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Growth and splitting of neural sequences 
in songbird vocal development
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Sequences of neural activity have been observed during various behav-
iours, including navigation1–4, short-term memory5–7, decision mak-
ing8,9, and complex movements10,11, suggesting that neural sequences 
are a fundamental form of brain dynamics12,13. However, the circuit 
mechanisms underlying the generation of neural sequences and their 
development during learning are not well understood.

The songbird is a good model system to address such questions 
because the song produced by adults is learned during develop-
ment14–18. Furthermore, adult song is associated with neural sequences 
in nucleus HVC19–24, a premotor cortical area necessary for the produc-
tion of stereotyped adult song25–30. Most projection neurons in HVC 
generate a brief burst of spikes at one specific time in the song motif and 
different neurons are active at different times in the song19–24,30; thus, 
distinct syllable types are produced by largely non-overlapping neural 
sequences in HVC. Here we ask how these different neural sequences 
are constructed during vocal development.

Zebra finches acquire their stereotyped song through a gradual 
learning process14,31. Young birds initially produce a highly variable 
‘subsong’31, akin to human babbling15. Birds then enter the protosyll
able stage as they begin to incorporate syllables of a characteristic 
~100 ms duration32–35. This is followed by the gradual emergence of 
multiple syllable types32,33,36, and a final ‘motif ’ stage in which syll
ables are produced in a reliable sequence. While HVC activity is not 
required for subsong27,34,35, it is required for song components in all 
later stages, including protosyllables, emerging syllable types, and 
adult song25–28,34,35.

Developmental progression of HVC activity
To elucidate the mechanisms by which neural sequences in HVC 
develop, we recorded from populations of HVC projection neurons 
in juvenile and adult birds (n = 1,149 neurons, 35 birds; Extended Data 
Fig. 1a). At all stages of vocal development, HVC projection neurons 
generated brief bursts of spikes during singing (Fig. 1a–c, Extended 
Data Fig. 1b, c). In the subsong stage (n = 12 birds; defined by expo-
nential distribution of syllable durations, before the emergence of pro-
tosyllables) roughly half the neurons generated bursts not temporally 
locked to syllable onsets (Extended Data Fig. 1d), while the other half 
produced bursts that tended to occur at a particular latency relative 

to subsong syllable onsets (Fig. 1a and Extended Data Fig. 1e–i; 19/39 
neurons exhibited syllable locking). The fraction of neurons locked to 
syllable onsets exhibited a gradual and significant increase through-
out vocal development (Fig. 1f; correlation with song stage: r = 0.22, 
P < 10−10; see Methods) until, in adult birds, virtually every projection 
neuron generated bursts precisely locked to syllables, as previously 
described19–24.

Song development is characterized by a gradual change in song 
rhythm33,37,38. The subsong stage, which has little evidence of rhythmic 
song structure, ends with the emergence of a rhythmically produced 
protosyllable (5–10 Hz)32–35. This is followed by a subsequent increase 
in the period between repetitions of the same sound, attributable to 
the addition of new song syllables33. HVC exhibited parallel changes 
in rhythmicity. In the subsong stage, most projection neurons did not 
burst rhythmically (Fig. 1a, f; 3/39 neurons were rhythmic). In the 
protosyllable stage, roughly half of the projection neurons generated 
rhythmic bursts (5–10 Hz) (Fig. 1b, f; 70/135 neurons were rhythmic; 
period 169 ± 6.4 ms, mean ± s.e.m.). Such bursts were typically locked 
to rhythmic protosyllables, but were also commonly observed during 
portions of the song with less rhythmic syllable onsets, particularly 
early in the protosyllable stage (Extended Data Fig. 2a–d). On average, 
both the fraction of rhythmic HVC neurons and the period of the 
HVC burst rhythm gradually increased during the emergence of new 
syllable types and the formation of the song motif (Fig. 1f, g; correla-
tion between song stage and fraction of rhythmic neurons: r = 0.28, 
P < 10−10; correlation between song stage and period of burst rhythm: 
r = 0.57, P < 10−10).

A substantial fraction of projection neurons (285 of 1,117 neurons) in 
juvenile birds generated bursts related to song bouts—defined as epochs 
of continuous singing bounded by periods of silence (see Methods). 
Bout-related neurons generated brief bursts of spikes immediately 
before bout onset (‘bout-onset’ neurons; 137/285 neurons) or after 
bout offset (98/285 neurons) (Fig. 1d, e and Extended Data Fig. 2e–l; 
an additional 50/285 neurons were active both before and after bouts).

Growth of a neural protosequence
We next wondered how the activity of HVC projection neurons is  
coordinated across the neural population during protosyllables. Multiple 
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overlapping burst sequences become increasingly distinct. We propose a mechanistic model in which multiple neural 
sequences can emerge from the growth and splitting of a common precursor sequence.
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recordings in the same bird revealed that different neurons were 
active at different times with respect to protosyllable onsets (Fig. 2a, b  
and Extended Data Figs 1n and 9k; n = 3 birds, 54 neurons), with laten-
cies spanning the duration of the protosyllable and the intervening 
gap (>90% burst coverage; Extended Data Fig. 2t). These findings  
suggest that protosyllables are generated by a rhythmic protose-
quence—a repeating motor program comprised of a continuous 
sequence of bursts in HVC.

We next examined the developmental emergence of this rhythmic 
protosequence. In the subsong stage (Fig. 2c; n = 19 neurons, 12 birds), 

bursts had a significantly earlier distribution of latencies compared to 
the broader distribution of burst latencies in the protosyllable stage 
(n = 104 neurons, 13 birds; P = 0.02; 63% versus 43% of bursts before 
syllable onset in the subsong stage and protosyllable stage, respec-
tively). Even though the range of latencies was narrower in subsong 
birds, different neurons recorded in the same bird were locked to 
syllable onsets at different latencies (Extended Data Fig. 1f–i). This 
suggests the existence of transient sequential activity, initiated just 
before syllable onset, but decaying within a few tens of milliseconds. 
This sequential activity appears to grow during the protosyllable stage 
to form longer sequences that can persist for more than a hundred 
milliseconds, throughout the duration of the protosyllable (Fig. 2b, c).

Sequence splitting during syllable formation
We next wondered how distinct sequences in HVC, each corresponding 
to a distinct adult syllable type, emerge during vocal learning. Here we 
hypothesize that new syllable types can emerge by the gradual split-
ting of a single protosequence. In this view, we imagine that the neural 
sequences underlying newly emerging syllable types would initially be 
largely overlapping, with neurons shared across the emerging syllables. 
Splitting would be associated with an increasing number of neurons 
selective for a particular emerging syllable type, and a decreasing frac-
tion of shared neurons.

To test this hypothesis, we recorded from HVC projection neu-
rons (n = 769) in 6 juvenile birds while they acquired multiple syl-
lable types. As a first example, we will describe changes in the HVC 
population activity in a bird (n = 375 projection neurons; bird 1) that 
developed two acoustically distinct syllable types (labelled β  and γ ) 
over the course of several days (Fig. 3a, b; β  and γ  eventually form 
adult syllables B and C, respectively). During the protosyllable stage  
(56–59 days post-hatch, dph), the majority of projection neurons partic-
ipated in a rhythmic protosequence (Extended Data Fig. 1n; n = 14/16  
neurons; for example, Fig. 3c). After the emergence of syllable types  
β  and γ  (62–72 dph), many neurons were selectively active only during 
β  or during γ , but not both (Fig. 3d, f; of 105 neurons active during 
either β  or γ , 41 were β -specific and 42 were γ -specific). The bursts of 
these syllable-specific neurons exhibited a wide range of latencies, with 
spiking activity of neurons in each group spanning the entire dura-
tion of each syllable (Fig. 3g). Notably, we also observed a substantial  
population of neurons that were significantly active during both β  
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Figure 1 | Singing-related firing patterns of HVC projection neurons 
in juvenile birds. a, Neuron recorded in the subsong stage, before the 
formation of protosyllables (RA-projecting HVC neuron, HVCRA; 51 dph; 
bird 7). Top, song spectrogram with syllables indicated above. Bottom, 
extracellular voltage trace. b, Neuron recorded in the protosyllable stage 
(HVCRA; 62 dph; bird 2). Protosyllables indicated (grey bars). c, Neuron 
recorded after motif formation (HVCRA; 68 dph; bird 8). d, Neuron 
bursting exclusively at bout onset (X-projecting HVC neuron, HVCX; 
61 dph; bird 2). e, Neuron bursting exclusively at bout offset (HVCRA; 
65 dph; bird 2). f, Developmental change in the fraction of neurons locked 
to syllable onsets (grey) and fraction of neurons with rhythmic bursting 
(black) (mean ± s.e.m.; n = 39, 135, 565, 378 and 32 neurons, respectively).  
g, Mean period of the HVC rhythmicity as a function of song stage 
(n = 3, 70, 356, 298 and 25 neurons, respectively). * * * P < 0.001, post-hoc 
comparison with the adult stage. Spectrogram vertical axis 500–8,000 Hz. 
Scale bars for panels a–c, 0.5 mV, 200 ms; panels d–e, 1 mV, 500 ms. Inset in 
panels a–c show zoom of bursts indicated by an asterisk; scale bar, 5 ms.

Figure 2 | Rhythmic sequences in HVC during the protosyllable stage. 
a, Three neurons recorded from bird 2 during protosyllable stage (top: 
HVCX; 63 dph; bottom: simultaneous recording two neurons; both HVCX; 
64 dph; scale bar, 0.5 mV). b, Raster plot of 28 HVC projection neurons 
aligned to protosyllable onsets (sorted by latency; 57–64 dph, bird 2). 
Antidromically identified HVCRA neurons indicated by circles at right. 
c, Distribution of burst latencies relative to syllable onset in subsong 
stage (top), protosyllable stage (middle), and multi-syllable/motif stages 
(bottom), across all birds (n = 19, 104 and 814 neurons, respectively). 
Black triangles indicate median burst times.
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and γ  (n = 22 ‘shared’ neurons; Fig. 3e–g). Simultaneous recordings 
revealed the co-occurrence, in different neurons, of shared and specific 
firing patterns (Fig. 3f, Extended Data Fig. 3a, b).

Shared neurons exhibited a number of striking characteristics. 
These neurons burst rhythmically with the same inter-burst interval 
as neurons recorded in the protosyllable stage (Fig. 3e, f; Extended 
Data Fig. 3f–j). Shared neurons were active, as a population, at a 
wide range of latencies within emerging syllables (Fig. 3g), and 
crucially, for a given shared neuron, the bursts during β  occurred 
at a similar latency as the bursts during γ  (Fig. 3g, Extended Data 
Fig. 4a–d). Thus, the population of shared neurons generated the 
same continuous burst sequence during both β  and γ . This shared 
sequence occurred even at times when there was a significant acoustic 
difference between the shared syllables (Extended Data Fig. 5). We 
also found that the fraction of shared neurons later in development 
(81–112 dph) was significantly lower compared to the earlier record-
ings (Fig. 3h; 10 shared and 90 specific neurons; P = 0.03). Thus, the 
refinement of β  and γ  into the adult syllables B and C coincides with 
a decrease in the fraction of shared neurons, producing a gradual 
splitting of these representations into increasingly non-overlapping 
‘daughter’ neural sequences.

The tendency of bird 1 to alternate between syllables β  and γ  means 
that syllable-specific neurons had an inter-burst interval, and thus a 
period, that was twice as long as that observed in the earlier protosyl-
lable stage (Fig. 3c–f, Extended Data Fig. 3f–j). Therefore, the increase 
in the period of neural activity through skipping or alternating cycles 
of an underlying rhythm seems to be a basis for the increase in song 
period during vocal learning33.

Although our key findings are described above for bird 1, a similar 
pattern of HVC coding by shared and specific neurons was seen in a 
total of 6 birds for which recordings were made during the emergence 
of multiple syllable types (birds 1–6; 185 shared neurons and 496 spe-
cific neurons for 8 syllable pairs analysed). Across three birds in which 
neurons were also recorded in later song stages, there was a significant 
decrease in the fraction of shared neurons during syllable development 
(n = 5 syllable pairs; P = 3 × 10−6; birds 1, 2 and 4). Neurons exhibiting 
an increased burst period by skipping cycles of an underlying rhythm 
were observed in 4 of the 6 birds (birds 1, 3, 4 and 6).

Splitting in other learning strategies
Behavioural studies have shown that new syllable types can emerge 
using several distinct developmental strategies32,33,36,39,40. The bird 
described above (bird 1) used the ‘serial repetition’ strategy32 and 
‘sound differentiation in situ’33 to develop two new syllables by alter-
nating increasingly different variants of the protosyllable. Alternatively, 
birds can acquire multiple syllables simultaneously to form an entire 
motif (‘motif strategy’)32, or form new syllables at bout edges (onset or 
offset)39,40. We wondered if the splitting of neural sequences underlies 
these other strategies as well.

