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An algorithm is proposed for solving the stereoscopic matching problem.
The algorithm consists of five steps: (1) Each image is filtered at different 
orientations with bar masks of four sizes that increase with eccentricity; 
the equivalent filters are one or two octaves wide. (2) Zero-crossings in 
the filtered images, which roughly correspond to edges, are localized. 
Positions of the ends of lines and edges are also found. (3) For each mask 
orientation and size, matching takes place between pairs of zero-crossings 
or terminations of the same sign in the two images, for a range of dis
parities up to about the width of the mask’s central region. (4) Wide 
masks can control vergence movements, thus causing small masks to 
come into correspondence. (5) When a correspondence is achieved, it is 
stored in a dynamic buffer, called the 2|-D sketch.

I t  is shown that this proposal provides a theoretical framework for 
most existing psychophysical and neurophysiological data about 
stereopsis. Several critical experimental predictions are also made, for 
instance about the size of Panum’s area under various conditions. The 
results of such experiments would tell us whether, for example, co- 
operativity is necessary for the matching process.

Computational structure of the stereo-disparity  problem

Because of the way our eyes are positioned and controlled, our brains usually 
receive similar images of a scene taken from two nearby points at the same hori
zontal level. If two objects are separated in depth from the viewer, the relative 
positions of their images will differ in the two eyes. Our brains are capable of 
measuring this disparity and of using it to estimate depth.

Three steps (S) are involved in measuring stereo disparity: (Si) a particular 
location on a surface in the scene must be selected from one image; (S2) that same 
location must be identified in the other image; and (S3) the disparity in the two 
corresponding image points must be measured.

If one could identify a location beyond doubt in the two images, for example 
by illuminating it with a spot of light, steps Si and S2 could be avoided and the

f  A preliminary and lengthier version of this theory is available from the M.I.T. A.I. 
Laboratory as Memo 451 (1977).
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problem would be easy. In practice one cannot do this (figure 1), and the difficult 
part of the computation is solving the correspondence problem. Julesz (i960) found 
that we are able to interpret random dot stereograms, which are stereo pairs that 
consist of random dots when viewed monocularly but fuse when viewed stereo- 
scopically to yield patterns separated in depth. This might be thought surprising, 
because when one tries to set up a correspondence between two arrays of random 
dots, false targets arise in profusion (figure 1). Even so and in the absence of any 
monocular or high level cues, we are able to determine the correct correspondence.

D. Marr and T. Poggio

Figure 1. Ambiguity in the correspondence between the two retinal projections. In this figure, 
each of the four points in one eye’s view could match any of the four projections in the 
other eye’s view. Of the 16 possible matchings only four are correct (filled circles), while 
the remaining 12 are * false targets’ (open circles). It is assumed here that the targets 
(filled squares) correspond to *matchable ’ descriptive elements obtained from the left 
and right images. Without further constraints based on global considerations, such 
ambiguities cannot be resolved. Redrawn from Julesz (1971, fig. 4.5-1).

In order to formulate the correspondence computation precisely, we have to 
examine its basis in the physical world. Two constraints (C) of importance may be 
identified (Marr 1974): (Cl) a given point on a physical surface has a unique 
position in space at any one time; and (C2) matter is cohesive, it is separated 
into objects, and the surfaces of objects are generally smooth compared with their 
distance from the viewer.

These constraints apply to locations on a physical surface. Therefore, when we 
translate them into conditions on a computation we must ensure that the items 
to which they apply in the image are in one-to-one correspondence with well- 
defined locations on a physical surface. To do this, one must use image predicates 
that correspond to surface markings, discontinuities in the visible surfaces, 
shadows, and so forth, which in turn means using predicates that correspond to 
changes in intensity. One solution is to obtain a primitive description of the in
tensity changes present in each image, like the primal sketch (Marr 1976), and 
then to match these descriptions. Line and edge segments, blobs, termination
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points, and tokens, obtained from these by grouping, usually correspond to items 
that have a physical existence on a surface.

