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The last two decades of neuroimaging research have revealed the 
functional organization of the human brain in unprecedented detail. 
Dozens of cortical regions have been identified, each with a distinctive 
functional profile and each found in approximately the same anatomi-
cal location in virtually every normal adult. How does this systematic 
functional organization arise in development? We asked specifically 
how a particular cortical location becomes earmarked as the future 
site at which a particular functionally specific region will develop.

A clue comes from previous findings in adults showing a close and 
fine-grained relationship between the functional response profile of 
each voxel in a region of cortex and the extrinsic connectivity of that 
voxel to the rest of the brain, measured with diffusion tractography 
in the same subject1,2. This tight relationship between function and 
connectivity across the cortex suggests a developmental hypothesis: 
patterns of extrinsic connectivity (or connectivity fingerprints) may 
arise early in development, instructing subsequent functional devel-
opment3,4. Prior evidence for this hypothesis comes from classic 
studies in ferrets showing that, if retinal input is rerouted to medial 
geniculate nucleus (MGN) and subsequently primary auditory cor-
tex (A1), A1 takes on many functional properties of V1 (refs. 5–9). 
However, it remains unclear whether similar mechanisms underlie the 
development of nonprimary cortical regions whose main input is not 
from the thalamus, but from other cortical regions.

We tested the connectivity hypothesis for the case of the VWFA10–14,  
a ventrolateral region that responds much more strongly to visually 
presented words or letter strings than to other visually similar stim-
uli, including digit strings, faces and words written in an unfamiliar 
orthography (for example, Chinese or Hebrew for English speakers)15. 
Notably, these patterns develop with reading experience and ability  

and are only present in readers11. According to the connectivity 
hypothesis, the eventual cortical site of the VWFA should be predicted 
by its earlier-developing extrinsic connections to other brain regions, 
that is, pre-reading connectivity patterns should predict the eventual 
location of the VWFA after a child learns to read. Alternative (but not 
mutually exclusive) hypotheses are that the location of the VWFA is 
determined by the intrinsic molecular or circuit properties of that 
piece of cortex or by pre-existing featural16–19 or retinotopic selectivi-
ties that predispose this region to develop orthographic selectivity. To 
test the connectivity hypothesis, we scanned children longitudinally 
both before and after they learned to read, and tested whether the 
VWFA develops in this interval, and whether the specific location 
at which the VWFA develops is predictable from the connectivity 
fingerprint of that same region before children learn to read.

RESULTS
Functional selectivity of VWFA and lFFA
We defined a word-selective VWFA in each individual’s age 8 data 
as any voxels that responded more strongly to words than line draw-
ings of objects (at P < 0.005 uncorrected in half the functional runs) 
in a VWFA constraint region (Supplementary Fig. 1 and Online 
Methods). We defined face-selective cortex similarly (that is, any 
voxels in a left fusiform face area (lFFA) constraint region that 
responded more strongly to line drawings of faces than to line draw-
ings of objects, at P < 0.005 in half the functional runs).

We found both a VWFA and lFFA in 29 of 31 (94%) of the children 
that we scanned at age 8. Given that 14 of these children could not 
yet read at age 5 and had an functional magnetic resonance imaging 
(fMRI) scan at age 5, our main fMRI analyses focused on this cohort. 
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What determines the cortical location at which a given functionally specific region will arise in development? We tested the 
hypothesis that functionally specific regions develop in their characteristic locations because of pre-existing differences in 
the extrinsic connectivity of that region to the rest of the brain. We exploited the visual word form area (VWFA) as a test case, 
scanning children with diffusion and functional imaging at age 5, before they learned to read, and at age 8, after they learned 
to read. We found the VWFA developed functionally in this interval and that its location in a particular child at age 8 could be 
predicted from that child’s connectivity fingerprints (but not functional responses) at age 5. These results suggest that early 
connectivity instructs the functional development of the VWFA, possibly reflecting a general mechanism of cortical development. 
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At age 8, all of these children could read and had both a VWFA and 
lFFA (Online Methods). We extracted the magnitude of response (per-
cent signal change from a no-stimulus baseline) from these regions 
for each of the stimulus categories in fMRI runs independent of those 
used to define the regions at age 8 (Fig. 1). The VWFA and lFFA were 
clearly distinct in their responses to the stimulus categories (two-way 
repeated-measures ANOVA of functional region of interest (fROI) 
× condition: F3,78 = 24.56, P = 2.72 × 10−11). The VWFA responded 
more strongly to words than it did to other visually similar stimuli, 
including line drawings of faces, scrambled words and line drawings 
of objects (repeated-measures ANOVA by condition: F3,39 = 10.96,  
P = 2.34 × 10−5; Fig. 1). The lFFA responded more strongly to  
line drawings of faces than to objects, words and scrambled words 
(F3,39 = 34.30, P = 5.03 × 10−11; Fig. 1).

No evidence for early functional differentiation of VWFA
We then measured the response profiles of these same fROIs at age 5, 
before these children learned to read, by registering each child’s age 8  
VWFA and lFFA to their own fMRI data at age 5 (Online Methods). 
We found that VWFA was not selective to orthography at pre-reading: 
the VWFA did not show any selectivity to letters over faces or false 
font letters (repeated-measures ANOVA by condition: F2,26 = 1.67,  
P = 0.21; Fig. 1), whereas the lFFA already showed strong selectivity to 
faces over letters or false fonts even at age 5 (F2,26 = 14.02, P = 7.41 × 
10−5; Fig. 1). Additional analyses (Online Methods) revealed that the 
VWFA in adults responds similarly to words and individual letters; 
thus, the use of individual letters in the 5-year-old children should be 
a good measure of the selectivity of this region.