Neural recordings were obtained in three birds (birds 1, 2 and 5) 
that exhibited bout-onset syllable formation. We focus here on bird 2 
in which projection neurons were recorded throughout song devel-
opment (57–84 dph). Tracking of syllable structure (Extended Data  
Fig. 6) revealed that syllables A and B of the adult song derived from a 
common, rhythmically repeated protosyllable (labelled α ; Fig. 4a, b), 
and that syllable B arose from the first repetition of α  at bout onset 
(Fig. 4c, d). The bout-onset syllable emerged as a distinct syllable type 
(labelled β ) by fusion of this first α  with a brief vocal element ε  at bout 
onset (Fig. 4c, d and Extended Data Fig. 6a–e).

To examine the neural mechanisms underlying the emergence of 
the new syllable β  at bout onsets, we analysed the firing patterns of 
125 HVC projection neurons. Before the emergence of syllable β , the 
majority of recorded projection neurons participated in a rhythmic 
protosequence (Fig. 2b; n = 28/35 neurons; 57–64 dph). A different 
subset of neurons was active at bout onsets (Fig. 4c; 4 of 35 neu-
rons). After the reliable emergence of β  at bout onsets, roughly half 

Figure 3 | Shared and specific sequences during the emergence of 
multiple syllable types. All data are from bird 1. a, Song examples during 
the emergence of syllables β  (red) and γ  (blue). Panels show, from top to 
bottom, subsong stage (46 dph), rhythmic repetition of protosyllable α  
(grey bars; 58 dph), rhythmic repetition of variants of the protosyllable  
(β  and γ ; 60 dph), and further acoustic differentiation of β  and γ  (red and 
blue bars; 62 dph). b, Scatter plot of syllable duration versus mean pitch 
goodness (each dot is one syllable rendition; n = 400 syllables per day; 
unclassified syllables grey). c, Neuron recorded during protosyllable stage 
(HVCX; 56 dph). d, β -specific neuron (HVCX; 64 dph). e, Shared neuron 
active during both β  and γ  (HVCRA; 68 dph). f, Simultaneously recorded 
pair of HVCX neurons: shared neuron (top) and γ -specific neuron 
(bottom; 71 dph). g, Raster of 105 projection neurons early in syllable 
differentiation showing shared and specific sequences. HVCRA neurons 
indicated by circles at right. h, Same as g but for 100 neurons recorded 
after differentiation of β  and γ  into adult syllables B and C. Scale bars for 
panels c–f, 0.5 mV, all have the same time scale.

Time from syllable onset (s) Time from syllable onset (s)

Early (62–72 dph) Late (81–112 dph)

S
ha

re
d

β-
sp

ec
i�

c
γ-

sp
ec

i�
c

46 dph

58 dph

62 dph

60 dph

6222222222 ddddddddddddddddddddddddppppppppppppppppppppppppppppppppppppppppppppppppppppppphhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

200 ms

4444666666666666666666666666666 ddddpppppppppppppppppppppppppppppphhhh

5555555555888888888888888888888888888 ddddddddddddppppppppppppppppppppphhhhhhhhhhhhhhhhhhhhhhhh

666666666666666666666666666666666666000000000000000000000000000 dddpppppppppppppppppppppppppppppppppppppppphhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

0 0.1 0 0.1

oo
o

oo

o

o

o

oo

o
o

β γ

0 0.1 0 0.1

oo

o

o

o

o

B C

46 dph

58 dph

62 dph

60 dph

C
-s

p
ec

i�
c

S
ha

re
d

B
-s

p
ec

i�
c

58 dph

60 dph

P
itc

h 
go

od
ne

ss

0 0.2

62 dph

Duration (s)
0 0.2

β
γ

62 dph

200 ms

α

β γ

α

a b

c

e

d

f

g h

© 2015 Macmillan Publishers Limited. All rights reserved



Article RESEARCH

1 7  d e c e m b er   2 0 1 5  |  V O L  5 2 8  |  N A T U R E  |  3 5 5

of projection neurons generated bursts during both syllables α  and β  
(65–72 dph; Fig. 4d, e; n = 22 ‘shared’ neurons; 21 ‘specific’ neurons). 
These shared neurons produced nearly identical sequences during 
these two syllables (Fig. 4h, Extended Data Fig. 4c). Later in song 
development (73–84 dph), we observed a smaller fraction of shared 
neurons (n = 4 ‘shared’ neurons; P = 5 × 10−4), and a correspond-
ingly larger fraction of syllable-specific neurons (Fig. 4f, g, i; n = 28  
‘specific’ neurons), consistent with a gradual splitting of the proto-
sequence into increasingly non-overlapping ‘daughter’ sequences. 
Evidence for sequence splitting during bout-onset differentiation was 
also observed in birds 1 and 5 (Extended Data Fig. 7).

Note that the bout-onset differentiation in bird 1 occurred after the 
earlier emergence of the syllables β  and γ  (Fig. 3), suggesting that new 
syllables may emerge in a hierarchical process—that is, by the splitting 
of sequences that are themselves the product of an earlier splitting 
process (Extended Data Fig. 7).

We were able to examine the question of whether neural sequence 
splitting also underlies the ‘motif strategy’ of song learning in two 
birds (birds 3 and 4; Extended Data Figs 8 and 9). In both birds, neural 
recordings showed the existence of rhythmically bursting neurons in 
the protosyllable stage (Extended Data Figs 8e and 9e, f). After the 
emergence of multiple syllable types, every syllable in the emerging 
motif had at least one neuron that was shared with another syllable at 
similar latencies (Extended Data Figs 8f–j and 9g–o), consistent with 
the view that all of these syllables arose from the simultaneous splitting 
of a common protosequence.

Mechanistic model and discussion
We propose a mechanistic model of learning in the HVC network to 
describe how sequences emerge during song development. This model 
is based on the idea that sequential bursting results from the propaga-
tion of activity through a continuous synaptically connected chain of 
neurons within HVC21,41–47. It also captures non-uniformities such as 
increased burst density at syllable onsets, as formulated in a perspective 
of HVC function emphasizing vocal gestures22.

Modelling studies have shown that a combination of two synap-
tic plasticity rules—spike-timing dependent plasticity (STDP) and  
heterosynaptic competition—can transform a randomly connected 
network into a feedforward synaptically connected chain that gener-
ates sparse sequential activity43,44. We hypothesize that the same mech-
anisms can drive the formation of a rhythmic protosyllable chain, and 
subsequently split this chain into multiple daughter chains for different 
syllable types. To test this hypothesis, we constructed a simple network 
of binary units representing HVC projection neurons44.

The model neurons are initially connected with random excitatory 
weights, representing the subsong stage. We hypothesize that a subset 
of HVC neurons receives an external input at syllable onsets and serves 
as a seed from which chains grow during later learning stages43,45. 
Before learning, activation of these seed neurons produced a tran-
siently propagating sequence of network activity that decayed rapidly 
(within tens of milliseconds; Fig. 5a).

In the next stage, the network is trained to produce a single proto-
syllable by activating seed neurons rhythmically (100 ms period). The 
connections are modified according to the learning rules described 
above43,44. As a result, connections were strengthened along the  
population of neurons sequentially activated after syllable onsets, 
resulting in the growth of a feedforward synaptically connected chain 
that supported stable propagation of activity (Fig. 5b).

We found that this single chain could be induced to split into 
two daughter chains by dividing the seed neurons into two groups 
that were activated on alternate cycles of the rhythm (Fig. 5c, d and 
Supplementary Video 1). Local inhibition48 and synaptic competi-
tion were also increased (see Methods). During the splitting process, 
we observed neurons specific to each of the emerging syllable types, 
as well as shared neurons that were active at the same latencies in 
both syllable types (Fig. 5c). Just as observed in our data, over the 
course of development the distribution of burst latencies in the model 
continued to broaden (Fig. 5e), and the fraction of shared neurons 
decreased (Fig. 5c, d). The average period of rhythmic bursting in 
model neurons increased during chain splitting as neurons became 
‘specific’ for one emerging syllable type and began to participate only 
on alternate cycles of the protosyllable rhythm (Fig. 5d and Extended 
Data Fig. 10g, h).

Our model can reproduce other strategies by which birds learn 
new syllable types. We implemented bout-onset differentiation in the 
model by also including a population of seed neurons activated at 
bout onsets (see Figs 1d and 4c, and Extended Data Fig. 10a). This 
caused the protosyllable chain to split in such a way that one daugh-
ter chain was reliably activated only at bout onsets, while the other 
daughter chain was active only on subsequent syllables (Extended Data  
Fig. 10a–d and Supplementary Video 2). Our model was also able to 
simulate the simultaneous emergence of a three-syllable motif (‘motif 
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Figure 4 | Shared and specific sequences during the emergence of a new 
syllable at bout onset. All data are from bird 2. a, Schematic of syllable 
formation. b, Scatter plot of mean pitch goodness of syllables α  (red) 
and β  (blue) through development (n = 100 syllables per day; horizontal 
jitter added to improve data visibility). c, Bout-onset neuron active before 
element ε  (HVCRA; 64 dph). d, New syllable β  formed by fusion of ε  and 
α . Neuron shared between α  and β  (HVCRA; 65 dph). e, Neuron shared 
between α  and β  (HVCX; 70 dph). f, A-specific neuron (HVCRA; 80 dph). 
g, B-specific neuron (HVCRA; 73 dph). h, Population raster plot of 43 
projection neurons recorded early in the emergence of syllable β  showing 
shared and specific sequences. i, Raster plot of 32 neurons recorded after 
differentiation of β  and α  into adult syllables B and A. Scale bars for panels 
c–g, 0.5 mV, all have the same time scale.
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strategy’) by dividing the seed neurons into three subpopulations 
(Extended Data Fig. 10e–h).

Our data and modelling support the possibility of syllable formation 
by mechanisms other than sequence splitting. For example, in several 
birds, a short vocal element emerged at bout onsets that did not seem 
to differentiate acoustically from the protosyllable (and thus was not 
bout-onset differentiation; for example, ‘E’ in bird 1, Extended Data 
Fig. 7a; or ‘C’ in bird 2, Extended Data Fig. 6a, b). We found that, 
by using different learning parameters, our model allows bout-onset 
seed neurons to induce the formation of a new syllable chain at bout 
onset, rather than inducing bout-onset differentiation (Extended Data  
Fig. 10i–k).

In summary, our model of learning in a simple sequence-generating 
network captures transformations that underlie the formation of new 
syllable types via a diverse set of learning strategies.

Possible role of sequence splitting
The process of splitting a prototype neural sequence allows learned 
components of a prototype motor program to be reused in each of the 
daughter motor programs. For example, one of the earliest aspects 
of vocal learning is the coordination between singing and breath-
ing35, specifically, the alternation between vocalized expiration and 
non-vocalized inspiration typical of adult song49. The protosequence 
in HVC would allow the bird to learn the appropriate coordination of 
respiratory and vocal musculature. Duplication of the protosequence 
through splitting would result in two ‘functional’ daughter sequences, 
each already capable of proper vocal/respiratory coordination, and 
each suitable as a substrate for rapid learning of a new syllable type.

This proposed mechanism resembles a process thought to underlie 
the evolution of novel gene functions: gene duplication followed by 
divergence through independent mutations50. Similarly, for the acqui-
sition of complex behaviours, the duplication of neural sequences by 
splitting, followed by independent differentiation through learning, 
may provide a mechanism for constructing complex motor programs.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Animals. We used juvenile male zebra finches (Taeniopygia guttata) 44–112 
days post-hatch (dph) singing undirected song (n = 32 birds). Animals were not 
divided into experimental groups; thus, randomization and blinding were not nec-
essary. No statistical methods were used to predetermine sample size. Birds were 
obtained from the Massachusetts Institute of Technology zebra finch breeding 
facility (Cambridge, Massachusetts). The care and experimental manipulation 
of the animals were carried out in accordance with guidelines of the National 
Institutes of Health and were reviewed and approved by the Massachusetts Institute 
of Technology Committee on Animal Care.

All the juvenile birds were raised by their parents in individual breeding cages 
until 38 ± 5.2 dph (mean ± s.d.) when they were removed and were singly housed 
in custom-made sound isolation chambers (maintained on a 12:12 h day-night 
schedule). For a subset of the birds (birds 1, 2 and 4), additional tutoring was car-
ried out after removal from the breeding cages to facilitate song imitation. This was 
done by playback of the tutor song through a speaker (20 bouts per day). Additional 
tutoring was done for 12 days for bird 1, 7 days for bird 2, and 18 days for bird 4.  
Bird identification key: bird 1, to3965; bird 2, to3779; bird 3, to3017; bird 4, 
to5640; bird 5, to3396; bird 6, to2309; bird 7, to3412; bird 8, to3567; bird 9, to2462; 
bird 10, to2331; bird 11, to2427; bird 12, to3352.