The stereo problem may thus be reduced to that of matching two primitive 
symbolic descriptions, one from each eye. One can think of the elements of these 
descriptions as carrying only position information, like the black dots in a random 
dot stereogram, although for a full image there will exist rules that specify which 
matches between descriptive elements are possible and which are not. The two 
physical constraints Cl and C2 can now be translated into two rules (R) for how 
the left and right descriptions are combined:

(jRl) Uniqueness. Each item from each image may be assigned at most one 
disparity value. This condition relies on the assumption that an item corresponds 
to something that has unique physical position.

( R2)Continuity. Disparity varies smoothly almost everywhere. This condition is 
a consequence of the cohesiveness of matter, and it states that only a small 
fraction of the area of an image is composed of boundaries that are discontinuous 
in depth.

In practice, R1 cannot be applied simply to grey level points in an image, 
because a grey level point is in only implicit correspondence with a physical 
location. I t  is in fact impossible to ensure that a grey level point in one image 
corresponds to exactly the same physical position as a grey level point in the 
other. A sharp change in intensity, however, usually corresponds to a surface 
marking, and therefore defines a single physical position precisely. The positions 
of such changes may be detected by finding peaks in the first derivative of inten
sity, or zero-crossings in the second derivative.

In a recent article, Marr & Poggio (1976) derived a cooperative algorithm 
which implements these rules (see figure 2), showing that it successfully solves the 
false targets problem and extracts disparity information from random dot stereo
grams (see also Marr, Palm & Poggio 1978).

The biological evidence

Apart from automap (Julesz 1963) and Sperling (1970), all of the current stereo 
algorithms proposed as models for human stereopsis are based on Julesz’s (1971) 
proposal that stereo matching is a cooperative process (Julesz 1971, p. 203 ff.; 
Julesz & Chang 1976; Nelson 1975; Dev 1975; Hirai & Fukushima 1976; Sugie 
& Suwa 1977; Marr & Poggio 1976). None of them has been shown to work on 
natural images.

An essential feature of these algorithms is that they are designed to select 
correct matches in a situation where false targets occur in profusion. They require 
many ‘disparity detecting’ neurons, whose peak sensitivities cover a range of 
disparity values that is much wider than the tuning curves of the individual 
neurons. That is, apart possibly from early versions of Julesz’s dipole model, they 
do not critically rely on eye movements, since in principle, they have the ability 
to interpret a random dot stereogram without them.
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Figure 2. The explicit structure of the two rules R1 and R2 for the case of a one dimensional 
image is represented in (a). Lx and Rx represent the positions of descriptive elements in the 
left and right images. The continuous vertical and horizontal lines represent lines of sight 
from the left and the right eyes. Their intersection points correspond to possible disparity 
values. R1 states that only one match is allowed along any given horizontal or vertical 
line; R2 states that solution planes tend to spread along the dotted diagonal lines, which 
are lines of constant disparity.

In a network implementation of these rules, one can place a ‘ cell’ at each node; then 
solid lines represent* inhibitory ’ interactions, and dotted lines represent* excitatory’ ones. 
The local structure at each node of the network in (a) is given in (6). This algorithm may 
be extended to two dimensional images, in which case each node in the corresponding 
network has the local structure shown in (c). The ovals in this figure represent circular 
two dimensional disks rising out of the plane of the page. Formally, the algorithm rep
resented by this network may be written as the iterative algorithm

rjt+i,y',d
x’, y',d'eS(x,y,d) x’, y', d' e 0(x, y, d)

