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Activity of striatal neurons reflects dynamic
encoding and recoding of procedural memories
Terra D. Barnes1*, Yasuo Kubota1*, Dan Hu1, Dezhe Z. Jin1,2 & Ann M. Graybiel1

Learning to perform a behavioural procedure as a well-ingrained
habit requires extensive repetition of the behavioural sequence,
and learning not to perform such behaviours is notoriously
difficult. Yet regaining a habit can occur quickly, with even one
or a few exposures to cues previously triggering the behaviour1–3.
To identify neural mechanisms that might underlie such learning
dynamics, we made long-term recordings from multiple neurons
in the sensorimotor striatum, a basal ganglia structure implicated
in habit formation4–8, in rats successively trained on a reward-
based procedural task, given extinction training and then given
reacquisition training. The spike activity of striatal output neur-
ons, nodal points in cortico-basal ganglia circuits, changed mark-
edly across multiple dimensions during each of these phases of
learning. First, new patterns of task-related ensemble firing
successively formed, reversed and then re-emerged. Second,
task-irrelevant firing was suppressed, then rebounded, and then
was suppressed again. These changing spike activity patterns were
highly correlated with changes in behavioural performance. We
propose that these changes in task representation in cortico-basal
ganglia circuits represent neural equivalents of the explore–exploit
behaviour characteristic of habit learning.

The ability to establish habits, procedures and stereotyped beha-
viours brings great biological advantages to active organisms, and
much evidence indicates that cortico-basal ganglia loops are critical
for such learning4–10. If this view were correct, changes in the activity
of basal ganglia neurons should accompany changes in behaviour not
only as habits and procedures are initially acquired, but also as they
are changed in response to altered behavioural contexts. To test for
such restructuring of basal ganglia activity, we recorded chronically
with multiple tetrodes for up to 63 sessions from the sensorimotor
striatum of rats undergoing consecutive acquisition, over-training,
extinction and reacquisition training on a conditional T-maze task
(Fig. 1, Supplementary Fig. 1 and Supplementary Table 1). The rats
navigated the T-maze and turned right or left in response to auditory
cues indicating whether a chocolate reward was at the left or right
choice-arm of the maze (Fig. 1c). This task requires trial-and-error
learning, in which initial ‘exploration’ of the environment over
successive trials leads, with successful learning, to ‘exploitation’, in
which correct choices are made consistently11. Performance accuracy
increased during acquisition and was at or near asymptote during
over-training (Fig. 1d). Accuracy then steadily deteriorated
during extinction training, when reward was reduced (n ¼ 4) or
withheld entirely (n ¼ 3), but recovered rapidly during retraining
after extinction. Running times similarly fell, rose and fell (Fig. 1e, f).

As these behavioural changes occurred, the spiking of striatal
neurons became redistributed across task time (Fig. 2, Supplemen-
tary Figs 2 and 3). We focused on the spike activity of neurons
classified as striatal projection neurons, which directly participate in

cortico-basal ganglia loop processing12 (Fig. 1a, Supplementary Fig. 1
and Supplementary Methods). At the start of acquisition training,
the spike responses of the task-responsive projection neurons, as a
group, occurred throughout the maze runs (Fig. 2a). By the time that
the learning criterion had been met, however, the strongest per-unit
firing occurred near the start and end of the runs. This progressive
concentration of spike activity continued during the over-training
period, even though behavioural performance had reached near-
asymptotic values. In addition, early activity advanced from the time
of locomotion onset towards the waiting period after the warning
cue, and late activity shifted from around goal-reaching to around
the end of turning (Fig. 2a, c, and Supplementary Figs 2 and 3).