To compare the activity of HVC projection neurons in juvenile birds with that 
of adult birds, we also included neurons recorded in adults (>120 dph, n = 3 birds) 
which included a reanalysis of previously published HVC recordings performed 
in adult male zebra finches singing directed song20.
Song recordings. Songs were recorded with Sound Analysis Pro51 or a  
custom-written MATLAB software (A. Andalman), which was configured to 
ensure triggering of recordings on all quiet vocalizations of juvenile birds27. The 
vertical axis range for all spectrograms is 500–8,000 Hz.
Classification of song stages. We classified each day of juvenile singing into one of 
four song stages: subsong stage, protosyllable stage, multi-syllable stage, and motif 
stage (Extended Data Fig. 1a). Subsong stage (48 ± 4 dph, median ± inter-quartile  
range, IQR) is defined as having a syllable duration distribution well-fit  
by an exponential distribution34,35, with an upper limit for the Lilliefors  
goodness-of-fit statistic of 6. Following the subsong stage, birds enter the protosyll
able stage (58 ± 10 dph, median ± IQR) characterized by the presence of syllables 
with consistent timing reflected in a peak in the distribution of syllable dura-
tions32–35. The onset of the protosyllable stage was defined here as the first day in 
which the syllable duration distribution deviated from an exponential distribution 
(Lilliefors goodness-of-fit statistic greater than 6). Following the protosyllable stage, 
birds transition to the multi-syllable stage (62 ± 12 dph, median ± IQR) in which 
multiple distinct syllable types are visible in the song spectrogram and as multiple 
clusters in a scatter plot of syllable features52 (for example, Fig. 3a, b; 62 dph). 
The motif stage (73 ± 21 dph, median ± IQR) was defined by the production of a 
sequence of syllables in a relatively fixed order31. Finally, songs recorded in birds 
older than 120 dph were assigned as adult stage. A slightly older cutoff than the 
typical definition of adulthood in zebra finches (~90 dph)14 was used, because some 
of our birds in the 90–120 dph range continued to undergo some small develop-
mental changes, as has been reported31.
Syllable segmentation and bout extraction. Syllable segmentation of the juvenile 
song was done based on the song power in a spectral band between 1 and 4 kHz, as 
described previously27,34,35. In a few cases, cutoff frequencies of the band-pass filters 
were adjusted to avoid the inclusion of high-frequency inspiratory sounds35,53. 
Introductory notes were removed manually to avoid including HVC neurons that 
are rhythmically active during these elements54. Song bouts were defined as con-
tinuous sequences of syllables separated by gaps no longer than 300 ms35. Bout 
onset was defined as the onset of the first syllable in the bout, and bout offset was 
defined as the offset of the last syllable in the bout.
Syllable segmentation based on the song rhythmicity (‘phase segmentation’). 
For bird 3 (‘motif strategy’), it was difficult to segment syllables consistently using 
previous methods based on setting a threshold on the sound amplitude27,34,35. 
To overcome this limitation, we segmented syllables based on the phase of the 
rhythmicity in the song (‘phase segmentation’). The peak of the song rhythm, 
defined as the spectrum of the sound amplitude during singing38, exhibited a peak 
around 9 Hz (Extended Data Fig. 8c). To estimate the instantaneous phase of this 
rhythm, we first band-pass filtered the sound amplitude (Extended Data Fig. 8c, d;  
second-order IIR resonator filter with peak at 9 Hz and − 3 dB half-bandwidth 
of 3 Hz; MATLAB command iirpeak). The band-pass filtered signal was then 
processed using the Hilbert transform (MATLAB command hilbert) to compute 
the instantaneous amplitude and phase (Extended Data Fig. 8d). Next, we set a 
threshold on this instantaneous amplitude to find the rhythmic part of the song. 
Finally, within this rhythmic part, song was segmented by detecting threshold 
crossings of the instantaneous phase (Extended Data Fig. 8d, bottom). Phase 

segments that contain no sounds or calls were manually removed. Similarly, phase 
segmentation (band-pass filter with peak at 10 Hz and half-bandwidth of 3 Hz) 
was used to segment the song during the protosyllable stage for bird 4 (Extended 
Data Fig. 9a, e, f). Note that this method is best suited for segmenting songs that 
have strong rhythmic modulation of song amplitude, but in which syllable bound-
aries are not strongly rhythmic. This appeared to be typical of birds employing 
the ‘motif strategy’32.
Syllable classification and labelling. Protosyllables were defined by their char-
acteristic durations as has been described previously34,35. In short, to identify the 
protosyllables, we first subtracted the best-fit exponential distribution (using  
200–400 ms) from the syllable duration distribution, and fitted a Gaussian distri-
bution to this residual. Protosyllables were defined as syllables having durations 
within two standard deviations from the mean of this Gaussian distribution. We 
labelled protosyllables using the Greek letter ‘α ’ in all our birds for consistency.

To label the emerging syllables in the juvenile song, we used the Greek letters β , 
γ , δ , and ε . In contrast, to label the syllables in the adult motif, we used the capital 
letters of the Latin alphabet A, B, C, etc. For birds in which the song learning 
trajectory was tracked developmentally, we labelled the syllables such that the 
correspondence between the juvenile syllables and adult syllables is straightfor-
ward: for example, α  becomes A, β  becomes B, γ  becomes C, δ  becomes D, and 
ε  becomes E. Note that this labelling scheme leads to a slightly unconventional 
labelling of adult song in the sense that a motif can have letters in a reverse order 
(for example, CBA in Fig. 4f, g; Extended Data Fig. 6a), or a motif might not have 
a syllable A (for example, EDCB in Extended Data Fig. 7a).

Syllable labelling was done manually by visual inspection of the song spec-
trogram; this was done blind with respect to the neural activity. The existence of 
multiple distinct syllable types were confirmed by calculating the syllable duration 
and acoustic features commonly used to analyse birdsong syllables51,55, and visual-
izing the clusters of syllables in a two-dimensional space52 (Fig. 3b, Extended Data 
Figs 8b and  9d). In some cases, syllable order was used as an additional indicator 
of syllable identity (for example, Extended Data Fig. 7a, 70 dph; Extended Data  
Fig. 8a, 51 dph; Extended Data Fig. 9a, 59 dph).

In bird 1, syllables β  and γ  were labelled manually by visual inspection of 
the song spectrogram (Fig. 3a). Since characterizing shared neurons and specific 
neurons depends on the reliable labelling of syllables, we took a conservative 
approach and only labelled syllables that were clearly identifiable and did not 
label the syllables that were ambiguous (fraction of syllables labelled as β  or γ  
during 62–66 dph: 70 ± 5.5%, mean ± s.d.). We then estimated the error rate of 
our labelling procedure by plotting the labelled syllables (n = 200 syllables per 
type on each day) in a two-dimensional space of syllable duration and mean pitch 
goodness (Fig. 3b), and obtained a decision boundary using linear discriminant 
analysis. We used mismatch between manual labelling and feature-based labelling 
to estimate the error rate for syllables β  and γ . The error rate during the first five 
days of syllable differentiation (62–66 dph), when the labelling was most difficult, 
was only 1.1% on average (range: 0.25–3.0%).

For the second round of differentiation in bird 1, syllable order was used to 
assist in the labelling of syllables in early stages when syllables ‘B’ and ‘D’ were 
not easily distinguishable based on acoustic differences. Because these syllables 
underwent bout-onset differentiation, the first β  after bout onset was labelled ‘D’; 
later renditions of β  in the bout were labelled ‘B’ (Extended Data Fig. 7a).

In bird 2, several emerging syllables could be easily distinguished based on 
syllable durations (Extended Data Fig. 6d). Specifically, syllables whose durations 
were 110–160 ms, and 180–250 ms were defined as α  and β , respectively. Syllables 
that were 10–75 ms in duration were labelled γ  if they were followed by a β , and 
labelled ε  otherwise.
Chronic neural recordings. Single-unit recordings of HVC projection neurons 
during singing were carried out using a motorized microdrive described previ-
ously56,57. Single-units were confirmed by the existence of the refractory period in 
the inter-spike interval (ISI) distribution (Extended Data Fig. 1b). Neurons that 
were active only during distance calls and not during singing20 were excluded 
from the analysis. In addition, neurons recorded for less than 5 s of singing were 
excluded since the short recording duration did not allow us to reliably quantify 
the activity pattern of these neurons.

Antidromic identification of HVC projection neurons was carried out with a 
bipolar stimulating electrode implanted in RA and Area X (single pulse of 200 μ s 
every 1 s; current amplitude: 50–500 μ A)19,20,57–59. A subset of antidromically 
identified projection neurons was further validated with collision testing19,20,57–59. 
A different subset of single units were identified as putative projection neurons 
based on sparse bursting, but could not be antidromically identified because they 
did not respond to antidromic stimulation or were lost before antidromic identifi-
cation could be carried out (211 of 1,149 neurons). These neurons were included 
in the data set as unidentified HVC projection neurons (HVCp).

© 2015 Macmillan Publishers Limited. All rights reserved
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Analysis of neural activity. Spikes were sorted offline using custom MATLAB 
software (D. Aronov).
Definition of bursts. HVC projection neurons exhibited bursts of action poten-
tials during singing (Fig. 1a–c). The bursting nature of these neurons was evident 
in the inter-spike interval (ISI) distribution during singing, which exhibited two 
peaks with an inter-peak minimum near 30 ms (Extended Data Fig. 1b). We 
defined a ‘burst’ as a continuous group of spikes separated by intervals of 30 ms 
or less. Thus, by definition, bursts are separated from other spikes by intervals 
greater than 30 ms. Note that single spikes separated by more than 30 ms from 
both the preceding spike and the following spikes were also counted as a burst. 
Burst time was defined as the centre of mass of all the spikes within the burst. 
Burst width was defined as the interval between the first and the last spike in a 
burst (Extended Data Fig. 1c, top). Firing rate during burst was defined as the 
reciprocal of the mean inter-spike interval in a burst (Extended Data Fig. 1c, 
bottom). For the calculation of burst width and firing rate during bursts, bursts 
composed of a single spike were excluded.
Syllable-related neural activity. To analyse the temporal relation between neural 
activity and song syllables, we aligned the spike times to syllable onsets and con-
structed a rate histogram (1 ms bin, smoothed over 20 bins; range: ± 0.5 s from 
syllable onsets). The peak in this rate histogram was found between 50 ms before 
syllable onset and 200 ms after syllable onset. To test the significance of this peak, 
surrogate histograms were created by adding different random time shifts to the 
spike times on each trial60. Random time shifts were drawn from a uniform dis-
tribution over ± 0.5 s. The peak of this surrogate histogram was recorded, and this 
shuffling procedure was repeated 1,000 times; P values were obtained by analysing 
the frequency with which the peaks of surrogate data were larger than that of the 
real data, and P < 0.05 was considered significant.

To visualize the population activity associated with protosyllables, we con-
structed a population raster plot by choosing 20 protosyllable renditions for which 
each neuron was most active. Different neurons were plotted in different colours 
(Fig. 2b, Extended Data Figs 1n and 9k). For all the other population raster plots 
associated with identified syllables, 20 random renditions were chosen for display. 
For all population raster plots, syllable duration from each rendition was linearly 
time-warped to the mean duration of the syllable. Spike times were warped by 
the same factor.
Bout-related neural activity. A subset of HVC projection neurons exhib-
ited bout-related activity: bursting before bout onsets and/or after bout offsets  
(Fig. 1d, e and Extended Data Fig. 2e–l). To quantify the pre-bout activity, we 
generated histograms aligned to bout onsets (Extended Data Fig. 2f, g) and found 
the peak in the histogram in a 300 ms window before bout onset. We considered 
a neuron to be exhibiting ‘pre-bout activity’ if the size of this peak was significant 
(P < 0.05) compared to peaks obtained from the shuffled surrogate histograms 
(identical to the procedure described earlier in the section Syllable-related neu-
ral activity). To eliminate the possibility of including syllable-related activity as 
bout-related activity, we did not consider a neuron to be exhibiting pre-bout activ-
ity if the neuron showed a peak in the bout-onset aligned histogram and a peak at a 
similar latency (less than 25 ms apart) in the syllable-onset aligned histogram. We 
considered a neuron to be exhibiting ‘post-bout activity’ if there was a significant 
peak in the bout-offset aligned histogram (Extended Data Fig. 2j, k) in a 300 ms 
window after bout-offset.
Quantification of the rhythmic neural activity. To quantify the rhythmic 
neural activity of HVC projection neurons, we used four different meth-
ods: inter-burst interval, spike-train autocorrelation, spectrum of the spike 
train, and cepstrum of the spike train. Only spikes that were produced dur-
ing singing (that is, between the onset of the first syllable and the offset of 
the last syllable in the bout) were used for the calculation of these measures. 
(1) Inter-burst interval. Intervals between burst times were calculated and 
the peak between 80–1,000 ms was found. (2) Spike-train autocorrelation. 
To quantify the second-order statistics of the firing pattern of HVC neurons, 
spike-train autocorrelation, expressed as a conditional firing rate61, was calcu-
lated, and the peak between 80–1,000 ms was found. The width of the centre 
peak indicates the width of bursts, and multiple side lobes with regular inter-
vals indicate rhythmic bursting. (3) Spectrum of the spike train. Rhythmicity 
of the single-unit activity was also quantified in the frequency domain using  
multi-taper spectral analysis of spike trains treated as point processes62. We used 
the Chronux software to calculate the spectrum for the spike trains63,64. First, bouts 
of singing were segmented into non-overlapping analysis windows of 1.5 s long, 
and then the spectrum for each window was calculated using multi-taper spectral 
analysis with time-bandwidth product NW = 3/2 and the number of tapers K = 2. 
To obtain the mean spectrum for a given neuron, spectra calculated from all the 
analysis windows were averaged. Finally, we found the peak in the mean spec-
trum within the range 2–15 Hz. (4) Cepstrum of the spike train. HVC projection  

neurons typically exhibited brief rhythmic bursts with precise inter-burst intervals  
(Fig. 1b, c). Thus, the spectrum of the spike train tended to have peaks at multiples 
of the fundamental frequency. To represent these burst trains that have regular 
intervals in a more compact way, we calculated the cepstrum (a technique com-
monly used in speech processing to extract the period of glottal pulses) of the spike 
train, defined as the inverse Fourier transform of the log spectrum65, and found 
the peak in the cepstrum between 80–1,000 ms.