where C denotes the state of the cell (0 for inactive, 1 for active) corresponding to 
position ( x, y), disparity d and time t in the network of (a); S(x, y, d) is a local excitatory 
neighbourhood confined to the same disparity layer, and y, d) the inhibitory neighbour
hood, consists of cells lying on the two lines of sight (c). e is an inhibition constant, and <r 
is a threshold function. The initial state C° contains all possible matches, including false 
targets, within the prescribed disparity range. The rules R1 and R2 are implemented 
through the geometry of the inhibitory and excitatory neighbourhoods 0  and S  (c). (From 
Marr & Poggio 1976, fig. 2; copyright by the American Association for the Advancement 
of Science.)
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Eye movements seem, however, to be important for human stereo vision 
(Richards 1977; Frisby & Clatworthy 1975; Saye & Frisby 1975). Other findings 
these algorithms fail to explain include (a) the ability of some subjects to tolerate 
a 15% expansion of one image (Julesz 1971, fig. 2.8-8), (6) the findings about 
independent spatial-frequency-tuned channels in binocular fusion, of which our 
tolerance to severe defocusing of one image is a striking demonstration (Julesz 
1971, fig. 3.10-3), (c) the physiological, clinical, and psychophysical evidence about 
Richards’ two pools hypothesis (Richards 1970, 1971; Richards & Regan 1973); 
and (d) the size of Panum’s fusional area (6'-18', Fender & Julesz 1967; Julesz 
& Chang 1976) which seems surprisingly small to have to resort to cooperative 
mechanisms for the elimination of false targets.

Taken together, these findings indicate that a rather different approach is 
necessary. In this article, we formulate an algorithm designed specifically as a 
theory of the matching process in human stereopsis, and present a theoretical 
framework for the overall computational problem of stereopsis. We show that our 
theory accounts for most of the available evidence and formulate the predictions 
to which it leads.

For a more comprehensive review of the relevant psychophysics and neuro
physiology see Marr & Poggio (1977 a).

A n outline oe the theory

The basic computational problem in binocular fusion is the elimination of false 
targets, and for any given monocular features the difficulty of this problem is in 
direct proportion to the range and resolution of the disparities that are considered. 
The problem can therefore be simplified by reducing either the range, or the 
resolution, or both, of the disparity measurements that are taken from two 
images. An extreme example of the first strategy would lead to a diagram like 
figure 2 in which only three adjacent disparity planes were present (e.g. +1, 
0, —1) each specifying their degree of disparity rather precisely. The second 
strategy, on the other hand, would amount to maintaining the range of disparities 
shown in figure 2, but reducing the resolution with which they are represented. 
In the extreme case, only three disparity values would be represented, crossed, 
roughly zero, and uncrossed.

These schemes, based on just three pools of disparity values, substantially 
eliminate the false targets problem at the cost on the one hand of a very small 
disparity range, and on the other, of poor disparity resolution. Thus the price 
of computational simplicity is a trade-off between range and resolution.

One would, however, expect the human visual system to possess both range 
and resolution in its disparity processing. In this connection, the existence of 
independent spatial frequency tuned channels in binocular fusion (Kaufman 
1964; Julesz 1971, §§ 3.9 and 3.10; Julesz & Miller 1975; Mayhew & Frisby 1976) 
is of especial interest, because it suggests that several copies of the image, obtained
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by successively finer filtering, are used during fusion, providing increasing and, 
in the limit, very fine disparity resolution at the cost of decreasing disparity range.

A notable feature of a system organized along these lines is its reliance on 
eye movements for building up a comprehensive and accurate disparity map from 
two viewpoints. The reason for this is that the most precise disparity values are 
obtainable from the high resolution channels, and eye movements are therefore 
essential so that each part of a scene can ultimately be brought into the small 
disparity range within which high resolution channels operate. The importance of 
vergence eye movements is also attractive in view of the extremely high degree 
of precision with which they may be controlled (Riggs & Niehl i960; Rashbass 
& Westheimer 1961a).

These observations suggest a scheme for solving the fusion problem in the 
following way (Marr & Poggio 1977a, b): (1) Each image is analysed through 
channels of various coarsenesses, and matching takes place between corresponding 
channels from the two eyes for disparity values of the order of the channel 
resolution. (2) Coarse channels control vergence movements, thus causing finer 
channels to come into correspondence.

This scheme contains no hysteresis, and therefore does not account for the 
hysteresis observed by Fender & Julesz (1967). Recent work in the theory of 
intermediate visual information processing argues on computational grounds that 
a key goal of early visual processing is the construction of something like an 
‘orientation and depth map* of the visible surfaces round a viewer (Marr & 
Nishihara 1978, fig. 2; Marr 1977, § 3). In this map, information is combined from 
a number of different and probably independent processes that interpret disparity, 
motion, shading, texture, and contour information. These ideas are illustrated 
by the representation shown in figure 3, which Marr & Nishihara called the 
2|-D sketch.