These acquired spiking patterns were largely reversed during the
extinction period (Fig. 2a). Mid-trial firing increased, and the
temporal shifts, particularly for the early activity, reversed. When
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Figure 1 | T-maze task and behavioural learning. a, Simplified cortico-basal
ganglia circuit, indicating recording of striatal projection neurons.
N, neocortex; S, striatum; T, thalamus; SN, substantia nigra. b, Training
stages (acquisition (Acq, black), 1–5; over-training (OT, grey), 6–15;
extinction (Ext, blue), 1–6; reacquisition (Rea, red), 1–6; described in
Supplementary Methods). c, Run trajectories for one over-training session.
d, e, Average percentages of correct responses (d) and average per-trial
running times (e). Error bars represent s.e.m.. f, Trial-by-trial running times
for the interval between tone onset and turn onset by a rat during successive
training. Each dot represents performance in one trial.
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the reacquisition period then was initiated by returning the reward at
the end of each correct run, there was another sudden shift in the
spike patterns, producing reduced mid-trial firing and a temporal
advance of start activity resembling that seen during initial acquisition
(Fig. 2a, and Supplementary Figs 2–5).

To estimate the randomness of the population spike activity across
the entire trial time, we calculated the entropy of the average per-
neuron firing across learning stages (Supplementary Methods). The

entropy fell sharply during acquisition, rebounded during extinction,
and fell again during reacquisition (Fig. 2e), in the absence of
significant changes in average per-trial firing rates (Supplementary
Fig. 6). The changes in the spike patterns were highly correlated with
the changes in behavioural accuracy (Fig. 2f, g).

Remarkably, we found equally striking lability in the spiking
patterns of the striatal projection neurons that lacked detectable
phasic peri-event activity during the task (Fig. 2b). Some of these

Figure 2 | Plasticity in spike activity patterns of striatal projection
neurons. a, b, Average activity of units classified as task-responsive (a) and
non-task-responsive (b) neurons plotted in 10-ms bins as z scores
normalized for each neuron relative to that neuron’s baseline activity,
according to pseudo-colour scales shown at the right, with one row per
training session. Plots show ^200-ms time windows around task events,
abutted in the order of occurrence within a trial. c, Peri-event time
histograms (PETHs,^1-s window) for units recorded on consecutive days at
single sites (putative single units), illustrating strengthening and time-shift
in responses around locomotion onset over 6 consecutive sessions (top) and
sharpening of phasic responses at turn onset over 13 sessions (bottom).
Horizontal lines indicate mean pre-trial baseline firing rates (red) and two

standard deviations above the mean (blue, threshold for task-related
activity). d, Typical PETHs for neurons lacking in-trial phasic peri-event
activity (‘non-task-responsive’ units). e, Entropy of per-trial spike activity of
task-responsive units calculated for each training stage. f, Spike progression
index (SPI) illustrating correlation between per-trial spike activity of task-
responsive projection neurons at each training stage and the neural activity
at the last stage of over-training. g, Significant correlation (r ¼ 0.74,
P , 0.0001) between SPI and progressive changes in percentage correct
behaviour during training. Black and grey, acquisition and over-training,
r ¼ 0.82, P ¼ 0.0002; blue, extinction, r ¼ 0.87, P ¼ 0.02; red,
reacquisition, r ¼ 0.09, P ¼ 0.87.
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non-task-responsive neurons fired at low rates both in task and out
of task, and some fired more out of task than in task (Fig. 2d). The
in-task activity of these neurons dwindled during acquisition and
then nearly ceased. Yet, on the first day of extinction, the average per-
neuron firing of these neurons returned to pre-training levels and
remained elevated. Then, when reacquisition training began, their
activity declined sharply. These abrupt shifts were evident whether
the activity of the neurons during the task was classified with respect
to pre-trial baseline firing (Fig. 2b) or relative to in-trial activity
(Supplementary Fig. 2)