To assess the significance of the peaks in these four measures, we compared 
the distribution of peak amplitude obtained from the real data with that of the 
surrogate data obtained by shuffling the bursts times. For this shuffling procedure, 
we first identified all the bursts during a bout of singing as described above. We 
then randomly placed bursts sequentially in an interval that has the same duration 
as the song bout; when spikes from two bursts were closer than 30 ms, we repeated 
the random placement until they were spaced by more than 30 ms. Note that this 
randomization procedure only shuffles the burst times and preserves both the 
number of bursts and the ISIs within bursts. Then, all four metrics listed above 
were calculated by applying the same method to these surrogate spike trains. This 
shuffling was repeated (1,000 times for the IBI and autocorrelation, 100 times 
for the spectrum and cepstrum) and the P values of the peak were calculated by 
analysing the frequency at which the peaks from the surrogate spike trains were 
larger than the peak obtained from real data. A neuron was considered to exhibit 
‘rhythmic’ bursting if it had significant peaks in at least two of the four metrics. 
The period of the rhythm was defined as the location of the largest peak of spike-
train autocorrelation between 80–1,000 ms.
Quantification of the probabilistic neural activity during the protosyllable 
stage (Extended Data Fig. 2p). Although many HVC projection neurons recorded 
in the juvenile bird exhibited rhythmic bursts, these bursts did not occur reli-
ably on every cycle of the rhythm, but instead participated probabilistically  
(Fig. 2a). To quantify the degree of participation, we first extracted the proto-
syllables based on syllable duration (see earlier section Syllable classification 
and labelling) and examined the fraction of protosyllables in which at least one 
spike occurred (time-window from 30 ms before protosyllable onset to 10 ms 
after protosyllable offset). The fraction of protosyllables in which the neuron 
was active was obtained for all the HVC projection neurons recorded during 
the protosyllable stage that showed a significant rhythmic bursting (Extended 
Data Fig. 2p).
Analysis of simultaneously recorded pairs of neurons (Extended Data  
Fig. 2q, r). To test whether probabilistic bursting of neurons in the protosyllable 
stage is coordinated across many neurons, we analysed the correlation between 
pairs of simultaneously recorded neurons (Fig. 2a, bottom). This analysis was 
restricted to pairs of neurons that were rhythmically bursting (n = 11 pairs, 3 birds). 
Bursting activity of each neuron was converted to a binary string corresponding 
to its participation in each protosyllable (for the definition of protosyllables, see 
earlier section Syllable classification and labelling). The activity of a neuron was 
assigned a ‘1’ for a protosyllable if the neuron exhibited activity in a time-window 
from 30 ms before protosyllable onset to 10 ms after protosyllable offset, and ‘0’ if 
it did not. Only activity during protosyllables was analysed to avoid including the 
highly variable subsong syllables, which are likely generated by circuits outside 
HVC27,34. For simultaneously recorded pairs of neurons, this procedure resulted 
in two binary strings corresponding to the protosyllable-related activity of each 
neuron. We then calculated the coefficient of determination r2 by taking the square 
of the Pearson’s correlation coefficient r between the two binary strings. The distri-
bution of coefficient of determination is shown in Extended Data Fig. 2q (median 
r2 = 0.072, 11 pairs).

We also carried out a mutual information analysis to quantify whether the 
activity of one neuron was predictive of the set of protosyllables for which the 
other neuron was active. Using the same binary representation described above, 
we calculated the joint probability distribution describing the four possible states 
of activity (neither neuron spikes, neuron A spikes, neuron B spikes, both neu-
rons spike). The mutual information was computed from this joint distribution 
(Extended Data Fig. 2r, median mutual information = 0.056 bits, 11 pairs).

Both the correlation and mutual information were extremely low, suggesting 
that different projection neurons participated on relatively independent sets of 
protosyllables. These findings suggest that individual projection neurons partic-
ipate probabilistically and largely independently in an ongoing rhythmic proto-
sequence within HVC.
Analysis of coverage by HVC projection neuron bursts (Extended Data  
Fig. 2s, t). We wondered whether projection neuron bursts effectively span the 
entire duration of juvenile song syllables, or whether bursts are highly localized to 
specific times, leaving other times in the syllable unrepresented22. It is clear from 
the syllable aligned raster plots that some syllables were completely covered by 
bursts (for example, Fig. 3h, syllable ‘C’), while other syllables showed some gaps 
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in the burst coverage (for example, Fig. 4i, syllable ‘A’). To further quantify this 
aspect of the HVC representation during singing, we analysed the fraction of time 
within the syllables of juvenile birds that were ‘covered’ by the recorded projection 
neurons bursts (‘covered fraction’). This analysis was restricted to syllables with 
more than 10 associated bursts.

We first determined the region of the song syllable covered by each HVC  
projection neuron burst. We generated a histogram of syllable -onset or -offset 
aligned spike times recorded from a single neuron over every recorded rendition 
of the song syllable. Initial identification of candidate burst events was determined 
by smoothing the histogram (9 ms sliding square window, 1 ms steps), and setting 
a threshold to define a window in which to analyse burst spikes (2 Hz for protosyl-
lable stage birds; 10 Hz threshold for older juveniles). To eliminate low-probability 
spike events, we only considered bursts for which spiking activity (at least one 
spike) occurred in the candidate burst window on at least 25% of the renditions 
for that syllable. Bursts were included only if they occurred between 30 ms before 
syllable onset and 10 ms after syllable offset.

For candidate bursts that met these criteria, all spikes occurring in the burst 
window were considered as contributing to that burst. Based on earlier meas-
urements of postsynaptic currents and potentials of HVC and RA neurons66, 
each HVC spike in the burst window was conservatively assumed to exert a 
postsynaptic effect lasting no more than 5 ms. Thus, each spike in the data set 
was replaced with a 5 ms postsynaptic square pulse (beginning at the spike time). 
We considered a region of the syllable to be ‘covered’ by this burst if at least three 
of these post-synaptic pulses overlapped at that time within the burst, across 
renditions of the syllable. This procedure yielded a small ‘patch’ of time covered 
by the burst. The patches associated with each different neuron were combined 
with a logical ‘OR’ operation to determine the total coverage time of the sylla-
ble (again in a window from 30 ms before syllable onset to 10 ms after syllable 
offset). The covered time was divided by the duration of the syllable window to 
determine the covered fraction. Only syllables that had more than 10 neurons 
bursting within the syllable window were analysed. This criterion excluded syll
ables from bird 3 (shown in Extended Data Fig. 8), from which relatively few 
neurons were recorded.

While most syllables had nearly complete burst coverage (>90%), one syllable 
had coverage of only 73% (Extended Data Fig. 2t), which could potentially be 
due to the relatively smaller number of neurons recorded in this bird. Thus, we 
asked whether the measured coverage is consistent with sparse sampling of the 
recorded bursts from a large number of uniformly placed bursts. To simulate 
this, we calculated the covered fraction for 1,000 surrogate data sets in which 
the ‘covered patches’ for each burst were randomly shuffled within the syllable. 
A random offset was added to the time of each patch, and a circular shift was 
used, allowing the patches to wrap around the edges of the syllable window. The 
distribution of covered fractions was determined over all shuffled surrogate data 
sets, and the 2.5–97.5 percentiles (95% confidence interval) of this distribution 
were determined (shown as vertical grey bars in Extended Data Fig. 2t). For all 
syllables, the observed covered fraction was consistent with that expected for 
random sampling from a uniform underlying distribution of burst times.
Shared and specific neurons. To examine whether a given HVC projection neu-
ron was active during multiple syllable types (‘shared’ neuron) or was active only 
during a specific syllable type (‘specific’ neuron), we first constructed a sylla-
ble-onset aligned histogram (1 ms bin, smoothed over 20 bins) for each syllable 
type. Spike times were linearly time warped67 to the mean duration of that syllable 
to reduce the trial-to-trial variability in the spike timing associated with the varia-
tion in the syllable duration. Next, we found the peak in the firing rate histogram 
in the interval between 30 ms before syllable onset and 10 ms after syllable offset. 
We visually inspected the syllable-aligned histograms, and adjusted the interval 
if necessary to avoid the same burst being detected twice (that is, being associated 
with an offset of one syllable and an onset of the next syllable). The significance 
of this peak was determined by comparing it with the peak size obtained from the 
shuffled histogram using the same method described earlier (in Syllable-related 
neural activity section).

We defined ‘shared’ and ‘specific’ neurons in the context of a particular syllable 
differentiation process (for example, β  and γ  from bird 1 in Fig. 3; α  and β  from 
bird 2 in Fig. 4; B and D from bird 1 in Extended Data Fig. 7). ‘Specific’ neurons 
were defined as neurons that had a significant peak in the syllable-aligned histo-
gram for only one syllable type, whereas ‘shared’ neurons were defined as neurons 
that had significant peaks for both syllable types. We took a conservative approach 
and only considered a neuron to be shared if the peak was significant for both 
syllable types. However, some neurons classified as specific had weak activity for 
the other syllable that did not reach significance (for example, Extended Data  
Fig. 6f). In other words, we believe this method likely underestimated the fraction 
of neurons with shared activity.

Our method likely underestimated the incidence of shared neurons for another 
reason as well. Specifically, we defined shared and specific neurons in the context 
of a particular pair of syllables undergoing differentiation. For example, in a bird 
that exhibited hierarchical differentiation (bird 1; Extended Data Fig. 7), we saw 
examples of neurons that were B-specific when considering B-C differentiation 
but shared when considering B-D differentiation. Thus, when considering all 
the syllables in the motif, our definition of shared and specific neuron based on 
syllable pairs will underestimate the fraction of shared neurons and overestimate 
the fraction of specific neurons.
Quantification of the similarity of latencies in shared neurons (Extended 
Data Fig. 4a–d and Extended Data Fig. 8i, j). To test whether shared neurons 
were active at similar latencies for multiple syllable types, we first calculated the 
latency of the peak in the syllable onset- or offset-aligned histograms. We then 
plotted the latency of the peak for one syllable against that of another syllable 
(Extended Data Fig. 4a–d). When a shared neuron was active for three or more 
syllables, two syllables associated with two highest firing rates were chosen.  
To quantify whether shared neurons were active at similar latencies for two  
syllable types, we calculated the Pearson’s correlation coefficient r between the 
two latencies across shared neurons, and the P value under the null hypothesis 
that r = 0.

For the bird whose song was segmented based on the phase of the rhythm  
(bird 3, Extended Data Fig. 8), we asked whether bursts of shared neurons 
during different syllables occurred at similar phases of the rhythm. To quantify 
the phase of the neural activity, we first detected the burst times during singing, 
and for each burst, we assigned an instantaneous phase extracted from the song 
using the Hilbert transform (see the section on phase segmentation above). 
Then, the mean phase of all the bursts produced during a particular syllable 
type was calculated (ϕi, where i = 1, 2, …, 5 indicates syllables). Finally, the two  
syllable types were chosen for which the neuron participated most reli-
ably, and the difference between the mean phases for these two syllables 
(|Δϕ| = |ϕm − ϕn|, where m and n are syllable indices) was obtained (Extended 
Data Fig. 8i). We tested the significance of this value by comparing the value of 
|Δϕ| against that obtained from the shuffled data where the pairing of phases 
were randomized across all shared neurons (Extended Data Fig. 8j; 1,000 shuf-
fles). P values were obtained by analysing the frequency with which |Δϕ| of 
surrogate data was smaller than that of the real data, and P < 0.05 was consid-
ered significant.
Quantification of the activity level difference in shared neurons (Extended 
Data Fig. 4i, j). To quantify the difference in the activity level for multiple syllable 
types in the shared neurons, we calculated the ‘bias’ defined as follows:

= −
( )
( )
r r
r r

Bias 1 min ,
max ,

1 2

1 2

where ri is the peak firing rate in the syllable-aligned histogram for syllable i. Bias 
of 0 indicates equal activity level for both syllable types, whereas bias of 1 indicates 
exclusive activity for only one of the syllable types (Extended Data Fig. 4j).
Analysis of acoustic features associated with bursts of shared neurons 
(Extended Data Fig. 5). We wondered if the bursts of shared neurons were 
associated with different acoustic signals in the shared syllables at the time of 
the bursts. (An alternative possibility is that shared neurons burst only at times 
within the emerging syllable types when the acoustic signals are identical.)  
An example of a neuron analysed here is shown in Extended Data Fig. 5a  
(from the same data shown in Fig. 3e). This neuron bursts just after the onset 
of both syllables β  and γ . We analysed the acoustic differences in a 0–50 ms 
analysis window after the burst time, but were most interested in acoustic dif-
ferences in a narrower premotor window (10–40 ms), as this corresponds to 
the premotor latency for which one expects HVC neurons to exert an effect on 
vocal output29,58,68.