Suppose now that the hysteresis Fender & Julesz observed is not due to a co
operative process during matching, but is in fact the result of using a memory 
buffer, like the 2|-D sketch, in which to store the depth map of the image as it is 
discovered. Then, the matching process itself need not be cooperative (even if it 
still could be), and in fact it would not even be necessary for the whole image 
ever to be matched simultaneously, provided that a depth map of the viewed 
surface were built and maintained in this intermediate memory.

Our scheme can now be completed by adding to it the following two steps: (3) 
when a correspondence is achieved, it is held and written down in the 2£-D sketch; 
(4) there is a backwards relation between the memory and the masks, acting 
through the control of eye movements, that allows one to fuse any piece of a 
surface easily once its depth map has been established in the memory.

D. Marr and T. Poggio
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The nature of the channels

The articles by Julesz & Miller (1975) and Mayhew & Frisby (1976) establish 
that spatial-frequency-tuned channels are used in stereopsis and are independent. 
Julesz & Miller’s findings imply that two octaves is an upper bound for the 
bandwidth of these channels, and suggest that they are the same channels as 
those previously found in monocular studies (Campbell & Robson 1968; Blake- 
more & Campbell 1969). Although strictly speaking it has not been demonstrated 
that these two kinds of channel are the same, we shall make the assumption that 
they are. This will allow us to use the numerical information available from 
monocular studies to derive quantitative estimates of some of the parameters 
involved in our theory.

1 i t t ' K .  
11 ....................... .i ...

/ t \ s  h ■
M  * / f \ V «
... K , . ...sr-i )

/* / / y \ V S. f
✓  / / y V V \  f
v  / / y V V s. *

’"> ..... * . . .

( 6)

Figube 3. Illustration of the 2^-D sketch. In (a) the perspective views of small squares placed 
at various orientations to the viewer are shown. The dots with arrows show a way of 
representing the orientations of such surfaces symbolically. In (b), this representation is 
used to show the surface orientations of two cylindrical surfaces in front of a background 
orthogonal to the viewer. The full 2^-D sketch would include rough distances to the surfaces 
as well as their orientations, contours where surface orientation changes sharply, and 
contours where depth is discontinuous (subjective contours). A considerable amount of 
computation is required to maintain these quantities in states that are consistent with 
one another and with the structure of the outside world (see Marr 1977, § 3). (From 
Marr & Nishihara 1978, fig. 2.)

The idea that there may be a range of different sized or spatial-frequency-tuned 
mechanisms was originally introduced on the basis of psychophysical evidence by 
Campbell & Robson (1968). This led to a virtual explosion of papers dealing with 
spatial frequency analysis in the visual system. Recently, Wilson & Giese (1977) 
and Cowan (1977) integrated these and other anatomical and physiological data 
into a coherent logical framework. The key to their framework is (a) the parti
tioning of the range of sizes associated with the channels into two components, 
one due to spatial inhomogeneity of the retina, and one due to local scatter of
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receptive field sizes; and (6) the correlation of these two components with 
anatomical and physiological data about the scatter of receptive field sizes and 
their dependence on eccentricity.

On the basis of detection studies, they formulated an initial model embodying 
the following conclusions: (1) at each position in the visual field, there exist 
‘bar-like’ masks (see figure 4a), whose tuning curves have the form of figure 46, 
and which have a half power bandwidth of between one and two octaves. 
(2) The half power bandwidth of the local sensitivity function at each eccentricity
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Figure 4. (a) Line spread functions measured psychophysically at threshold at two different 
eccentricities. The points are fitted using the difference of two Gaussian functions with 
space constants in the ratio 1.5:1.0. The inhibitory surround exactly balances the 
excitatory centre so that the area under the curve is zero, (b) Predictions of local spatial 
frequency sensitivity from frequency gradient data and from line spread function data. 
The local frequency sensitivity functions are plotted as solid lines. The dashed lines are 
the local frequency response predicted by Fourier transforming the line spread functions 
in (a),which were measured at the appropriate eccentricities. (Redrawn from Wilson & 
Giese 1977, fig. 9 and 10.)