To determine whether the tuning of task-related responses
changed during learning, we measured multiple parameters (for
example, height, width, peri-event peak timing) of the phasic spike
responses to specific task events detected by a slope threshold
(Supplementary Methods). None of these was altered during learn-
ing. By contrast, we found large-scale changes in the proportion
of spikes per entire trial run that occurred within phasic responses
(Fig. 3a, b). This proportion tripled during acquisition, fell abruptly
during extinction and abruptly rose again during reacquisition
(Fig. 3b). The number of phasic responses also changed successively
(Fig. 3c). Reinforcing these redistributions of spike activity, the
proportions of task-responsive projection neurons responding to
different task events also progressively emphasized7, de-emphasized
and re-emphasized the beginning and end of the task (Fig. 3d, and
Supplementary Fig. 6). Notably, the sharpening of phasic responses
during acquisition held not only for those occurring in the early and
late parts of the task runs in which overall spiking increased, but also
for responses occurring in the middle parts of the runs in which spike
activity decreased (Supplementary Fig. 6). This result indicates that
even when fewer neurons responded, some ‘expert’ responders with
sharpened responses developed in the striatum as the task was
acquired. This property, too, was subject to reversal and reappearance
during subsequent extinction and reacquisition training.

Both the increase in concentration of spikes within phasic peaks
during acquisition and the redistribution of spikes across run times
had the effect of reducing the spread of spiking across trial perform-
ance time as the rats learned the task. We looked for, but did not

observe, significant changes in the variability of firing rates within
peri-event or phasic-response windows across learning. However, we
found major changes in the entropy (Fig. 2e) and in the variance
(Supplementary Fig. 6) of spiking activity across the entire maze
runs. Changes in spike distribution within the time frame of the
entire procedural performance thus represented the key modulation
of spike variability that we detected during learning.

Taken together, our findings show that per-trial spike distri-
butions, response tuning and task selectivity were dynamically
reconfigured as the procedural behaviour was acquired, extinguished
and reacquired. Composite neural activity scores based on these
factors were highly correlated with both behavioural accuracy and
running times, especially during acquisition and extinction (Fig. 4,
Supplementary Fig. 7 and Supplementary Methods). Restructuring
of the day-by-day neural activity patterns in the ‘fast learners’ (n ¼ 5)
but not in the ‘slow learners’ (n ¼ 2) early during acquisition
(Supplementary Fig. 8) favoured a primary correspondence between
the evolution of the neural restructuring over time and associative
learning. The acquired patterns were detectable in both correct and
incorrect trials (Supplementary Fig. 9), however, so that the ensemble
patterns were not tied to performance in individual trials.

It has been proposed that the basal ganglia promote variability in
behaviour during trial-and-error learning (exploration) and serve to
evaluate behavioural changes to promote the acquisition of optimal
behaviour (exploitation)9,10,13,14. Our findings suggest that there
might be a direct neural analogue to this explore–exploit behaviour
in the firing patterns of projection neurons in the sensorimotor
striatum. We demonstrate two fundamental changes in the spike
activity of striatal projection neurons during procedural learning.

First, there was a global modulation of the firing of projection
neurons. Early in training, the spike activity of the task-responsive
population was spread throughout task time, as though all task
events were salient (neural exploration). Even neurons without
detectable phasic task-responsive activity fired at low rates during
the task. Then, with continued training, this widespread spiking of
the task-responsive population diminished, and their spike activity
became focused (neural exploitation). At the same time, the non-
task-responsive population fell silent, further reducing the task-
irrelevant firing of the total projection neuron population. These
changes in firing thus altered the distribution of striatal output
neuron firing across the actual time-frame of the behaviour to be
learned (the entire task run time). The reversal of the acquired task-
related patterning during extinction and its reappearance in reacqui-
sition fits the idea of increased neural exploration in the new
extinction context and then a return to neural exploitation in the
reinstated original context during reacquisition15–17. The vivid

Figure 3 | Multiple changes in projection neuron activity in the
sensorimotor striatum during acquisition, extinction and reacquisition
training. a, Unit activity at a single site recorded over 13 sessions. Each row
represents a session. b, Proportions of spikes concentrated in phasic
responses in each trial, averaged for each session. Error bars indicate s.e.m.
c, Average numbers of phasic responses per unit. d, Percentages of task-
responsive projection neurons with responses at warning cue (solid blue
line), goal reaching (dotted green line), locomotion onset (solid purple line)
or turning (dotted magenta line). Values are plotted relative to the first
training stage.