For each neuron analysed, all syllables in which the neuron generated a burst 
were identified. The analysis was carried out for every syllable rendition on 
which the neuron burst, and was restricted to only those syllables. Syllables had 
previously been labelled by type (that is, β  and γ ). We first directly visualized 
the spectral differences between the two syllable types using a sparse contour 
representation69,70, which is suitable for constructing an ‘average’ spectrogram. 
The analysis was carried out on the sound signal extracted from a 50 ms window 
after each burst. In many cases, this spectral representation revealed consistent 
differences between the different syllable types in this analysis window (Extended 
Data Fig. 5b, c).

One complication is that some of the shared neurons burst before syllable 
onsets or immediately before syllable offsets such that the 10–40 ms window 
after the bursts was obscured by silent gaps (9 of 24 HVCRA neurons and 59 of  
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120 HVCX neurons were obscured). These neurons were excluded from the anal-
ysis of acoustic difference.

We further quantified differences in the acoustic signals by extracting time 
varying acoustic and spectral features in a window 0–50 ms after burst time (see 
subsection Definition of bursts). We used 8 acoustic features previously estab-
lished to analyse birdsongs (Wiener entropy, spectral centre of gravity, spectral 
width, pitch, pitch goodness, sound amplitude, amplitude modulation, frequency 
modulation)51,55. The 8-dimensional vector of features was calculated in 1 ms steps 
over the 50 ms analysis window (Extended Data Fig. 5d, e).

Because each syllable was labelled, we could determine if the feature trajecto-
ries were significantly different for syllables labelled β  and those labelled γ , and 
make this determination at every time step in the analysis window (Extended 
Data Fig. 5d, e; s.e.m. indicated by shaded region around mean trajectory). 
Rather than quantify the difference in these trajectories one feature at a time, 
we used Fisher’s discriminant analysis71 to project the 8-dimensional acoustic 
feature vector onto a single dimension that gives maximum separability between 
the two syllable types. The projected direction is determined independently at 
each time point, and the feature vectors of all syllable renditions are projected, at 
each time point, to yield a distribution of projected samples. For most neurons, 
the different syllable types produce visibly different distributions of projected 
samples (Extended Data Fig. 5f) indicating distinct acoustic structure. The sepa-
rability of the distributions (in one dimension) of projected samples for different 
syllable types was quantified using the d-prime metric (d′ ), corresponding to 
the distance between the means of the distributions, normalized by the pooled  
variance70:

µ µ

σ σ
′ =

−

( + )
d A B

A B
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2
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Because the features evolve in time, this analysis is carried out independently 
at each 1 ms step in the 50 ms analysis window, and the d′  was plotted as a func-
tion of time (Extended Data Fig. 5g). Statistical significance of the d′  trajectory 
was assessed by randomizing the syllable labels and rerunning the d′  analysis on 
shuffled data sets (N = 1,000 shuffles). For each randomization, the peak value 
of d′  in 10-40 ms premotor window was recorded; significance threshold was set 
as the 95 percentile of the distribution of these peak values. A shared neuron was 
determined to have significant acoustic difference between the shared syllables 
only if the d′  trajectory remained above this significance threshold for the entire 
premotor window of 10–40 ms after the burst. Note that, in the simulated data, 
none of the 1,000 surrogate runs generated a d′  trajectory that met this stringent 
criterion.
Statistics. Results are expressed as the mean ± s.d. or s.e.m. as indicated. For χ2 
tests, if the contingency table included a cell that had an expected frequency less 
than 5, Fisher’s exact test was used72. All tests were two-sided, and P < 0.05 was 
considered significant. Bonferroni correction was used to account for multiple 
comparisons.

Figure 1f. The statistical significance of developmental changes in the fraction 
of HVC neurons that were syllable-aligned was assessed in two different ways: 
(1) Each stage was compared with the adult stage using the χ2 test followed by a 
post-hoc pairwise test. (2) To quantify the developmental trend in the fraction of 
syllable-locked neurons, we calculated Pearson’s correlation coefficient r between 
the binary value for each neuron (0, unlocked; 1, locked) and song stage (subsong: 
1, protosyllable: 2, multi-syllables: 3, motif: 4, adult: 5). The P value was calculated 
under the null hypothesis that r = 0. The significance of the developmental trend 
for rhythmic bursting was calculated similarly. Similar results were obtained for 
correlation between these metrics and the age at which each neuron was recorded, 
rather than song stage.

Figure 1g. The statistical significance of developmental changes in the period 
of the HVC rhythm was also assessed in two different ways: (1) Each song stage 
was compared with the adult stage using the Kruskal–Wallis test followed by a 
post-hoc pairwise test. (2) To quantify the developmental trend in the period of 
the HVC rhythm, we calculated Pearson’s correlation coefficient r between burst 
period and song stage. Similar results were obtained for correlation between burst 
period and the age at which each neuron was recorded.

Figure 2c. The Wilcoxon rank-sum test was used to test whether the median 
of the syllable-onset aligned latency distribution was different between subsong 
and protosyllable stages.

Figures 3g, h and 4h, i. To test whether the fraction shared neurons differed 
between early and late stages of syllable differentiation, we used the χ2 test  
on a 2 × 2 contingency table (shared/specific, early/late). Regarding across  
all birds, to calculate whether the fraction of shared neurons differed between 
early and late stages of syllable differentiation over all birds (n = 5 syllable pairs 

in 3 birds), we used the Cochran–Mantel–Haenszel test for repeated tests of 
independence73.

Extended Data Fig. 1a. To quantify the relation between song stage and age, 
we calculated Spearman’s rank correlation coefficient ρ and the P value under the 
null hypothesis that ρ = 0. 

Extended Data Fig. 1c. We computed the statistical significance of develop-
mental changes in burst width (top) and firing rate during bursts (bottom) by 
using the Kruskal–Wallis test followed by a post-hoc pairwise test to compare 
each stage with the adult stage.

Extended Data Fig. 2m–o. To test whether fraction of syllable-locked neu-
rons (Extended Data Fig. 2m), fraction of rhythmic neurons (Extended Data  
Fig. 2n), and period of HVC rhythm (Extended Data Fig. 2o) significantly differed 
between HVCRA and HVCX, we used χ2 test for all the pairwise comparisons with 
Bonferroni correction for multiple comparisons.

Extended Data Fig. 4a–d. To calculate the relation between latencies of bursts 
associated with shared neurons, we calculated the Pearson’s correlation coefficient 
r together with the P value under the null hypothesis that r = 0.

Extended Data Fig. 5m, n. To test whether the mean d′ metric was different 
between HVCRA and HVCX, we used the Wilcoxon rank-sum test. Only neu-
rons with d′ trajectories that were significant (continuously from 10–40 ms) were 
included in this comparison.
Neural model of chain formation and splitting. Code used to simulate the 
model is available as Supplementary Information. To illustrate a potential mech-
anism of chain splitting, we chose to implement the model as simply as possible. 
We modelled neurons as binary units and simulated their activity in discrete 
time steps44; at each time step (10 ms), the ith neuron either bursts (xi = 1) or 
is silent (xi = 0).
Network architecture. A network of 100 binary neurons is recurrently connected 
in an all-to-all manner, with Wij representing the synaptic strength from presynap-
tic neuron j to postsynaptic neuron i. Self-excitation is prevented by setting Wij = 0 
for all i at all times44. During learning, the strength of each synapse is constrained 
to be within the interval [0, wmax], while the total incoming and outgoing weights 
of each neuron are both constrained by the “soft bound” Wmax= m* wmax where m 
represents a target number of saturated synapses per neuron44 (see section Synaptic 
plasticity rule for details). Note that wmax represents a hard maximum weight of 
each individual synapse, while Wmax represents a soft maximum total synaptic 
input or output of any one neuron. Synaptic weights are initialized with random 
uniform distribution such that each neuron receives, on average, its maximum 
allowable total input, Wmax.
Network dynamics. The activity of each neuron in the network was determined 
in two steps: calculating the net feedforward input that comes from the previous 
time step; then determining whether that is enough to overcome the recurrent 
inhibition in the current time step.

First, the net feedforward input to the ith neuron at time step t, ( )A ti
net , was 

calculated by summing the excitation, feedforward inhibition, neural adaptation, 
and external inputs:

θ( ) = ( )− ( )− ( )+ ( )− +A t A t A t A t B t[ ]i i
I

i i i
net E adaptff

where [z]+ indicates a rectification (equal to z if z > 0 and 0 otherwise). 
( ) =∑ ( − )A t W x t 1i j ij j

E  is the excitatory input from network activity on the  
previous time step. β( ) = ∑ ( − )A t x t 1I

j j
ff   is a global feedforward inhibitory 

input44, where β sets the strength of this feedforward inhibition. α( ) =A t yi i
adapt  

is an adaptation term44 where α is the strength of adaptation, and yi is a low-pass 
filtered record of recent activity in xi with time constant τadapt = 40 ms; that is 
τ = − +y x

dy

dt i iadapt
i ; Bi(t) is the external input to neuron i at time t. For seed  

neurons, this term consists of training inputs (see section on Seed neurons).  
For non-seed neurons, it consists of random inputs with probability pin = 0.01 in 
each time step and size Wmax/10. Finally, θi is a threshold term used to reduce the 
excitability of seed neurons, making them less responsive to recurrent input than 
are other neurons in the network. For seed neurons, θi = 10 and for non-seed 
neurons, θi = 0. Including this term improves robustness of the training procedure 
by eliminating occasional situations in which seed neuron activity may be dom-
inated by recurrent rather than external inputs. In these cases, external inputs may 
fail to exert proper control of network activity.

Second, we determined whether the ith neuron will burst or not at time step t 
by examining whether the net feedforward input, ( )A ti

net , exceeds the recurrent 
inhibition, AI_rec(t). We implemented recurrent inhibition by estimating the total 
input to the network at time t:

∑γ( ) = ( )_A t A tI rec

i
i
net
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and feeding it back to all the neurons. Parameter γ sets the strength of the recur-
rent inhibition. We assume that this recurrent inhibition operates on a fast time 
scale48 (that is, faster than the duration of a burst). Thus, the final output of the 
ith neuron at time t becomes:

–( ) =Θ ( )− ( )x t A t A t[ ]i i
I recnet

where Θ [z] is the Heaviside step function (equal to 1 if z > 0 and 0 otherwise). To 
induce splitting, γ  was gradually stepped up to γsplit following a sigmoid with time 
constant τγ and inflection point t0:

γ
γ

( ) =
+ τ−( − )/ γ

t
e1 t t

split

0

Seed neurons. A subset of neurons was designated as seed neurons, which received 
external training inputs used to shape network activity during learning43,45. The 
external training inputs activate seed neurons at syllable onsets, reflecting the 
observed onset-related bursts of HVC neurons during the subsong stage (Fig. 1a). 
The pattern of these inputs was adjusted in different stages of learning, and each 
strategy of syllable learning was implemented by different patterns of seed neuron 
training inputs.
Alternating differentiation (Fig. 5a–e). Ten neurons were designated as seed neurons 
and received strong external input (Wmax) to drive network activity. In the subsong 
stage, seed neurons were driven (by external inputs) synchronously and randomly 
with probability 0.1 in each time step corresponding to the random occurrence 
of syllable onsets in subsong27,34. This was done only to visualize network activ-
ity; no learning was implemented at the subsong stage. During the protosyllable 
stage, seed neurons were driven synchronously and rhythmically with a period 
T = 100 ms. The protosyllable stage consisted of 500 iterations of 10 pulses each. 
To initiate chain splitting, the seed neurons were divided into two groups and 
each group was driven on alternate cycles. The splitting stage consisted of 2,000 
iterations of 5 pulses in each group of seed neurons (1 s total per iteration, as in 
the protosyllable stage).
Motif strategy (Extended Data Fig. 10e–h). This was implemented in a similar man-
ner as alternating differentiation, except that 9 seed neurons were used, and for the 
splitting stage, seed neurons were divided into 3 groups of 3 neurons, each driven 
on every third cycle.
Bout-onset differentiation (Extended Data Fig. 10a-d). Seed neurons were divided 
into two groups: 5 bout-onset seed neurons and 5 protosyllable seed neurons.  
At all learning stages, external inputs were organized into bouts consisting of four 
separate input pulses, and bout-onset seed neurons were driven at the beginning 
of each bout. Then, 30 ms later, protosyllable seed neurons were driven three times 
with an interval of T = 100 ms. In the protosyllable stage, inputs to all seed neu-
rons were of strength Wmax. In the splitting stage, the input to protosyllable seed 
neurons was decreased to Wmax/10. This allowed neurons in the bout-onset chain 
to suppress, through fast recurrent inhibition, the activity of protosyllable seed 
neurons during bout-onset syllables.