Furthermore, to test whether our fMRI methods at age 5 (stimuli 
and scanning parameters) were sufficient to detect a VWFA at age 5 if 
it were present, we also analyzed a small group of children (n = 8) who 
could read at age 5 and who were scanned again at age 8 (readers). We 
performed three different types of analyses in these children and com-
pared them to the pre-readers. First, we found that the VWFA (defined 
at age 8) did show significant selectivity to letters at age 5 in children 
who could already read at that age. This analysis revealed that we can 
detect word and letter selectivity when it is present at age 5, with the 
same contrasts and scanning parameters used in the main cohort of 
children who could not read at age 5 (Supplementary Fig. 2). Second, 
to test the hypothesis that letter selectivity may have been present at 
age 5, but in a different location from the same child’s VWFA at age 
8, we performed a ‘binned analysis’ that did not rely on localization 
in the age 8 data. We again found that children who could not read 
at age 5 did not show selectivity to letters versus false fonts or faces 
(Fig. 2), but children who could read at age 5 showed selectivity to 

both letters versus false fonts and letters versus faces (Supplementary 
Fig. 3). Both groups showed selectivity for words at age 8 (when they 
could all read). This analysis further bolsters the conclusion that 
there is no word and letter selectivity at age 5 in children who cannot 
read. Third, using a multi-voxel pattern analysis (that is, correlation  
of voxel-wise signal between and across stimulus conditions20), we 
found that classification accuracy was at chance for discriminating 
letters (from faces or false fonts) in the age 5 data from children who 
could not read at age 5 when tested in that child’s 8-year-old VWFA 
fROI. In contrast, classification performance was significantly above 
chance for letters (versus false fonts or faces) in children who could 
already read at age 5 (Supplementary Fig. 4). Note that the VWFA 
in the early readers was defined using only age 8 data; the age 5 data 
only had three stimulus conditions and therefore could not be used 
to define the contrast of words > objects (which we refer to in the 
rest of the study, and has been used to define the VWFA previously; 
for example, see ref. 15). However, the three conditions at age 5 were 
sufficient to show a letter-preferring region only in the readers at 
that age. Altogether, our results show that the region that will later 
become the VWFA cannot discriminate letters from non-letter stimuli 
before children can read. The characteristic functional selectivity of 
the VWFA is found only in children who can read.

These data also show that, although the VWFA is not selective for 
orthography in children who cannot read, the lFFA is already selec-
tive for faces at age 5. Note that we also found no selectivity for faces 
in the VWFA at age 5 in these children (as reported above) and that 
there was no change in the VWFA’s response to faces from age 5 to 
age 8 (P = 0.927; T(13) = 0.094). These data suggest that early feature 
selectivity in the VWFA (at least for the stimuli that we tested) does 
not determine its later functional profile. Other evidence against this 
hypothesis comes from an analysis of left posterior fusiform sulcus 
(lPFS), a nearby region that responds selectively to shape17 (Fig. 1). 
The response profile of the VWFA and adjacent lPFS (defined at age 8  
and registered to the 5-year-old data) were not significantly differ-
ent from each other at age 5 (fROI × condition repeated measure 
ANOVA: F2,52 = 1.64, P = 0.20), but were at age 8 (for the same sub-
jects and same three conditions as age 5, that is, no objects condition;  
fROI × condition ANOVA: F2,52 = 5.59, P = 7.06 × 10−8). These 
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Figure 1 Percent signal change (PSC) for each fROI. Left, inflated 
surface of an example subject showing each of their fROIs defined from 
age 8 data (lFFA in yellow, VWFA in magenta, lPFS in cyan). Top, mean 
PSCs at age 5 in fROIs defined on age 8 data (registered to 5-year-old 
brain). Before a child was able to read, there was no selectivity to letters, 
letter-like stimuli (false fonts) or faces in the region that later became 
the VWFA, whereas lFFA showed clear selectivity for faces even at this 
age. Bottom, mean PSCs at age 8. We found clear selectivity for faces 
in lFFA and clear selectivity for words in the VWFA at age 8 in data not 
used to define the fROI. Error bars denote s.e.m. Horizontal bars reflect 
significant post hoc paired t tests (N = 14; P values: age 8, lFFA: faces 
vs. words 1.25 × 10–5, faces vs. scrambled words 1.15 × 10–7, faces 
vs. objects 3.05 × 10–7; VWFA: words vs. scrambled words 4.57 × 10–4, 
words vs. objects 1.68 × 10–3, words vs. faces 2.68 × 10–3, lPFS: objects 
vs. words 9.71 × 10–4, objects vs. scrambled words 4.20 × 10–6, objects 
vs. faces 1.76 × 10–2; age 5, lFFA: faces vs. letters 1.18 × 10–3, faces vs. 
false fonts 2.44 × 10–3).
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data provide no evidence that the cortical tissue that will become 
the VWFA is earmarked for that function by a distinctive functional 
response before word selectivity develops. They also argue against 
the hypotheses that the VWFA takes over cortical regions that were 
previously selective for object shape or faces16,18,19,21.

Testing the connectivity hypothesis for word selectivity
We next tested the hypothesis that pre-existing connectivity deter-
mines the location of the VWFA by asking whether each child’s voxel-
by-voxel connectivity data at age 5 can predict the location of the same 
child’s word selectivity at age 8. 11 children had a useable diffusion- 
weighted scan (DWI) at age 5, so our longitudinal DWI analyses 
focused on this cohort (the fMRI selectivity results remained the 
same as above even in these 11 children; Supplementary Table 1). 
We focused on the left occipitotemporal anatomical parcel (that is, 
combined Freesurfer parcel of fusiform and inferior temporal cortex; 
lOTC parcel) and trained a model to learn the relationship between 
the connectivity of each voxel in this region at age 5 and fMRI activa-
tion patterns at age 8 in the same individuals, and tested the model 
on new children (in a leave-one-out manner; Online Methods), as 
described previously1,2 and adapted in other studies22. We found 
that early connectivity was able to predict the later spatial profile 
of word selectivity in these children (Fig. 3); the correlation across 
voxels in the left occipitotemporal parcel between the actual fMRI  
t statistic values for words > objects at age 8 and the predicted fMRI 
values from connectivity was 0.47 ± 0.036 (mean Fisher z across all 
subjects). These predictions were significantly better than chance for 
each subject individually at P < 0.05 (based on random permuta-
tions exact tests per subject; P = 0.014 for one subject, P = 0 for all  
other subjects).