Figure 4 | Striatal neural activity predictive of behavioural performance.
a, Composite neural scores based on weighted neural measures at trial start
(normalized per-neuron firing rates during the ^200-ms interval around
the warning cue, proportions of warning cue-responsive neurons, and
proportions of spikes within phasic warning cue responses). b, Significant
correlation between the composite scores (shown in a) and actual
behavioural accuracy for each training stage (colour-coded as in a; r ¼ 0.69,
P , 0.001). c, Plot as in b, showing significant correlation between the
composite neural scores and actual running times for each training stage
(r ¼ 20.69, P , 0.001).
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modulation of the spiking of striatal projection neurons without
detectable task-related activity also accords with this interpretation.

Second, in the exploitation phases of learning, ensemble firing at
the start and end of the learned procedure strengthened, and sharply
tuned responses of ‘expert neurons’ appeared. These changes indicate
that early in training many candidate neurons fired, but that, with
training and presumably competitive selection18–20, neurons with
sharply tuned responses appeared and, as a population, were tuned
preferentially to respond near the start and end of the entire
procedure performed. Our experiments leave open the question of
where within the sensorimotor cortico-basal ganglia loop such
changes were initiated. Because we recorded from striatal projection
neurons, however, our findings show that such learning-related
changes in neuronal firing occur as part of cortico-basal ganglia
loop processing. The learning-related reduction in firing during the
middle of the task time could indicate that striatal activity during this
time was no longer needed for task execution, but could reflect the
marking of behavioural boundaries in the process of chunking of the
entire task performance5. These changing patterns could, in turn,
reflect ongoing reorganization of cortico-basal ganglia activity20–23. If
so, the patterns could reflect neural representations related to the
ready release of the learned behaviours by the appropriate context5.

Cortico-basal ganglia circuits probably act in determining,
through reinforcement-based evaluation, which actions to enhance
or diminish as learning proceeds4–6,9,10,19,20,24–30. Viewed in the context
of such selection functions, our findings indicate that dynamic neural
representations in the striatum could adjust the encoded salience of
task events and behavioural responses as habits are formed, lost and
regained.

METHODS
The spike activity of neurons in the sensorimotor striatum was recorded
chronically during behavioural training on a conditional reward-based T-maze
task for 24–63 daily sessions from seven rats in which seven tetrode headstage
assemblies had been implanted. Recordings began on the first day that the rats
received training (about 40 trials per day) on the task, and were continued
through successive acquisition training (stages 1–5), over-training (stages 6–15),
extinction (stages 1–6) and reacquisition training (stages 1–6; Fig. 1b, Sup-
plementary Table 2 and Supplementary Methods). In this task, rats learned to
run down the maze and to turn right or left as instructed by auditory cues in
order to receive reward. Behavioural data were acquired by means of photo-
beams and a CCD camera. Neural data (32 kHz sampling) were collected by
means of a Cheetah Data Acquisition System (Neuralynx Inc.). Well-isolated
units accepted after cluster cutting were classified as striatal projection neurons
or interneurons (Supplementary Fig. 1b–d). Behavioural and neural data were
aligned by time stamps and were analysed by in-house software. The properties
of both task-responsive and non-task-responsive projection neurons were
analysed. Task-related responses of putative projection neurons were identified
with respect to activity during a pre-trial 500-ms baseline period (threshold:
2 s.d. above baseline mean) and used to define task-responsive and non-task-
responsive populations (Supplementary Methods). Unit data were analysed per
neuron and per neuronal population across task events (Fig. 1c). To analyse
population activity, normalized firing rates were averaged for each learning
stage, and indices of spike firing patterns across learning stages were computed.
The proportions of neurons with different task-related response types, the
proportions of spikes that occurred within peri-event phasic responses per
session, and trial-to-trial spike variability were also calculated, along with
composite neural scores and measures of the entropy of neural firing. Changes
in these measures were compared to changes in per cent correct performance and
running times of the rats across stages of training.
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