Each iteration of the simulation was 5 s long, consisting of 10 bouts, described 
directly above, with random inter-bout intervals. The protosyllable stage consisted 
of 100 iterations, and the splitting stage consisted of 500 iterations.
Bout-onset syllable formation (Extended Data Fig. 10i–k). Input to seed neurons 
was set high (2.5* Wmax), and maintained at this high level throughout develop-
ment. This prevented protosyllable seed neurons from being inhibited by neurons 
in the bout-onset chain. Furthermore, strong external input to the protosyllable 
seed neurons terminated activity in the bout-onset chain through fast recurrent 
inhibition, thus preventing further growth of the bout-onset chain, as occurs in 
bout-onset differentiation.

As in bout-onset differentiation, each iteration of the simulation was 5 s long, 
consisting of 10 bouts with random inter-bout intervals. The protosyllable stage 
consisted of 100 iterations, and the splitting stage consisted of 500 iterations.
Synaptic plasticity rules. As in previous models43,44, we hypothesized two plasticity 
rules in our model: Hebbian spike-timing dependent plasticity (STDP) to drive 
sequence formation74,75, and heterosynaptic long term depression (hLTD) to intro-
duce competition between synapses of a given neuron43,44. STDP is governed by the 
antisymmetric plasticity rule with a short temporal window (one burst duration):

ηΔ ( )= ( ) ( − )− ( − ) ( )t x t x t x t x t[ 1 1 ]ij i j i j
STDP

where the constant η sets the learning rate. hLTD limits the total strength of weights 
for neuron i, and the summed weight limit rule for incoming weights is given by:
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and for outgoing weights from neuron j:
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At each time step, total change in synapse weight is given by the combination 
of STDP and hLTD:

⁎ ⁎ε εΔ ( )=Δ ( )− Δ ( )− Δ ( )W t t t tij ij i j
STDP hLTD hLTD

where ε sets the relative strength of hLTD.
Model parameters: subsong (Fig. 5a). In our implementation of the subsong stage, 
there was no learning. Subsong model parameters were: β = 0.115, α = 30, η = 0, 
ε = 0, γ = 0.01.
Model parameters: alternating differentiation (Fig. 5b–d). After subsong, 
learning progressed in two stages: the protosyllable stage and the splitting stage. 
Parameters that remained constant over development were: β = 0.115, α = 30, 
η = 0.025, ε = 0.2. To induce chain splitting, wmax, the maximum allowed strength 
of any synapse, was increased from 1 to 2, m was decreased from 10 to 5, and γ 
was increased from 0.01 to 0.18 following a sigmoid with time constant τγ = 200 
iterations and inflection point t0 = 500 iterations into the splitting stage. No change 
in parameters occurred before the chain-splitting stage.
Model parameters: bout-onset differentiation (Extended Data Fig. 10a–d). 
Parameters that remained constant over development were: β = 0.13, α = 30, 
η = 0.05, ε = 0.14. To induce chain splitting, wmax was increased from 1 to 2, m 
was decreased from 5 to 2.5, and γ was increased from 0.01 to 0.04 following  
a sigmoid with time constant τγ = 200 iterations and inflection point t0 = 250  
iterations into the splitting stage.
Model parameters: motif strategy (Extended Data Fig. 10e–h). Parameters that 
remained constant over development were: β = 0.115, α = 30, η = 0.025, ε = 0.2. 
To induce chain splitting, wmax was increased from 1 to 2, m was decreased 
from 9 to 3, and γ was increased from 0.01 to 0.18 following a sigmoid with 
time constant τγ = 200 iterations and inflection point t0 = 500 iterations into 
the splitting stage.
Model parameters: formation of a new syllable at bout onset (Extended Data 
Fig. 10i–k). Parameters that remained constant over development were: β = 0.13, 
α = 30, η = 0.05, ε = 0.15. To induce chain splitting, wmax was increased from 1 to 
2, m was decreased from 5 to 2.5, and γ was increased from 0.01 to 0.05 following 
a sigmoid with time constant τγ = 200 iterations and inflection point t0 = 250 iter-
ations into the splitting stage.
Shared and specific neurons. Neurons were classified as participating in a syllable 
type if the syllable onset-aligned histogram exhibited a peak that passed a threshold 
criterion. The criteria were chosen to include neurons where the histogram peak 
exceeded 90% of surrogate histogram peaks. Surrogate histograms were generated 
by placing one burst at a random latency in each syllable. (For example, in the pro-
tosyllable stage, the above criterion was found to be equivalent to having 5 bursts at 
the same latency in a bout of 10 protosyllables.) During the splitting phase, neurons 
were classified as shared if they participated in both syllable types, and specific if 
they participated in only one syllable type.
Visualizing network activity. We visualized network activity in two ways: network 
diagrams, and raster plots of population activity (for example, Fig. 5a–d top and 
bottom panels, respectively). In both cases, we only included neurons that partic-
ipated in at least one of the syllable types (see earlier section Shared and specific 
neurons for participation criteria).
Network diagrams. Neurons are sorted along the x axis based on their relative 
latencies. Neurons are sorted along the y axis based on the relative strength of their 
synaptic input from specific neurons (or seed neurons) of each type (red or blue). 
Lines between neurons correspond to feedforward synaptic weights, and darker 
lines indicate stronger synaptic weights. For clarity of plotting, only the strongest 
six outgoing and strongest nine incoming weights are plotted for each neuron.
Population raster plots. Neurons are sorted from top to bottom according to their 
latency. Groups of seed neurons are indicated by magenta arrows. Shared neurons 
are plotted at the top and specific neurons are plotted below. As for network dia-
grams, neurons that did not reliably participate in at least one syllable type were 
excluded.
Further details for Fig. 5a–d. Panels show network diagrams and raster plots at four 
different stages. Figure 5a shows subsong stage (before learning), Fig. 5b shows 
end of protosyllable stage (iteration 500), Fig. 5c shows early chain splitting stage 
(iteration 992), Fig. 5d shows late chain-splitting stage (iteration 2,500).
Further details for Extended Data Fig. 10a–d. Extended Data Fig. 10a shows early 
protosyllable stage (iteration 5), Extended Data Fig. 10b shows late protosyllable 
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Extended Data Figure 1 | Bursting and syllable-locked activity in HVC 
projection neurons of juvenile birds. a, Range of bird ages at which 
songs were classified at different developmental stages (Spearman’s rank 
correlation between age and stage ρ = 0.61; red line indicates the median, 
box indicates the 25–75 percentile, and whiskers indicate 10–90 percentile; 
n = 12, 13, 18 and 6 birds, respectively; n = 39, 135, 565 and 378 neurons, 
respectively). b, Interspike-interval (ISI) distributions (mean ± s.e.m.) of 
HVC projection neurons that exhibited spiking during singing, at three 
stages of vocal development (n = 38, 130, 922 neurons). ISI distributions 
computed with logarithmic binning show bimodal structure: the peak 
around 3–5 ms indicates inter-spike intervals within bursts, and a broader 
peak around 100–400 ms indicates intervals between bursts (dashed line 
indicates the 30 ms threshold used for defining a burst; dotted line indicates 
peak). Note the refractory period below 1 ms. c, Burst width  
(top) and firing rate during bursts (bottom) as a function of  
developmental stage (median ± quartiles; n = 39, 135, 565, 378 and 32 
neurons, respectively; * * P < 0.01, * * * P < 0.001 post-hoc comparison with 

adult stage). d–i, Syllable-onset-aligned raster plots and histograms for 
neurons recorded during the subsong stage. Syllables are sorted from bottom 
to top by increasing syllable duration (blue lines indicate syllable offset).  
d, Neuron that did not exhibit significant locking to subsong syllable onsets 
(RA-projecting neuron, HVCRA; 50 dph; bird 7). e, Another neuron in the 
same bird (same neuron as in Fig. 1a; HVCRA; 51 dph). f, g, Two projection 
neurons recorded in a different subsong bird (both X-projecting neurons, 
HVCX; 47 and 48 dph, respectively; bird 9). Note different latencies of 
bursting. h, i, Two projection neurons recorded in a different subsong bird 
(both HVCX; 47 and 44 dph, respectively; bird 10). j, k, Syllable-onset-
aligned raster plots and histograms showing strong locking to protosyllables 
(bird 2). j, For the same neuron as in Fig. 1b (HVCRA; 62 dph). k, For another 
neuron (HVCRA; 65 dph). l, m, Two neurons recorded in the motif stage 
(bird 8). l, Neuron locked just after syllable onset (HVCX neuron; 61 dph). 
m, Same neuron as in Fig. 1c (HVCRA; 68 dph) showing locking late in the 
song syllable. n, Population raster of 14 neurons, aligned to protosyllable 
onsets (56–59 dph; bird 1).
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Extended Data Figure 2 | See next page for caption.
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Extended Data Figure 2 | Further analysis and examples of HVC 
projection neuron activity. a–d, Examples of HVC projection neurons 
showing rhythmic activity during non-rhythmic song. a, Bird 2, HVCRA 
neuron, 57 dph. b, Bird 12, HVCX, 53 dph. c, Bird 12, HVCRA, 57 dph.  
d, Syllable onset-aligned raster plot for neuron shown in c. Syllables are 
sorted in order of increasing duration (bottom to top; blue line indicates 
syllable offset). Also shown (top) is the onset-aligned spike histogram.  
Note multiple rhythmic bursts during long syllables. Scale bars: panels  
a–c, 1 mV, 100 ms. e–l, Bout-related activity of HVC projection neurons.  
e, Bout-onset neuron (HVCX; 44 dph; bird 11). f, Bout-onset aligned 
histogram and raster plot for the neuron shown in panel e. g, Bout-onset 
aligned histogram and raster plot for the neuron shown in Fig. 1d.  
h, Distribution of pre-bout-onset latencies for all bout-onset neurons 
(n = 187 neurons, 32 birds). i, Bout-offset neuron (HVCX; 61 dph; bird 1).  
j, Bout-offset aligned histogram and raster plot for the neuron shown in 
panel i. k, Bout-offset aligned histogram and raster plot for the neuron 
shown in Fig. 1e. l, Distribution of post-bout-offset latencies for all  
bout-offset neurons (n = 149 neurons, 32 birds). Vertical scale bars in 
panels e and i, 0.5 mV. m–o, Developmental progression of HVC activity 
analysed separately for HVCRA and HVCX neurons. m, Fraction of neurons 
temporally locked to syllables (mean ± s.e.m.; HVCRA: 9, 22, 83, 54 and 10 
neurons analysed at each stage, respectively; HVCX: 27, 91, 376, 244 and 
22 neurons analysed at each stage, respectively). n, Fraction of neurons 
that exhibited rhythmic bursts (HVCRA: 9, 22, 83, 54 and 10 neurons, 
respectively; HVCX: 27, 91, 376, 244 and 22 neurons, respectively).  
o, Mean period of HVC rhythmicity as a function of song stage (HVCRA: 
0, 16, 50, 41 and 7 neurons, respectively; HVCX: 3, 41, 245, 189, 18 
neurons, respectively). Of the 14 comparisons between HVCRA and HVCX 
neurons shown in panels m–o, only the period of HVC rhythm (panel 
o) during the motif stage showed significant difference between the cell 
types (P < 0.05 with Bonferroni correction). p–r, Analysis of probabilistic 
participation in rhythmic activity during protosyllables. p, Distribution 
of the fraction of protosyllables on which spiking occurred (n = 70 
neurons). In contrast to the highly reliable bursting of HVC projection 
neurons in adult birds19–22, we found that neurons in the protosyllable 
stage participated probabilistically (mean: 53% of protosyllables; triangle 
symbol). q, Histogram of the coefficient of determination r2 for protosyllable 