To better assess the strength of these DWI predictions and how well 
they captured individual differences in spatial patterns of functional 
selectivity, we compared the DWI predictions to predictions gener-
ated from the fMRI data of other subjects at age 8. First, we generated 
group average predictions: we performed a random effects analysis on 
the words > objects contrast data from all but one subject in template 
space and mapped these values to the native space data of the subject 
we left out. This procedure generated voxel-wise neural responses 
for word selectivity in each individual based on aggregate responses 
from all other participants. We found that the correlations between 
actual and predicted word selectivity from this group average analy-
sis were much lower (mean Fisher z = 0.26 ± 0.042; Fig. 4) than the  
predictions from the same individual’s connectivity (paired t test 
of Fisher z correlations of DWI predictions versus group-average  
predictions: T10 = 5.63; P = 2.20 × 10−4).

Next, we compared the DWI predictions to predictions generated 
from each other subject’s fMRI data individually. We registered each 
child’s fMRI data from age 8 to each other child’s DWI data at age 5, 
and generated voxel-wise predictions for each subject on the basis of 
every other child’s data. These predictions were less accurate than the 

predictions of an individual’s own fMRI data (mean Fisher z: 0.25 ±  
0.027; T10 = 6.85; P = 4.48 × 10−5; Fig. 4). Thus, each individual’s 
connectivity data at age 5 better predicted the same child’s func-
tional activation pattern at age 8 than did another child’s fMRI data.  
These results indicate that the prediction of functional activation  
patterns from connectivity at age 5 is spatially precise enough to  
predict individual differences in functional activation patterns.

Random permutations represent the lowest bar that the DWI  
predictions should surpass to be considered accurate. To get an idea of 
the best possible predictive correlation values, we asked how well half 
of each individual’s own fMRI data at age 8 would predict the other 
half of fMRI data in the same subject (that is, split-half reliability of 
age 8 fMRI data). The predictions reported above were generated from 
all of the fMRI data; for direct comparability with the same amount of 
data in each case, we next generated predictions from DWI connec-
tivity from half the fMRI data (z = 0.46 ± 0.041) and compared these 
predictions to predictions from the split-half fMRI data (z = 0.69 ± 
0.086; Fig. 3c). As expected, the split-half correlations outperformed 
predictions from age 5 DWI (T10 = 3.87, P = 3.09 × 10−3). Children 
with higher correlation values between actual versus predicted also 
had higher scan-to-scan reliability (R = 0.77, P = 5.63 × 10−3). After 
normalizing for scan-to-scan reliability (which included the same 
amount of fMRI data as the DWI predictions), we found that connec-
tivity predicted about 70% of the reliable variance in words > objects 
responses (R2 = 0.69 ± 0.015).

We also compared the longitudinal DWI predictions of word selec-
tivity to predictions of face selectivity, which were generated in exactly 
the same manner (age 5 DWI to predict age 8 fMRI). Predictions of 
word selectivity were comparable to predictions of face selectivity  
(z = 0.47 ± 0.036 versus 0.43 ± 0.061 respectively; t test of correlation  
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Figure 2 PSC in the VWFA as a function of fROI volume. To further test 
whether there was any selectivity for orthography at age 5, we performed a 
‘binned’ analysis in which we used one run of age 5 data to define the Nth 
percentile of letter-selective voxels anywhere in the larger VWFA parcel 
(that is, constraint region in Supplementary Fig. 1 based on independent 
data in adults); we then measured the PSC to each condition in the other 
run of age 5 fMRI data in those same voxels. Children who were not able 
to read at age 5 did not show selectivity for letters as compared to faces 
or false fonts (top). The analogous analysis of the age 8 data in the same 
children (bottom) found strong selectivity for words. Error bars reflect 
s.e.m. for N = 14 subjects.
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values for word- versus face-selectivity predictions: T10 = 0.50,  
P = 0.63). Using DWI data collected at age 8, we also compared the 
longitudinal predictions to the within time-point predictions. We gen-
erated predictions of age 8 word selectivity from age 8 DWI data and 
found no significant difference between the across-time predictions 
versus within-time predictions (T10 = 1.42, P = 0.19).

We then asked how well connectivity predicted the VWFA fROI in 
particular, that is, not the full gradient of words > objects responses in 
the large anatomical occipitotemporal parcel, but the thresholded and 
positive (that is, word selective) responses in the VWFA constraint 
region (that is, the smaller region that contains the VWFA fROI in 
most subjects, or GSS parcel; Online Methods). For each subject, 
we created a VWFA fROI from the DWI-predicted activations and  
compared it to the same subject’s actual functionally defined VWFA. 
We found that the predicted VWFA overlapped with the actual VWFA 
by 64% (overlap coefficient = 0.635 ± 0.058; ranging from 0.84 ± 0.03 
for the most lenient thresholds to 0.45 ± 0.09 for highest thresholds; 
the overlap coefficient is defined as the size of intersection divided 
by the smaller of the two sets and equals 1 if an fROI is a subset 
of the other). We also looked at how far away the predicted VWFA 
was from the actual VWFA. We used the modified Hausdorff metric, 
which describes the mean distance of all points in the predicted fROI 
from the closest points in the actual fROI. The VWFA predicted from 
DWI was on average 0.65 ± 0.12 voxels (1.3 ± 0.4 mm) away from the 
actual VWFA (ranging from 0.49 ± 0.11 voxels or 0.98 ± 0.22 mm 
for the most lenient thresholds to 0.98 ± 0.28 or 1.96 ± 0.56 mm for 
highest thresholds). That is, the estimated VWFA location from the  
DWI-predicted data was less than one voxel, or 1.3 mm on aver-
age, away from an individual’s true VWFA. As a comparison, the 
VWFA fROI generated from the split-half fMRI data (that is, best 
possible overlap metric) had an overlap coefficient of 0.865 ± 0.014 
and Hausdorff metric of 0.26 ± 0.049 voxels.