is about three octaves. Hence the range of receptive field sizes present a t each 
eccentricity is about 4 :1. In other words, at least three and probably four receptive 
field sizes are required at each point of the visual field. (3) Average receptive field 
size increases linearly with eccentricity. In humans at 0° the mean width w of the 
central excitatory region of the mask is about 6' (range 3'-12'); and at 4° eccentri
city, w= 12' (range 6-24') (Wilson & Giese 1977, fig. 9; Hines 1976, figs 2 an d 3). 
If one assumes that this receptive field is described by the difference of two 
Gaussian functions with space constants in the ratio 1: 1.5, the corresponding 
peak frequency sensitivity of the channel is given by 1// = A = 2.2 These 
figures agree quite well with physiological studies in the Macaque. Hubei & 
Wiesel (1974, fig. 6a) reported that the mean width of the receptive field (s) 
increases linearly with eccentricity e (approximately, s = 0.05e + 0.25°, so that at

D. Marr and T. Poggio
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e = 4°, s — 27' which gives a value for = of about 9' as opposed to the 
figure of 12' assumed here for humans). The data of Schiller, Finlay & Volman 
(1:977, P- 1347, figs. 12 and 14) are in rough agreement with Hubei & Wiesel’s. 
(4) Essentially all of the psychophysical data on the detection of spatial patterns 
at contrast threshold can be explained by (1), (2) and (3) together with the 
hypothesis that the detection process is based on a form of spatial probability 
summation in the channels.

With the characteristic perverseness of the natural world, this happy and 
concise state of affairs does not provide a precise account of suprathreshold 
conditions. The known discrepancies can however be explained by introducing 
two extra hypotheses: (5) contrast sensitivities of the various channels are 
adjusted appropriately to the stimulus contrast (Georgeson & Sullivan 1975). The 
point of this is merely to ensure that bars of the same contrast but different 
widths actually appear to have the same contrast; (6) receptive field properties 
change slightly with contrast, the inhibition being somewhat decreased when 
contrast is low (Cowan 1977, p. 511).

In a more recent article, Wilson & Bergen (1979) have found that the situation 
at threshold may also be more complicated. They proposed a model consisting of 
four size-tuned mechanisms centred at each point, the smaller two showing 
relatively sustained temporal responses, and the larger two being relatively 
transient. As far as is known, this model accurately accounts for all published 
threshold sensitivity studies.

The two sustained channels, which Wilson & Bergen call N and S, have w 
values 3.1' and 6.2'; the transient channels, called T and U, have w equal to 
11.7' and 21'. The sizes of these channels increase with eccentricity in the same 
way as described above.

The S channel is the most sensitive under both transient and sustained stimu
lation, and the U channel is the least, having only to £ the sensitivity of the S 
channel. The extent to which the U channel, for example, plays a role in stereopsis 
is of course unknown.

In what follows, we shall assume that the figures given by Wilson & Giese for the 
numbers and dimensions of receptive field centres and their scatter hold roughly 
for suprathreshold conditions. If future experiments confirm that Wilson & Ber
gen’s more recent numbers are relevant for stereopsis, some modification of our 
quantitative estimates may be necessary.

Wilson & Giese’s figures allow us to estimate the minimum sampling density 
required by each channel, i.e. the minimum spatial density of the corresponding 
receptive fields. From fig. 10 of Wilson & Giese (1977), a channel with peak sen
sitivity at wavelength A is band-limited on the high frequency side by wave
lengths of about §A, and A = 2.2 w.This figure is for a threshold criterion of 
15-30 %, but is rather insensitive to the exact value chosen. Hence by the sampling 
theorem (Papoulis 1968, p. 119), the minimum distance between samples (i.e. 
receptive fields), in a direction perpendicular to their preferred orientation, is at



Table 1. Spatial filtering: summary of psychophysical evidence

(a) At each point in the visual field the image is filtered through receptive fields having these 
characteristics (the half-power bandwidth B is about 1 octave):
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two dimensional receptive field 
vertical orientation