participation across simultaneously recorded pairs of neurons (median 
r2 = 0.072; n = 11 pairs; see Methods). r, Histogram of mutual information 
for protosyllable participation across simultaneously recorded pairs of 
neurons (median 0.056 bits; n = 11 pairs; see Methods). s, t, Analysis of 
burst coverage by HVC projection neuron bursts. s, Summary histogram 
of the covered fraction for all analysed syllables (n = 20 syllables, 4 birds). 
Note that 17/20 syllables had a covered fraction higher than 90%. t, Covered 
fraction analysed for 20 syllables for which raster plots are shown in the 
main or Extended Data figures. Vertical grey bars indicate 95% confidence 
interval (2.5–97.5 percentile) of coverage expected for random uniform 
shuffling of the observed bursts (see Methods). Note that for all syllables, 
the observed coverage is within the confidence interval for randomly 
shuffled bursts. These findings suggest that, even for the three syllables 
with coverage less than 90% (indicated with red square symbol), the lower 
coverage was consistent with undersampling due to the smaller number of 
recorded neurons in these birds. Regarding two models of HVC coding: 
our findings bear on several recent models of song representation in HVC. 
One earlier model hypothesizes that HVC bursts provide timing signals 
to drive premotor activity19,58,67 and to control the temporal precision of 
learning76–79. This model implies a continuous, though not necessarily 
uniform, coverage of HVC bursts throughout song, as observed in our data. 
Overall, given the very large number of HVC neurons in each hemisphere80 
(> 104), our measurements are consistent with a continuous representation 
of timing signals throughout song syllables. Another model of HVC coding 
has emphasized the finding that bursts may occur more often at particular 
times in the song, related to ‘gestures’ in the vocal control parameters22. 
Our finding that bursts are more concentrated around syllable onsets early 
in vocal development suggests that HVC may generate protosyllables as 
primitive gestures that serve as a scaffold on which later song syllables 
develop33. During development, HVC activity appears to evolve such that, 
as a population, bursts occur more uniformly throughout song syllables 
(Fig. 2c), while the activity of individual neurons becomes sparser and more 
precise. At the same time, one might imagine that vocal gestures become 
more complex and precise as syllables develop into their adult forms. In this 
view, the emergence of sequential activity in HVC may be viewed to drive an 
increasingly complex sequence of gestures.
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Extended Data Figure 3 | Increase in the period of HVC rhythmicity 
during alternating syllable differentiation. All data are from bird 1.  
a, Paired recording of a shared neuron (top; HVCRA) and a β -specific 
neuron (bottom; HVCX; 69 dph). b, Paired recording of a shared neuron 
(top; HVCX) and a C-specific neuron (bottom; HVCX; 110 dph). c, Neuron 
switching between shared and specific spiking (HVCX; 63 dph). d, Same 
neuron as in c, switching from specific to shared spiking. e, A different 
neuron switching from shared to specific spiking (HVCp; 68 dph). 
Scale bars in panels a–e, 0.5 mV, 200 ms. f–i, Inter-burst interval (IBI) 
distributions for shared and specific neurons. f, For the neuron in Fig. 3c 

recorded during protosyllable stage. g, For the shared neuron shown in 
the top panel of Fig. 3f. h, For the β -specific neuron shown in Fig. 3d. i, 
For a γ -specific neuron (not shown). j, Population summary of the ‘most-
probable IBI’ for the neurons recorded during the protosyllable stage 
(n = 9), and during the emergence of syllables β  and γ  (62–72 dph; shared 
neurons, n = 22; specific neurons, n = 83). Note that shared neurons had 
the same ‘most-probable IBI’ as neurons recorded during the protosyllable 
stage. Neurons exhibiting an increased burst period by skipping cycles of 
an underlying rhythm were also observed in birds 3, 4 and 6 (see  
Extended Data Figs 8f–h and 9f, h).

© 2015 Macmillan Publishers Limited. All rights reserved



ArticleRESEARCH

Extended Data Figure 4 | Analysis of shared neurons: latency and 
syllable selectivity. a–d, Latencies of shared neuron bursts, colour-coded 
by cell type: HVCRA (red square), HVCX (blue circle), and HVCp (green 
diamond). a, Neurons in bird 1 shared between syllables β  and γ  (from 
Fig. 3) recorded during the early (top) and late (bottom) stages of syllable 
differentiation. Note strong correlation of burst latencies (early, r = 0.91, 
P < 0.001; late, r = 0.87, P = 0.005). b, Neurons in bird 1 shared between 
syllables D and B (Extended Data Fig. 7) during the early and late stages of 
syllable differentiation (top, early r > 0.99, P < 0.001; bottom, late r > 0.99, 
P < 0.001). c, Neurons in bird 2 shared between syllables β  and α  (Fig. 4h) 
during the early and late stages (top, early r > 0.99, P < 0.001; bottom, late 
r > 0.99, P < 0.001). A shared neuron that had two peaks during the syllable 
α  is shown with an ‘x’ symbol; this point was not included in the calculation 
of correlation. d, Neurons in bird 4 shared between ‘b2’ and ‘d1’ (Extended 
Data Fig. 9l) during early stage (top, r = 0.89, P < 0.001; neurons that burst 
in the first part of ‘b’ (‘b1’) are shown with ‘x’ symbol, and were not included 
in the calculation of correlation). Neurons in bird 4 shared between syllables 
‘c’ and ‘d2’ (Extended Data Fig. 9n) during early stage (bottom, r = 0.98, 
P < 0.001). Regarding bias: as a population, shared neurons exhibited a 
broad range of selectivity for emerging syllable types—some were equally 
active for both syllable types while others showed higher activity in one 
syllable than the other (‘bias’; see Methods). e, Raw spike data (top left) and 
instantaneous firing rate (bottom left) for a neuron shared between syllables 

β  and γ  (HVCp; 68 dph, bird 1). Also shown is the syllable-onset-aligned 
raster plot (bottom right) and histogram (top right) showing similar peak 
firing rates for both syllables (low bias; bias = 0.07). f, Spike data (left) 
and syllable-onset-aligned raster plot and histogram (right) for a high-
bias shared neuron showing higher peak firing rate for syllable β  than γ  
(bias = 0.63; HVCRA; 68 dph, bird 1). g, Low-bias shared neuron (bias = 0.06; 
HVCX; 69 dph, bird 2). h, High-bias shared neuron showing higher peak 
firing rate for syllable β  than α  (bias = 0.55; HVCX; 68 dph, bird 2). i, Scatter 
plot of the peak firing rates during two different syllable types, quantified by 
the height of the peak in the syllable-aligned spike histogram. Each dot is a 
neuron; shared neurons shown in cyan; neurons near the diagonal have low 
bias. Specific neurons are coloured according to the associated syllable and 
appear near the axes. j, Distribution of the bias for shared neurons (cyan) 
and specific neurons (magenta). Bias ranged from 0, representing equal 
activity, to 1, representing activity exclusive to either one of the syllables (see 
Methods). Specific neurons exhibited a bias tightly clustered around one 
(0.96 ± 0.011, mean ± s.d.). In contrast, shared neurons exhibited a broad 
range of bias (0.28 ± 0.22). These observations suggest that individual shared 
neurons can exist in a state intermediate between ‘specific’ and ‘shared’—
perhaps reflecting a gradual process by which shared neurons become 
specific. Scale bars for panels e–h, 0.5 mV, 100 ms. Insets in panels f and h 
show zoom of bursts indicated by an asterisk; scale bar: 5 ms.
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Extended Data Figure 5 | Analysis of the acoustic differences associated 
with shared neuron bursts. While emerging syllable types gradually 
differentiate acoustically, some parts of different emerging syllable types 
may be acoustically quite similar. We wondered if shared neurons are 
only active at these times within emerging syllables at which no acoustic 
differentiation has yet occurred—that is, at times when the emerging syllable 
types are acoustically identical. To test this possibility, we analysed the 
trajectories of acoustic features of emerging syllable types around the times 
of shared neuron bursts. a, Shared HVCRA neuron recorded in bird 1 during 
alternation between emerging syllable types β  and γ  (same neuron as Fig. 3e).  
b, c, Average spectrogram (sparse contour representation; see Methods) 
computed for syllables β  and γ , centred on a 50 ms window immediately 
after the burst in each syllable. d, Song amplitude as a function of time for 
syllables β  (red) and γ  (blue), relative to burst time. Lines show average 
across all syllable renditions on which the neuron was active. Shading 
around lines shows s.e.m. (for this and several other examples, s.e.m. is 
too small to be visible). e, Spectral centre of gravity as a function of time 
for syllables β  (red) and γ  (blue). f, Distribution of projected samples for 
syllables β  (red) and γ  (blue), computed by projecting the 8-dimensional 
vector of spectral features onto a line that yields maximum separability 
between the two syllables. This distribution is computed at each time 
(1 ms steps) in the 50-ms analysis window after burst time. Shown is the 
distribution at t = 25 ms. g, d-prime analysis of separability of projected 
samples for syllables β  and γ . The value of d′  is computed as a function 
of time (1 ms steps; red trace). Also shown is the 95% confidence interval 
(grey band) computed from surrogate data sets with randomized labels. 
Dashed horizontal line shows the 95 percentile of the distribution of peak 

values of d′  in the surrogate data set (identified in the 10–40 ms window). 
h–j, Acoustic analysis for three additional HVCRA neurons (analogous 
to panels a–g). k, Plot of d′  trajectories for all shared HVCRA neurons. 
Significant d′  values (above the 95 percentile of peak values) are shown 
in red. Non-significant values shown as grey lines. l, Same as panel k but 
for shared HVCX neurons. m, Population summary of mean d′  (averaged 
over the presumptive premotor window 10–40 ms after burst time). Each 
symbol represents a different shared neuron and each column indicates 
a different syllable pair. Analysis is shown separately for each neuron 
type: HVCRA neurons (green circles) and HVCX neurons (blue squares). 
Neurons with no significant acoustic differences are indicated with black 
symbols. n, Cumulative distribution of mean d′  for shared HVCRA neurons 
(green; n = 11) and shared HVCX neurons (blue; n = 36). Only neurons 
with significant d′  metric are included in the cumulative. No significant 
difference was observed between neuron types (P = 0.1). Scale bars for 
panels a, h, i, j are 0.5 mV, 100 ms. Summary of properties of HVCRA and 
HVCX shared neurons: Shared neurons were found in similar proportion 
across both HVCRA and HVCX neurons (19% and 28%, respectively; 
P = 0.08; averaged over all developmental stages) and shared neurons of both 
cell types exhibited the property that bursts have similar latencies during 
the shared syllables (Extended Data Fig. 4a–d). As shown above, for both 
neuron types, we observed shared neurons that burst at times where there 
was a significant acoustic difference between the shared syllables. These 
findings suggest that both projection neuron types participate in shared 
neural sequences, and that these shared sequences occur during acoustically 
distinguishable parts of the emerging syllables.

© 2015 Macmillan Publishers Limited. All rights reserved



ArticleRESEARCH

Extended Data Figure 6 | Detailed analysis of bout-onset differentiation 
in bird 2. (Same bird as in Fig. 4). a, Song examples throughout song 
development. Panels from top to bottom: first, subsong (49 dph); second, 
emergence of protosyllable α  from subsong (60 dph); third, appearance 
of bout-onset element ε  (63 dph); fourth, fusion of ε  with first α  to form 
new syllable β  (67 dph); fifth and sixth, acoustic differentiation of β  and 
α , and incorporation with γ  into song motif CBA (70, 90 dph); seventh, 
tutor song. b, Schematic of syllable formation (same as Fig. 4a), inferred by 
tracking backward in development the adult syllables C, B and A.  
Early on, protosyllable (labelled α ) is produced rhythmically. The first 
protosyllable in each bout fuses with a brief bout-onset vocal element ε  to 
form a new emerging syllable type β . Both α  and β  undergo subsequent 
acoustic differentiation to form adult syllables A and B, respectively.  

(An additional syllable γ  emerges at bout onset to form adult syllable C).  
c, Developmental time course of the occurrence probability of different 
syllable types at bout onsets (mean ± s.e.m.). d, Syllable duration 
distribution showing three non-overlapping peaks (67 dph). Coloured 
bars indicated syllable duration ranges used for syllable labelling. This 
separation of durations allowed automatic determination of syllable 
identity. e, Pitch goodness trajectories of syllables α  (red) and β  (blue) at 
three stages of vocal development (median ± quartiles; n = 100 syllables 
per day). Black bar, region used to compute data in Fig. 4b. f, Example of 
a neuron active during both syllables α  and β  (HVCRA; 69 dph). Note that 
the activity of this neuron during syllable α  was weak, and did not quite 
reach our statistical criterion for being a ‘shared’ neuron.
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Extended Data Figure 7 | Hierarchical differentiation of syllables. All data  
are from bird 1 (same bird as in Fig. 3). a, Song examples during the 
emergence of syllables B and D from a common precursor syllable β , 
which had undergone earlier differentiation from a protosyllable α . Panels 
from top to bottom: first (70 dph), After the initial differentiation of the 
protosyllable into β  and γ  (at ~62 dph), the bird produced a rhythmic 
alternation of these two syllables, and the alternating sequence was reliably 
preceded at bout onsets by a short vocal element ε  (ε -β -γ -β -γ -β -γ …). 
Note that the first repetition of β  in each bout (labelled D) is acoustically 
identical to later repetitions (labelled B); second (80 dph), the first repetition 
of β  in the bout (syllable D) undergoes differential acoustic refinement 
compared to later repetitions (syllable B); third, syllable B, C and D, together 
with bout-onset element ε , crystallize into adult motif EDCB (90 dph), 
that approximately matches the tutor motif (bottom panel). b, Schematic 
of syllable formation. c, Scatter plot of the mean Wiener entropy showing 
differential acoustic refinement of syllables B (orange) and D (green) 
through development (n = 100 syllables of each type per day; horizontal 
jitter added to improve data visibility). d, Wiener entropy trajectory of 
syllables B and D at three stages of vocal development (median ± quartiles; 