These results strongly suggest that the VWFA already has distinct 
connectivity patterns, even at age 5, when a child cannot yet read and 
when that same cortical region shows no orthographic selectivity. 
Our final analyses asked what these distinct connectivity patterns 

were; specifically, we defined the VWFA and two adjacent fROIs (lFFA 
and lPFS) and compared the connectivity patterns of each of these 
fROIs to the rest of the brain. We ran tractography on the age 5 data 
from each fROI (VWFA, lFFA and lPFS, defined on the age 8 data 
and registered to the age 5 data) to every other brain region (defined 
anatomically from Freesurfer sulcal/gyral segmentation). We first per-
formed an ANOVA of seed (VWFA, lFFA, or lPFS) × target. We found 
a significant main effect of seed (F2,2430 = 18.54, P = 1.02 × 10−8) and 
significant seed × target interaction (F160, 2430 = 3.39, P = 2.20 × 10−37),  
indicating significant differences in the connectivity patterns for dif-
ferent fROIs. To further explore the differences between VWFA and 
either the lFFA or lPFS, we subsequently ran a two-way ANOVA of 
VWFA versus lFFA × target and VWFA versus lPFS × target separately. 
The VWFA was significantly more connected in general than the 
lFFA (significant main effect; F1,1620 = 30.01, P = 4.97 × 10−8); these 
were not global differences in connectivity, but were rather a result 
of differences between the two fROIs in their connectivity to certain 
target regions (interaction effect, F80,1620 = 1.92, P = 3.64 × 10−6).  
Specifically, the VWFA was more strongly connected than lFFA was 
to left-lateralized temporal and frontal parcels (middle temporal:  
P = 3.41 × 10−4, T(10) = 5.31; superior temporal: P = 1.44 × 10−2, T(10) =  
2.95; transverse temporal: P = 4.29 × 10−2, T(10) = 2.32; lateral orbit-
ofrontal: P = 4.30 × 10−2, T(10) = 2.32), which may correspond with 
putative language regions (consistent with recent tractography studies 
in adults23,24), as well as the left precentral gyrus (P = 4.28 × 10−2,  
T(10) = 2.32), inferior parietal (P = 2.93 × 10−2, T(10) = 2.54), entorhi-
nal cortex (P = 3.18 × 10−2, T(10) = 2.49), ventral diencephalon  
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Figure 4 Correlations of actual word selectivity at age 8 with predicted 
word selectivity. Predictions of age 8 word selectivity from age 5 DWI 
data were compared to predictions from the age 8 fMRI data of all other 
subjects (group average) and to predictions from each other subject’s age 
8 data. DWI predictions outperformed both of these types of predictions, 
demonstrating that the prediction of functional activation patterns from 
connectivity at age 5 is spatially precise enough to predict individual 
differences in functional activation patterns. Horizontal bars reflect 
significant differences (paired t tests, each P < 0.05 × 10−4, N = 11); 
error bars reflect s.e.m.
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Figure 3 Actual versus predicted fMRI activation for words > objects 
on the ventral surface of an example subject. Heat map reflects word 
selectivity and white outline indicates the boundaries of the left 
occipitotemporal anatomical parcel. AU = arbitrary units. (a) Actual 
fMRI activation for words > objects at age 8. (b) Activation that is 
predicted from the same individual’s DWI data at age 5. (c) Activation 
that is predicted from the same individual’s fMRI data at age 8, from 
independent, left-out fMRI runs from a. This split-half reliability 
illustrates the best possible predictions that one could make about an 
individual’s word selectivity. The predicted activation from DWI matches 
the actual activation pattern, capturing loci that are accurately predicted 
from left-out data. Note that all images (actual, predicted from DWI  
and predicted from left-out data) are based on (or trained on) an  
equal number of fMRI runs.
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(P = 4.49 × 10−2, T(10) = 2.29) and putamen (P = 4.56 × 10−2, T(10) =  
2.28; cortical targets displayed in Fig. 5). We also found differ-
ences between the VWFA and lPFS in their connectivity to specific 
target regions (main effect not significant: F1,1620 = 1.70, P = 0.19;  
interaction effect significant: F80,1620 = 2.82, P = 1.67 × 10−14). The 
VWFA was more connected than lPFS with the left middle temporal 
gyrus (P = 2.90 × 10−3, T(10) = 3.91), whereas the lPFS was more 
connected than the VWFA with only the left lingual gyrus (P = 3.76 
× 10−4, T(10) = –5.25; Fig. 5). The VWFA’s connectivity with the rest 
of the brain at age 5 is therefore distinct from the connectivity pat-
terns of both the adjacent lPFS and lFFA, despite a lack of functional 
differentiation at this age.

In conclusion, these results indicate that the precise location of the 
VWFA is accurately predicted from the connectivity of this region 
even before the functional specialization for orthography in VWFA 
exists. fMRI selectivity to words does not exist before a child learns to 
read, but there are already differences in the connectivity fingerprints 
of voxels that will later become word selective.

DISCUSSION
The human cerebral cortex contains dozens of functionally dis-
tinct regions, each arising in approximately the same location in 
almost every normal adult. How does this intricate and systematic 
organization arise in development? We tested the hypothesis that the 
functional fate of a given cortical region may be determined by its 
earlier-developing pattern of connections with the rest of the brain, 
that is, its connectivity fingerprint. Consistent with this hypothesis, 
we found that the functional selectivity of VWFA arose between 
age 5 and age 8, when children learned to read, and that its corti-
cal location at age 8 could be predicted by the distinctive connec-
tivity of the same region at age 5, before the child could read and 
before the region differed functionally from nearby more general  
shape-responsive cortex.

The ability to predict the spatial pattern of word selectivity across 
the ventral pathway from earlier-developing voxel-wise patterns of 
connectivity was robust, accounting for 69% of the reliable variance 
in word selectivity across voxels. Furthermore, these predictions 
accounted for individual differences in the precise location of the 
VWFA, as the location of each 8-year-old child’s VWFA was better 
predicted by that child’s own connectivity data at age 5 than it was 
by another child’s connectivity pattern at age 5, or even by a group 
analysis of word selectivity in all of the other children at age 8. Finally, 
we found no evidence that functional response profiles at age 5 could 
predict word selectivity at age 8. In particular, our finding that the 
region that becomes the VWFA did not respond differentially to faces 
versus letters before children learned to read argues against prior 
hypotheses that the region that becomes the VWFA starts out with 
a selectivity for letter-like features16–18 or faces19. Taken together, 

these findings powerfully support the idea that earlier-developing 
patterns of connectivity instruct the development of cortical regions 
into functionally distinct regions.

Our results provide evidence for an instructive role of connectivity  
in cortical development that dovetails with the classic studies of 
‘rewired’ ferrets. In those studies, the cortical region that would oth-
erwise have developed into primary auditory cortex instead took on 
many of the distinctive functional signatures of primary visual cor-
tex after retinal input was rerouted (via MGN) to that location5–9).  
Our findings extend the principle from primary sensory regions in 
ferrets to high-level cortical regions in humans.