(6) For each position and orientation there are four receptive field sizes, the smallest being 
1 of the largest. The profile R{x)and Fourier transform i?(w) of each receptive field are given by:

R(x) = (2n)-l{°'e‘' lexP [ - a;2/ 2<re]-<rr 1 eXP [_a:V2<r?]}»
&((!)) =  exp [ -  JwV*] -  exp [ -  |w 2of ],

where ore, er, are the excitatory and inhibitory space constants, and are in the ratio 1:1.5. 
The half-power bandwidth spanned by the four receptive field cells at each point is two octaves.

(c) w increases with eccentricity: w — 3' — 12' (possibly 20') at 0°, and w =  6' —34' at 4°. 
Note, receptive field sizes and corresponding spectral sensitivity curves in the suprathreshold 
condition may be different from the values given here, which were measured at threshold.

(d) Formally the output of step 1 is given by the convolution Fŵ (x, y) = I*BW q, where 
I(x, y) denotes the light intensity in suitable units at the image point (x, y), and Bw g(x, y) 
describes the receptive field of a bar-shaped mask at orientation , with central region of 
width w. 6 covers the range 0-180° with 12 values about 15° apart and w takes four values in 
the range defined by (c) above.

(e) In practice, cells with on-centre receptive fields will signal positive values of the filtered 
signal, and cells with off-centre receptive fields will signal negative values.



most ^A. Assuming the overall width of the receptive field is about fA, the 
minimum number of samples per receptive field width is about 4.5.

An estimate of the minimum longitudinal sampling distance may be obtained 
as follows. Assume that the receptive field’s longitudinal weighting function (see 
table 1) is Gaussian with space-constant or, thus extending over an effective distance 
of say 4<r-6cr. (A value of a = wwill give an approximately square receptive field.) 
Its Fourier transform is also Gaussian with space constant in the frequency 
domain (oj) of i/cr, and for practical purposes can be assumed to be band-limited 
with / max = 3/(2 ncr)to 2/(2rc<7). By the sampling theorem, the corresponding 
minimum sampling intervals are <7 to 1.5cr, that is about four samples per longi
tudinal receptive field distance. Hence the minimum number of measurements 
(i.e. cells or receptive fields) per receptive field area is about 18. I t follows that the 
number of multiplications required to process the image through a given channel 
is roughly independent of the receptive field size associated with that channel. 
Not too much weight should be attached to the estimate of 18, although we feel 
that the sampling density cannot be significantly lower. In the biological situation, 
total sampling density will decrease as eccentricity increases.

This model of the preliminary processing of the image is summarized in table 1. 
There are in fact more efficient ways of implementing it (see Marr & Hildreth
*979)*
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The domain of the matching function

In view of this information, the first step in our theory can be thought of as 
filtering the left and right spatial images through bar masks of four sizes and 
about twelve orientations at each point in the images. We assume that this oper
ation is roughly linear, for a given intensity and contrast. When matching the left 
and right images, one cannot simply use the raw values measured by this first 
stage, because they do not correspond directly to physical features on visible 
surfaces on which matching may be based. One first has to obtain from these 
measurements some symbol that corresponds with high probability to a physical 
item with a well defined spatial position. This observation, which has been 
verified through computer experiments in the case of stereo vision (Grimson & 
Marr 1979) formed the starting point for a recent approach to the early processing 
of visual information (Marr 1974, 1976).

Perhaps the simplest way of obtaining suitable symbols from an image is to 
find signed peaks in the first (directional) derivative of the intensity array, or 
alternatively, zero-crossings in the second derivative. The bar masks of table 1 
measure an approximation to the second directional derivative at roughly the 
resolution of the mask size, provided that the image does not vary locally along 
the orientation of the mask (Marr & Hildreth 1979). If this is so, clear signed 
zero-crossings in the convolution values obtained along a line lying perpendicular 
to the receptive field’s longitudinal axis (cf. Marr 1976, fig. 2) would specify



accurately the position of an edge in the image, f  Edges whose orientations lie near 
the vertical will of course play a dominant role in stereopsis.

