI: https://doi.org/10.7554/eLife.36329.011

. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.36329.012

Data availability

All data generated or analysed during this study to support the main findings are included in the

manuscript and supporting files. Source data files have been provided for Figures 2, 3 and 5.

References
Ahissar M, Nahum M, Nelken I, Hochstein S. 2009. Reverse hierarchies and sensory learning. Philosophical
Transactions of the Royal Society B: Biological Sciences 364:285–299. DOI: https://doi.org/10.1098/rstb.2008.
0253, PMID: 18986968

Bar M, Kassam KS, Ghuman AS, Boshyan J, Schmid AM, Schmidt AM, Dale AM, Hämäläinen MS, Marinkovic K,
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