Myriad questions remain for future research. First, although we 
found no evidence for a distinctive functional response at age 5 in 
the region that would later become the VWFA, this finding should 
be more extensively tested with a broader range of stimuli. One prior 
study25 reported symbol selectivity in a nearby location in four- 
year-old children, but because that study used a cross sectional design 
it is possible that the region showing symbol selectivity at age 4 is  
different from the region that became the VWFA. Of particular inter-
est is whether this region shows selectivity for foveal versus peripheral 
inputs, rectilinear versus curvilinear features, or any other feature 
bias that may predispose this region to become selective for visually 
presented words and letters.

A second important question is whether early connectivity also 
instructs functional development of other functionally distinctive 
extrastriate regions. This question will be difficult to answer given 
the great challenges of scanning children younger than 5 years of age, 
when face-selective regions are already evident in our data (but see 
ref. 25, which found no evidence of face selectivity in the left fusiform 
in 4-year-old children). Pending such studies, it remains possible that 
the developmental mechanisms that give rise to the VWFA may differ 
from those for other cortical regions whose selectivity may be less 
dependent on experience.

Third, although the strong cross-lagged correlations we found 
in individuals are suggestive of a causal role of connectivity in 
determining later function, a direct causal test has yet to be run. 
Such a test may be possible in the future by testing humans who 
sustained early disruptions of the relevant white matter connec-
tions, for example, from stroke. Our results accord with previous  
correlational studies showing that white matter bundles predict 
future reading ability in children who cannot yet read (and may 
indicate a structural basis of behavioral risk for dyslexia that pre-
dates reading instruction26,27). Future studies can investigate how 
pre-reading connectivity constrains future reading ability in indi-
vidual subjects, and what aspects of this connectivity are malleable 
by early experience.

Finally, showing that distinctive connectivity arises before distinc-
tive function begs the question of how the connectivity fingerprint 
itself arose. Possible mechanisms that may determine patterns of con-
nectivity, or that may work in tandem with connectivity to determine 
function, include molecular markers or tissue and circuit properties 
inherent in each cortical region (for example, cytoarchitecture28,29).  
A combination of work on animal models, as well as longitudinal 
studies and experiments of nature in humans, should be able to 
resolve these questions, providing a rich new picture of the mecha-
nisms underlying the development of the human cortex.

In sum, our longitudinal, cross-lagged study supports the hypoth-
esis that early connectivity instructs the functional development of 
the VWFA, a cortical region that underlies the uniquely human ability 
to read. Furthermore, the ability to predict later brain function from 
an anatomical scan that can be performed even in a sleeping infant 

4

2

0

Figure 5 Left-lateralized regions that are preferentially connected with 
the VWFA versus lFFA or lPFS at age 5. Color bar reflects t values from 
the VWFA versus lFFA comparison (post hoc paired t tests, P < 0.05). 
Connectivity (of the region that will become the VWFA) to these regions 
was already elevated (compared to nearby cortex) at age 5, even when no 
evidence of functional differentiation existed in the VWFA at that age.
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may offer powerful new strategies for understanding and diagnosing 
neurodevelopmental disorders such as dyslexia and autism.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
Participants. As part of a larger study, children completed a short battery of 
psychoeducational assessments in their schools in New England in the spring of 
pre-kindergarten or fall of kindergarten, before formal word reading instruction. 
A subset of children who completed screening were invited to participate in the 
brain imaging study. This study was approved by the institutional review boards 
at the Massachusetts Institute of Technology and Boston Children’s Hospital. 
Parents gave written consent and children gave verbal assent to participate.

We collected DWI data and/or fMRI data from 112 children in pre-k or kinder-
garten (age 5 group). Three years later, we invited all children back to participate  
in another MRI study (which included both DWI and fMRI) after they completed 
second grade (age 8 group). 33 children agreed to return and were scanned after 
completing second grade; two individuals were excluded either for poor scan 
quality or for withdrawing from the study at the time of the scan. 20 of these 
children (pre-readers) were unable to read more than five high-frequency short 
words (WRMT-R/NU Word ID subtest30) when tested at age 5. We focused 
our analyses on these children because they could not read at the time of their  
pre-kindergarten scan.

9 of 20 children were excluded from longitudinal predictions analysis (six did 
not have a kindergarten DWI scan; three had excessive DWI motion as deter-
mined by visual inspection; see Supplementary Table 3 for DWI and fMRI 
motion measures). Thus, the longitudinal fMRI analysis included 14 children  
(4 females and 11 males, 5.4 ± 0.09 years old at first scan, and 8.3 ± 0.07 years 
old at second scan) and the longitudinal DWI prediction analysis included  
11 children (5 females and 6 males, 5.5 ± 0.08 years at first scan, and 8.4 ± 0.05 
years at second scan). All children met eligibility criteria including: being a native 
speaker of American English; born after at least 36 weeks gestation; no sensory or  
perceptual difficulties other than corrected vision; no history of head or brain 
injury or trauma; no neurological, neuropsychological, or developmental diag-
noses; no medications affecting the nervous system; standard scores > 80 on 
measures of nonverbal IQ and vocabulary at age 5 (Kaufman Brief Intelligence 
Test [KBIT-2] Matrices31; Peabody Picture Vocabulary Test [PPVT-4]32).

Structural image acquisition and processing. Structural, DWI, and fMRI data 
for both time points were acquired on a 3T Siemens Trio Tim MRI scanner with 
a standard Siemens 32-channel phased array head coil. A whole-head, high-
resolution T1-weighted multiecho MPRAGE33 anatomical volume was acquired 
at each time point (acquisition parameters: TR = 2,350 ms, TE = 1.64 ms, TI = 
1,400 ms, flip angle = 7°, FOV = 192 × 192, 176 slices, voxel resolution = 1.0 mm3, 
acceleration = 4). An online prospective motion correction algorithm reduced the 
effect of motion artifacts during the structural scan, and 10 selective reacquisi-
tion images were acquired and included to replace images that were affected by 
head motion34.