In practice, however, it is not enough to use just oriented edges to obtain 
horizontal disparity information. Julesz (1971, p. 80) showed that minute breaks 
in horizontal lines can lead to fusion of two stereograms even when the breaks 
lie close to the limit of visual acuity, and such breaks cannot be obtained by 
simple operations on the measurements from even the smallest vertical masks. 
These breaks probably have to be localized by a specialized process for finding 
terminations by examining the values and positions of rows of zero-crossings (cf. 
Marr 1976, p. 496).

Thus zero-crossings and (less importantly) terminations have both to be made 
explicit (cf. Marr 1976, p. 485). The matching process will then operate on de
scriptions, of the left and right images, that are built of these two kinds of symbolic 
primitives, and which specify their precise positions, the mask size and orientation 
from which they were obtained, and their signs.

312 D. Marr and T. Poggio

Matching

At the heart of the matching problem lies the problem of false targets. If each 
channel were very narrowly tuned to a wavelength A, the minimum distance 
between zero-crossings of the same sign in each image would be about A. In this 
case, matching would be unambiguous in a disparity range up to A. The same 
argument holds qualitatively for the actual channels, but because they are not so 
narrowly tuned, the disparity range for unambiguous matching will be smaller 
and must be estimated. We have done this only for zero-crossings, since termi
nations are sparser and pose less of a false-target problem.

Let us consider a two dimensional image filtered through a vertically oriented 
mask. Matching will take place between zero-crossings of the same sign along 
corresponding horizontal lines in the two images. If two such zero-crossings lie 
very close together in one image, the danger of false targets will arise. Hence a 
critical parameter in our analysis will be the distance between adjacent zero- 
crossings of the same sign along each of these lines.

This problem is now one dimensional, and we approach it by estimating the 
probability distribution of the interval between adjacent zero-crossings of the 
same sign. This depends on (a) the image characteristics, and (b) the filter (or mask) 
characteristics. For (a) we take the worst case, that in which the power spec
trum of the input to the filter is white (within the filter’s spectral range). We 
also assume, for computational convenience, that the filtered output is a

f  It is perhaps worth noting that this rather direct way of locating sharp intensity changes 
in the image is not the only nor necessarily the best method from the point of view of an 
actual implementation. It is shown elsewhere (Marr & Hildreth 1979) that under certain 
conditions, the zeroes in an image filtered through a Laplacian operator (like an X-type 
retinal ganglion cell) provide an equivalent way of locating edges, whose orientation must 
then be determined.
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Figure 5. Interval distributions for zero-crossings. A ‘ white’ Gaussian random process is 
passed through a filter with the frequency characteristic (transfer function) shown in (i). 
The approximate interval distribution for the first (P0) and second (Px) zero-crossings of 
the resulting zero-mean Gaussian process is shown in (ii). Given a positive zero-crossing at 
the origin, the probability of having another within a distance £ is approximated by the 
integral of P x and shown in (iii). In (a), these quantities are given for an ideal band pass 
filter one octave wide and with centre frequency w = 2 n /\;  (b) represents the case of the 
receptive field described by Cowan (1977) and Wilson & Giese (1977). The corresponding 
spatial distribution of excitation and inhibition, i.e. the inverse Fourier transform of (6i) 
appears, in the same units, in table 1. The ratio of space constants for excitation and 
inhibition is 1:1.5. The width w of the central excitatory portion of the receptive field 
is 2.8 in the units in which £ is plotted.

For case (a) a probability level of JP j = 0.001 occurs at £ = 2.3, and a probability level 
of 0.5 occurs at £ = 6.1. The corresponding figures for case (b) are £ = 1.5 and £ = 5.4. 
If the space constant ratio is 1:1.75 (Wilson 19786) the values of J* P x change by not 
more than 5 %. .

Gaussian (zero-mean) process. This hypothesis is quite realistic (E. Hildreth, 
personal communication).