n = 100 syllables of each type per day). Black bar indicates region used to 
compute data in panel c. e, Population raster of 60 neurons early in syllable 
differentiation showing shared (top) and specific (bottom) sequences. f, 
Same as e, but for 70 neurons recorded late in differentiation of D and B. 
Evidence for an incomplete splitting of a neural sequence: the pattern of 
shared and specific neurons observed for these syllables is quite similar  
to what would be expected in our model during an early/intermediate  
stage of splitting (Fig. 5c or Extended Data Fig. 10c). Of particular note in 
this bird is the large fraction of shared neurons between B and D that  
remained in the later recordings (panel f), compared to the smaller fraction 
of shared neurons at late stages in syllables B and C of the same bird (Fig. 3h).  
However, syllables B and C differentiated from parent syllable α  early in 
development (~60 dph, Fig. 3b), while D and B differentiated from β  at a 
much later stage (~80 dph, panel c). One might speculate that the splitting 
of D and B may have failed to reach completion before the bird reached 
adulthood, possibly preventing further splitting. Neural evidence (shared 
burst sequence) for hierarchical differentiation was also observed in bird 6 
(data not shown). Neural evidence (shared burst sequence) for bout-onset 
differentiation was also observed in bird 5 (data not shown).
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Extended Data Figure 8 | Simultaneous formation of multiple syllable 
types into an entire motif. All data are from bird 3. Neural recordings from 
this bird support the view that, in the ‘motif strategy’, new syllables emerge 
from a common rhythmic protosequence. a, Song examples during the 
emergence of a motif. Panels from top to bottom: first, subsong (37 dph); 
second, the song began to acquire rhythmic ‘protosyllable’ modulation 
in song amplitude around 9 Hz (45 dph); third, over the next five days 
(47–51 dph), this bird acquired a reliable pattern of 4–5 acoustically distinct 
elements (‘syllables’), each generated in a different cycle of the 9 Hz rhythm 
(48 dph); fourth, the acoustic structure in each syllable was gradually 
refined, resulting in an excellent match to the tutor song even at this early 
age (51 dph); fifth, tutor song. b, Scatter plot of syllable duration and pitch 
goodness (n = 300 syllables per day; colour coded according to syllable 
identity in panel a). c, Development of song rhythmicity quantified as the 
spectrum of the sound amplitude38. Gray shade indicates the pass band 
for the filter used in phase segmentation. d, Phase segmentation based on 
the rhythmicity in the song. Top, song spectrogram with phase segments 
(grey boxes). Middle, sound amplitude (blue) and band-pass filtered sound 

amplitude (magenta). Syllable segmentation based on the sound amplitude 
is shown as white boxes. Bottom, instantaneous phase (green) of the band-
pass filtered sound amplitude. Phase segments (grey boxes) are obtained by 
detecting threshold crossing (black dotted line) of the instantaneous phase. 
e, Rhythmic neuron (protosyllable stage; HVCp; 45 dph). f, Neuron shared 
between syllables A and B (HVCRA; 48 dph). g, Neuron shared between 
B and E (HVCX; 49 dph). h, Population raster aligned to the five-syllable 
motif for neurons that were significantly locked to any syllable (n = 10 
neurons). Each motif and associated spike times were time-warped using a 
piecewise linear method67 based on syllable onsets and offsets. i, Histogram 
of the absolute phase difference between the two syllables for all shared 
neurons (n = 8 neurons; mean phase difference: 41 ± 33.9 deg, mean ± s.d.). 
j, Cumulative distribution of the mean absolute phase difference after 
randomizing burst identity (red dotted line indicates P = 0.05 threshold for 
significance; red triangle indicates observed mean absolute phase difference, 
P = 0.013). Statistical details in Methods. Scale bars for panels e–g, 30 dB, 
0.3 mV, 200 ms.
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Extended Data Figure 9 | See next page for caption.
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Extended Data Figure 9 | Another example of shared burst sequences 
during the emergence of new syllable types. All data are from bird 4.  
a, Song examples during the emergence of a motif ABCDF. Note the nearly 
simultaneous emergence of multiple syllable types in nearly fixed order 
(52 dph). Tutor song shown at the bottom. Phase segments are shown 
above the spectrogram for song at 43 dph. b, Top, song rhythm spectrum 
calculated in the protosyllable stage (43 dph) and after motif formation 
(59 dph). Note the pronounced peaks at 5 Hz and 10 Hz in both stages. 
Bottom, syllable duration distribution in the protosyllable stage (43 dph) 
and after motif formation (59 dph) showing two peaks. At 43 dph, the 
peak at 70 ms indicates short protosyllables corresponding to one cycle 
of the 10 Hz rhythm, and the peak at 140 ms indicates longer syllables 
formed by two protosyllables fused across two cycles of the 10 Hz rhythm 
(doubled protosyllables). Example doubled protosyllables are seen in the 
first and third syllables of panel a, 43 dph. (Note that boxes at the top of this 
panel indicate phase segments, not syllable boundaries). c, Hypothesized 
mechanism of motif construction, based on the examination of acoustic 
structure and analysis of neural burst sequences (see below). Notably, in 
this bird, the majority of syllables emerged nearly simultaneously in a 
relatively fixed order, consistent with a ‘motif strategy.’ d, Scatter plots of 
syllable duration versus mean spectral centre of gravity at four stages of 
vocal development (each dot represents a single syllable; n = 500 syllables 
per day; colour coded according to syllable identity in panel a). e, Neuron 
bursting at the 10 Hz protosyllable rhythm (HVCX; 48 dph). Phase segments 
shown above spectrogram. f, Top, neuron bursting at the 10 Hz rhythm 
(HVCX; 49 dph). Bottom, simultaneous recording of a neuron bursting on 
alternate cycles of the 10 Hz rhythm (HVCRA). g, Shared neuron bursting on 
second half of syllable ‘b’ (labelled b2) and first half of syllable ‘d’ (labelled 
d1) (HVCRA; 51 dph). h, Shared neuron bursting rhythmically on ‘b1’, ‘c’ 
and second half of ‘d’ (d2) (HVCRA; 51 dph). i, Shared neuron bursting on 
‘a’ and ‘d1’ (HVCRA; 58 dph). j, Shared neuron bursting on ‘d2’, ‘e’, and last 
part of ‘f ’ (HVCRA; 57 dph). k, Population raster of 12 neurons that were 
significantly locked to protosyllable onsets (48–49 dph). Protosyllables were 
identified using phase segmentation (see Methods). l, Population raster 
showing neurons active during syllables ‘b’ and/or ‘d’, recorded early in 
syllable differentiation. Neurons shared between ‘b’ and ‘d1’ are grouped at 
top. Neurons specific for ‘b’ are grouped next, and neurons specific for ‘d’ 
are grouped at bottom. m, Same as panel l, but for neurons recorded later in 
development. n, Population rasters showing neurons active during syllables 
‘c’ and/or ‘d’, recorded early in development. o, Same as m, but for neurons 
recorded later in development. Scale bars for panels e–j, 0.5 mV, 200 ms. 
Neural evidence for hypothesized mechanism of motif construction: based 

on an analysis of acoustic signals and neural recordings, we have formulated 
a hypothesis for how the song of this bird developed, from the formation of 
the protosyllable to the emergence of the complete motif. We hypothesize 
that the fundamental protosyllable element corresponds to the prominent 
10 Hz peak in the rhythm spectrum and the 70 ms peak in the duration 
distribution (panel b). This view is further supported by the presence of 
neurons in the protosyllable stage that generate rhythmic bursts at 10 Hz 
(panels e and f; 11/18 neurons were rhythmic, 5/11 rhythmic neurons 
exhibited periodicity at 10 Hz), and the existence of a burst sequence 
during the protosyllable (panel k). In this bird, the rhythmic protosyllables 
differentiated nearly simultaneously, at an early age (52 dph, panel a), into a 
complete sequence of distinct syllables that subsequently formed the adult 
song, suggesting this bird employed a ‘motif strategy.’ One complication of 
this simple view is that there may have been an early partial splitting of the 
short protosyllable α  into two ‘daughter’ protosyllables α 1 and α 2, which 
alternated to produce the elements of the final motif (panel c). Two lines of 
evidence based on neural activity support this view: First, many neurons 
recorded at an early stage (< 50 dph) exhibited a prominent 5 Hz periodicity 
in their rhythmic bursting, (panels f and h; 6/11 rhythmic neurons),  
rather than the expected 10 Hz period (panels e and f, top trace). This 
observation led us to consider the possibility that the 100 ms neural 
sequence, corresponding to the dominant 10 Hz protosyllable rhythm, 
underwent a partial splitting during the protosyllable stage—similar to the 
alternating differentiation described for bird 1 (Fig. 3; Extended Data  
Fig. 4). This would result in two distinct alternating protosyllable sequences 
α 1 and α 2 (panel c). Such splitting would effectively double the period of 
the protosyllable rhythm, and would account for the ‘doubled’ protosyllables 
and the 5 Hz peak in the rhythm spectrum (panel b). The existence of short 
and doubled protosyllables led us to hypothesize that the short syllables 
of the adult motif (‘a’, ‘c’, and ‘e’) arose from the short protosyllables, while 
long adult syllables (‘b’ and ‘d’, and possibly ‘f ’) arose from the doubled 
protosyllables (panel c). Early syllable ‘e’ is later dropped by the juvenile, 
although it appears in the tutor song. Furthermore, the analysis of shared 
sequences (panels l–o) revealed a predominance of shared neurons between 
syllable elements in alternating cycles of the underlying 10 Hz rhythm. For 
example, shared neurons were observed between syllables ‘a’, ‘b2’ and ‘d1’ 
(panel i for neuron shared between ‘a’ and ‘d1’; panels g and l for neurons 
shared between ‘b2’ and ‘d1’). Shared neurons were also observed between 
syllables ‘b1’, ‘c’, and ‘d2’ (panel h for neuron shared between ‘b1’, ‘c’, and 
‘d2’; panel n for neurons shared between ‘c’ and ‘d2’). In contrast, many 
fewer shared neurons were observed between neighbouring cycles of the 
underlying rhythm, although examples of this can be found (panel j).
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Extended Data Figure 10 | Model of other strategies for syllable 
formation. a–d, Bout-onset differentiation results from activation of 
bout-onset seed neurons (blue arrow) followed by rhythmic activation 
of protosyllable seed neurons (red arrow). Network diagrams show (a, b) 
protosyllable formation and (c, d) splitting of chains specific for bout-onset 
syllable β  and specific for later repetitions of the protosyllable α  (blue 
and red, respectively; shared neurons: black). e–h, Model of simultaneous 
formation of multiple syllable types into an entire motif (‘motif strategy’). 
e, f, Protosyllable seed neurons (magenta lines) were activated rhythmically 
to form a protosequence. g, Seed neurons were then divided into three 
sequentially activated subgroups, resulting in the rapid splitting of the 
protosequence into three daughter sequences. In intermediate stages 
(panel g), individual neurons exhibited varying degrees of specificity and 
sharedness for the emerging syllable types. h, After learning, the population 
of neurons was active sequentially throughout the entire ‘motif,’ but 
individual neurons were active during only one of the resulting syllables, 
forming three distinct non-overlapping sequences. i–k, Network diagrams 
and raster plots showing an example of the formation of a new syllable chain  
at bout onset. In the network diagrams, seed neurons are indicated within 
magenta boxes, and bout-onset seed neurons and protosyllable seed neurons 
are indicated by blue and red arrows, respectively. Neurons specific for each 
emerging syllable type (ε  and α ) are coloured blue and red, respectively. The 
three panels represent the early protosyllable stage, the late protosyllable 
stage, and the final stage. The training protocol is similar to that for bout-
onset differentiation (panels a–d), except that protosyllable seed neurons 

are driven more strongly throughout the learning process. As a result, 
protosyllable seed neurons did not become outcompeted by the growing 
bout-onset chain. Strong activation of the protosyllable seed neurons 
also terminated activity in the bout-onset chain through fast recurrent 
inhibition, thus preventing further growth of the bout-onset chain, as 
occurs in bout-onset differentiation. Regarding the role of chain splitting 
in the formation of new syllable types: in our model, we envision that the 
formation of daughter chains in HVC is translated into the emergence of 
new syllable types is as follows. During the splitting process, as two distinct 
sequences of specific neurons develop, their downstream projections can 
be independently modified67,77 such that each of the emerging chains 
of specific neurons can drive a distinct pattern of downstream motor 
commands, allowing distinct acoustic structure in the emerging syllable 
types. Such differential acoustic refinement is consistent with the previous 
behavioural observation that the altered acoustic structure of new syllables 
emerges in place, without moving or reordering sound components (‘sound 
differentiation in situ’)33. This model naturally explains the apparent 
‘decoupling’ of shared projection neuron bursts from acoustic structure in 
the vocal output—that is, the fact that the bursts of shared neurons become 
associated with two distinct acoustic outputs during the differentiation 
of two syllable types (Extended Data Fig. 5). Specifically, during syllable 
differentiation, a shared neuron participates with different ensembles 
of neurons during each of the emerging sequences, and these different 
ensembles can drive different vocal outputs.
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