Structural MRI data were processed using a semiautomated processing 
stream using the default parameters in FreeSurfer v5.2.0 (http://surfer.nmr.mgh. 
harvard.edu/)35–38, which includes motion and intensity correction, surface co- 
registration, spatial smoothing, subcortical segmentation, and cortical parcella-
tion based on spherical template registration. The resulting cortical parcellation 
and subcortical segmentations were individually edited and reviewed for quality 
control and were used as seeds and targets for DWI tractography (below).

fmRI protocols. Age 5. Children viewed two runs of 20-s blocks of black and 
white photographs of neutral expression faces, white letters, white false font 
stimuli, and a fixation condition (a total of six blocks per stimulus type). Stimuli 
were 800 × 800 pixels and presented on a black background. False font stimuli 
were generated by rearranging parts of the same real letters and following ortho-
graphic patterns of English letters (for example, no letter had ascending and 
descending aspects; Supplementary Fig. 2). Stimuli were presented for 1,500 ms  
followed by a fixation cross for 500 ms, for a total duration of 2,000 ms. Each run 
lasted 4 min and 8 s and consisted of three blocks each of letters, faces, false font 
letters and fixation. Participants performed a one-back task, responding with a 
button-press to any image presented twice in a row (see Supplementary Table 2  
for accuracies).

Age 8. Children viewed 6 runs of 18-s blocks (26 stimuli + 2 repetitions per 
block) of black and white line-drawings of faces, objects, words, scrambled words 
and a fixation condition (Supplementary Fig. 1). Line drawings were 300 × 300 
pixels, and words were of height 120 pixels with width determined by the length 

of the word (minimum 120 pixels and maximum 300 pixels). A gray square grid 
with spacing 30 × 30 pixels was placed over all images to best equate the different 
stimulus categories to the scrambled stimuli. To create the scrambled stimuli, the 
square sections of the gridded image were randomized. All stimuli were overlaid 
on a single-color background that changed color every 500 ms. Stimuli were pre-
sented for 500 ms with an ISI of 192.3 ms (692 ms per trial). Each run consisted 
of 19 blocks (four blocks per category and three fixation blocks per run) and 
participants performed a one-back task, responding with a button-press for any 
image presented twice in a row.

fmRI acquisition parameters. Age 5. Data were collected with 3 × 3 × 4-mm 
resolution, 2-s TR, 30-ms TE, 90° flip, 172 TRs, 64 × 64 base resolution, 32 slices 
approximately parallel to AC/PC line to cover the entire cortex. Prior to each scan, 
four images were acquired and discarded to allow longitudinal magnetization to 
reach equilibrium. PACE, an online prospective motion correction algorithm39, 
was implemented to reduce the effect of motion artifacts.

Age 8. Data were collected with 2-mm3 resolution, 2-s TR, 30-ms TE, 90° 
flip, 172 TRs, 100 × 100 base resolution, 25 slices approximately parallel to the 
base of the temporal lobe to cover the entire inferior temporal cortex. We also 
collected a field map for distortion correction every two runs with the same 
slice prescription as the fMRI sequence (25 slices, 2-mm3 resolution, 500-ms TR,  
55° flip, 100 × 100 base resolution).

fmRI analysis. Age 5 fMRI data were analyzed using Nipype (http://nipy.org/
nipype/index.html)40. Images were motion corrected using MCFLIRT and  
high-pass temporal filtering (using a cutoff of 120s). Functional images were co-
registered to anatomical space using bbregister. Statistical analyses were conducted 
in FSL. Age 8 fMRI data were analyzed with Freesurfer (http://surfer.nmr.mgh.
harvard.edu/), FsFast (https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast/), and  
custom Matlab code. Images were motion corrected (time points where the  
difference in total vector motion from the previous time point exceeded 1mm 
were excluded, and orthogonalized motion measures were used as nuisance 
regressors for the GLM), detrended, and fit using a standard gamma function 
(d = 2.25 and t = 1.25). Age 8 data were also distortion-corrected using the field 
maps every two runs.

fRoI definition. We used a watershed GSS method41,42 to define a VWFA par-
cel as a search-space for the VWFA fROIs, from a separate group of adults who 
participated in exactly the same fMRI experiment. These parcels were regis-
tered to each child’s native brain anatomy at age 8 using the inverse transform 
of Freesurfer’s CVS toolbox43,44 (https://surfer.nmr.mgh.harvard.edu/fswiki/
mri_cvs_register) to the CVS average-35 template. Each child’s contrast map 
for the even-runs was thresholded at P < 0.005. Individual-subject fROIs were 
constructed from the intersection of the relevant parcel (for lFFA, VWFA, and 
lPFS separately) and the contrast map for the even runs (thresholded and not 
spatially smoothed). Contrast maps for line drawings of faces > line drawings of 
objects defined lFFA, words > object line drawings defined VWFA, and object 
line drawings > Scrambled words defined lPFS. These fROIs did not overlap in 7 
of 14 children and had minimal overlap in the remaining children (2.84 ± 0.83% 
of the lFFA and VWFA fROIs overlapped and 2.87 ± 0.36% of the lFFA, VWFA, 
and lPFS overlapped). We removed any overlapping voxels between these fROIs, 
thus creating non-overlapping VWFA, lFFA, and lPFS fROIs in each individual’s  
native anatomy. We used these non-overlapping fROIs for all further analy-
ses. The odd runs (also not spatially smoothed) were then used for calculating  
PSC for each stimulus category.

motion measures. Total vector motion and root mean squared rotation  
were calculated using FSFast. Time-points that had more than 1mm total  
vector motion from the previous time-point were removed. We chose the best 
four runs of fMRI data for each subject as those with the fewest time-points 
removed. After removing time-points for the best four runs, we averaged the 
measures of motion across runs for each subject. We also extracted motion  
measures from DWI data using TRACULA software45: average translation, rota-
tion, percentage bad slices, and average drop-out score (for slices with excessive 
intensity drop-out).

We found that none of the fMRI motion measures was correlated with any of 
the DWI motion measures (at P < 0.05; Supplementary Table 3).
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longitudinal registration of age 5 to age 8 data. We registered the age 5 ana-
tomical data of each subject to the same subject’s age 8 anatomical data using 
Advanced Normalization Tools (ANTs version 2.1.0; http://stnava.github.io/
ANTs/) registration46,47. ANTs has been previously used for lifespan analyses  
of brain morphology48 and function49 in both adult48 and pediatric brain 
data49–51 including infants52. We transformed the age 8 brain to the age 5 brain 
using the symmetric normalization toolbox with Gaussian regularization and 
initialized the transform with the affine registration matrix from Freesurfer’s 
mri_robust_register software53–55 (https://surfer.nmr.mgh.harvard.edu/fswiki/
mri_robust_register).

We calculated the accuracy of the ANTs longitudinal registration for two 
structures: the large VWFA parcel, which we used as a search space to define the 
VWFA fROI for each subject, and the left occipitotemporal cortex region (lOTC, 
which is derived from combining the left fusiform and left inferior temporal gyrus 
from the Freesurfer parcellation; this region is important because we used it as 
a seed for tractography, explained below). We mapped either the VWFA parcel 
or the lOTC from age 8 to the age 5 anatomy using ANTs and calculated the 
overlap between this ANTs-registered region with the region defined by direct 
registration to the age 5 data (that is, age 8 to age 5 registered region versus region 
registered directly to age 5). This procedure quantified error due to longitudi-
nal registration. We used two measures of accuracy: the overlap coefficient and 
modified Hausdorff. The overlap coefficient is the size of the intersection of 
the two regions divided by the minimum size of the two regions. The modified 
Hausdorff45 is defined as the minimum distance of each voxel in one region 
from the other region, averaged over all voxels in the two regions (that is, average 
distance from the age 8-to-age 5 registered region to the native age 5 region); this 
measure indicates that all points in the registered region are on average ‘X’ far 
from the native age 5 region. The overlap coefficient for the lOTC was 0.8700 ± 
0.0063 and 0.8731 ± 0.0084 for the VWFA parcel; the modified Hausdorff metric 
was 0.1471 ± 0.0133 voxels for the lOTC anatomical region, and 0.1437 ± 0.0142 
voxels for the VWFA parcel.

Comparison of the VWFA’s selectivity to letters and words. The fMRI data at  
age 5 had slightly different stimulus conditions than the fMRI data acquired  
at age 8: age 5 data included letters instead of words and did not include an 
‘Objects’ condition. To test whether the VWFA responds selectively not only to 
words but also to individual letters, we performed several experiments in a cohort 
of adults: the VWFA localizer that is, ‘age 8 fMRI experiment’, and a version of 
the VWFA localizer that included individual letters in addition to the other four 
categories (line drawings of objects, line drawings of faces, words and scrambled 
words). The VWFA localizer (that is, age 8 fMRI experiment) was collected in 
another scan session and we used that scan session to define the VWFA, lFFA, 
and lPFS in exactly the same way that we defined them for children. We com-
pared letter versus word selectivity in each of these regions. We compared VWFA 
letter selectivity and word selectivity versus selectivities to the other categories 
in adults. The VWFA showed a significant interaction by condition (repeated 
measures ANOVA by condition: F4 = 22.26, P = 1.76 × 10−5). The response to 
letters and words in the VWFA did not differ significantly (T = 0.16, P = 0.885) 
and each of these conditions produced a significantly higher response than the 
object condition (letters versus objects: T = 5.66, P = 1.09 × 10−2; words versus 
objects: T = 9.27, P = 2.66 × 10−3). The lFFA and lPFS showed higher responses 
to faces and objects, respectively, over any other category, including words and 
letters (lFFA: ANOVA interaction: F4 = 31.86, P = 2.63 × 10−6; faces versus words, 
letters: T = 4.20, P = 2.46 × 10−2; T = 8.10, P = 3.93 × 10−3; lPFS: F4 = 11.50,  
P = 4.53 × 10−4; objects versus words, letters: T = 3.76, P = 3.30 × 10−2; T = 3.60, 
P = 3.68 × 10−2). These analyses confirm that the VWFA shows no difference in 
the response to words versus individual letters, with both conditions significantly 
higher than to objects. Thus, if the VWFA was selective to orthography at age 5, 
we would have expected to find comparable selectivity to letters at age 5 as we 
observed for words at age 8.

dwI image acquisition. The diffusion-weighted scan in kindergarten (5 min 
total) included 10 non-diffusion weighted volumes (b = 0) and 30 diffusion-
weighted volumes (that is, 30 diffusion directions) acquired with non-colinear  
gradient directions (b = 700 s/mm2), all at 128 × 128 base resolution and  
isotropic voxel resolution of 2.0 mm3. Diffusion weighted images were checked 
for motion artifact and processed using FSL’s FDT software (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/FDT/)56.

The diffusion-weighted scan at age 8 was identical to the kindergarten 
scan except that it included 60 diffusion-weighted volumes (b = 700 s/mm2) 
because the children could stay motionless in the scanner for longer peri-
ods of time. Children watched a movie of their choice during the anatomical  
and DWI scanning.

dwI longitudinal prediction analysis. We registered the age 5 Freesurfer seg-
mentation and parcellation results (aparc+aseg) to each individual’s age 5 diffu-
sion images using Freesurfer’s bbregister function57, which uses surface-based 
algorithms to register images, and we initialized the registration with FSL’s FLIRT. 
We combined the DWI-registered left fusiform and left inferior temporal gyrus 
parcels into one seed region (left occipitotemporal seed region; lOTC). Each 
voxel within this region was used as a seed and the remaining 81 parcels were 
used as target regions for fiber tracking. The principal diffusion directions were 
calculated per voxel, and probabilistic diffusion tractography was carried out 
using FSL-FDT56 with 10,000 streamline samples in each seed voxel to create 
a connectivity distribution to each of the target regions, while avoiding a mask 
consisting of the ventricles. Thus, every voxel within the lOTC seed region was 
described by a vector of connection probabilities to each other brain region.

Each participant’s age 8 functional image (t-statistic) for the contrast of Words 
> Objects from either the best 4 runs (assessed by least motion) or even runs (for 
split-half reliability measurements) was registered to his or her structural image 
at age 5 using the longitudinal registration approach described above, and the 
resulting registered functional image was then registered to the age 5 DWI data 
using Freesurfer’s bbregister and initialized using FSL’s FLIRT. Thus, every voxel 
was also described by a vector of t statistics for each functional contrast.

To predict function from connectivity, we used the methods described in  
refs. 1,2. Briefly, we used a leave-one-subject-out cross-validation (LOOCV) rou-
tine58, where a single subject’s data was excluded, trained a model with all of the 
remaining subjects’ voxel-wise data, and then applied the model to the left-out 
subject. This routine was repeated for all subjects, generating independent predic-
tions. Each voxel of the seed parcel was paired with its connectivity vector to every 
other brain region, its spatial coordinates, and its word-selectivity (response to 
words > objects). We used in-house MATLAB code (R2011b; The Mathworks) 
and the LibSVM toolbox (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) for these 
analyses. We concatenated all of the native-space voxels from each subject’s lOTC 
seed region (excluding all voxels of the left-out subject) and trained an SVR model 
with kernel = radial basis function, γ = 0.012 (1/number of features), ε = 0.1) on 
the standardized and linearized word-selectivity and connectivity vector of that 
voxel. Thus each voxel was an independent observation in the regression model. 
Because all analyses were performed on subject-specific anatomy, the number 
of voxels in the seed varied among individuals, but the model was blind to the 
participant each voxel belonged to. We applied this model to the DWI data of 
the subject that we left out of the analysis, resulting in a predicted fMRI value for 
word-selectivity for every voxel of the lOTC seed region. To evaluate the accuracy 
of the predictions, we performed Pearson’s correlations on the predicted versus 
actual fMRI responses for each individual and Fisher z-transformed the resulting 
correlation coefficients. These prediction accuracies were tested against random 
permutations and other benchmarks (below).

Random permutations. We used the same data matrices that were used for 
DWI predictions but here we shuffled the pairings between the fMRI responses 
and DWI connectivity vectors. We shuffled these 5,000 times, generating 5,000 
predictions from randomly shuffled data for each subject, and performed  
a permutation test (exact test) of each subject’s z-transformed correlation coef-
ficient for DWI predictions against the distribution of correlation coefficients 
from the permutations.

group-average prediction analysis. We compared the accuracy of the DWI 
predictions with a group analysis model (see refs. 1,2). The group models were 
also made through LOOCV. Each participant’s functional data at age 8 were 
spatially normalized into CVS average 35 template space with Freesurfer’s CVS 
registration and superimposed to create composite maps. We performed a least-
squares random-effects test on all but one participant using Freesurfer’s FsFast. 
The resulting t statistic image, which was based on all the other participants in 
normalized CVS space (Supplementary Fig. 5), was then mapped to the native 
age 5 anatomy of the participant left out of the group analysis (using the reverse 
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CVS normalization transform from age 5 to group template space). We again 
correlated the actual versus predicted fMRI values within the lOTC seed mask, 
Fisher z-transformed the resulting coefficients, and performed a paired t test to 
compare DWI prediction accuracies to group prediction accuracies.

Subject-to-subject prediction analysis. We mapped each child’s anatomical data 
at age 8 to each other child’s anatomical data at age 5 using ANTS software (see 
above). We used Freesurfer’s bbregister function to map the fMRI data at age 8 to 
the anatomical data at age 8, and then mapped the registered fMRI data to every 
other child’s anatomy (using the registration matrix from ANTS software). We 
then registered that data to the DWI data using bbregister. This process of register-
ing each child’s fMRI data at age 8 to each other child’s DWI data at age 5 generated 
voxel-wise predictions for each subject based on each other’s child’s data.

Split-half reliability. We also compared the DWI predictions to ‘ceiling predic-
tions’ or predictions of age 8 word selectivity from left-out age 8 fMRI runs. 
We divided the residual sum of squares for the DWI predictions by the total 
sum of squares for the split-half reliability to calculate the normalized (R2). This 
measurement represents the best possible predictions of functional selectivity for 
each subject because they are based on the same subject’s own fMRI data. It also 
captures the reliability of the fMRI data, and can therefore be used to normalize 
the DWI prediction accuracies and assess how much of the reliable variance (R2) 
in age 8 word-selectivity can be predicted from age 5 DWI data.

overlap measurements. We generated an fROI from the DWI predictions by 
masking the DWI predicted fMRI responses with the larger VWFA GSS parcel 
(see above) and thresholded the DWI predictions at > 0.4 s.u. (same threshold  
as Fig. 3) as well as upper bound (>0.8 s.u.) and lower bound (>0.2 s.u.).  
We generated the actual fROIs using the same criteria. We also generated fROIs 
from the split-half fMRI data in exactly the same manner. We compared the DWI 
predicted fROIs (and the split-half predicted fROIs) to the actual fROIs for each 
subject using the same two measures as described above (overlap coefficient and 
modified Hausdorff metric).

fRoI-based dwI tractography analysis. The VWFA, lFFA, and lPFS were used 
as seed regions for fiber tracking for each individual; the remaining 81 individual-
subject parcels from the Freesurfer segmentation were similarly DWI-registered, 
and used as the target regions for tractography (we excluded the fusiform and 
inferior temporal gyrus as targets because the voxels within VWFA, lFFA, and/or 
lPFS landed somewhere within these regions and it would be redundant to include 
a region as both a seed and a target). Tractography was run from each seed fROI to 
each target parcel (and back) and averaged the connectivity values to and from the 
fROIs. We performed a two-way ANOVA to compare lFFA, VWFA, and lPFS con-
nectivity to the 81 target regions. We also performed separate two-way ANOVAs 
to compare the VWFA to the lFFA and lPFS separately, and post hoc t tests  
were performed if we observed a significant fROI × target interaction.

Statistics. We used a within-subject design in these experiments; therefore, there 
was no experimental group randomization or blinding. We followed standard 
procedures in the field and statistical procedures in line with previously published 
studies1,2,57. All Student’s t tests are paired and two-tailed; F tests in ANOVAs 
and exact permutation tests were one-tailed, as is standard for such compari-
sons. Data distribution was assumed to be normal, but this was not formally 
tested. No statistical methods were used to pre-determine sample sizes but our 
sample sizes are similar to those reported in previously published longitudinal  
studies in children or fMRI studies on decoding and prediction within subject 
(for example, see refs. 59,60).

data availability. The data that support the findings of this study are available 
from the corresponding author upon request.

A Supplementary methods checklist is available.
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