For (b), we examine two cases. Since the actual filters have a half-power band
width of around one octave, the first case we consider is that of an ideal linear 
bandpass filter of width one octave, as illustrated in figure 5a(i). The second case 
(figure 56(i)) is the receptive field suggested by the threshold experiments of 
Wilson & Giese (1977), consisting of excitatory and inhibitory Gaussian distri
butions, with space constants in the ratio 1: 1.5 (see figure 4).
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Our problem is now transformed into one that many authors have considered, 
dating from the pioneering work of Rice (1945), and the appendix sets out the 
formulae in detail. The results we need are all contained in figure 5. P0 is the 
probability distribution of the interval between adjacent zero-crossings (which 
perforce have opposite signs), and Px the distribution of the interval to the second 
zero-crossing. Since alternate zero-crossings have the same sign, Px is the quantity 
of interest, and its integral J Px is also given in figure 5.

f Px can be understood in the following way. Suppose a positive zero-crossing 
occurs at the point 0. Then J Px represents the probability that at least one 
other positive zero-crossing will occur within a distance £ of 0. (In figure 56(iii), 
the width w of the central part of the receptive field associated with the filter 
is equal to 2.8 on the £ scale.)

From the graphs in figure 5, we see for example that the 0.05 probability level 
for J Px occurs at £ = 4.1 (approximately A/1.52) for the ideal band pass filter 
one octave wide, centred on wavelength A (figure 5a(i)), and at £ = 3.1 for the 
receptive field of fig. 56 (i). In the second case, £ is approximately |A, where A is 
the principal wavelength associated with the channel, and A = 2.2 where w is 
the measured width of the central excitatory area of the receptive field. Thus in 
this case, the 95% confidence limit occurs at approximately (£ = 3.1, w = 2.8).

At the 0.001 probability level, the ideal bandpass filter is 50% better (the 
corresponding £ is 50 % larger) than the receptive field filter with the same centre 
frequency; at the 0.05 probability level it is 30% better; and at the 0.5 prob
ability level, it is 13% better. The legend to figure 5 provides more details about 
these results.

We have made a similar comparison between the sustained and transient channels 
of Wilson (1978a) and of Wilson & Bergen (1979). If the sustained channels 
correspond to the case of figure 56, the transient channels have a larger ratio 
of the space constants for inhibition and excitation, a somewhat larger excitatory 
space constant, and an excitatory area larger than the inhibitory. Even under 
these conditions, the values change only slightly.

The matching process
We now apply the results of these calculations to the matching process. Our 

analysis applies directly to channels with vertical orientation, and is roughly 
valid for channels with orientation near the vertical.

Within a channel of given size, there are in practice two possible ways of 
dealing with false targets. If one wishes essentially to avoid them altogether, the 
disparity range over which a match is sought must be restricted to ± \w  (see 
figure 6 a). For suppose zero-crossing L in the left image matches zero-crossing R 
in the right image. The above calculations assure us that the probability of 
another zero-crossing of the same sign within of R in the right image is less than 
0.05. Hence if the disparity between the images is less than \w, a search for 
matches in the range ± \w  will yield only the correct match R (with probability
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0.95). Such a low error rate can be accommodated without resorting to sophisti
cated algorithms. For example, two reasonable ways of increasing the matching 
reliability are (a) to demand rough agreement between the slopes of the matched 
zero-crossings, and ( 6) to fail to accept an isolated match all of whose neighbours 
give different disparity values. Of course if the disparity between the images 
exceeds \w, this procedure will fail, a circumstance that we discuss later.

left
(a) d< (b) d<w

right ^

-?w d \w —w d +«>
Figure 6 . The matching process driven from the left image. A zero-crossing L in the left 

image matches one R displaced by disparity d in the right image. The probability of a false 
target within wof R is small, so provided that d < \w  (case a), almost no false targets will 
arise in the disparity range ±^w. This gives the first possible algorithm. Alternatively 
(case b), all matches within the range ±w  may be considered. Here, false targets (F) 
can arise in about 50 % of the cases, but the correct solution is also present. If the correct 
match is convergent, the false target will with high probability be divergent. Therefore in 
the second algorithm, unique matches from either image are accepted as correct, and the 
remainder as ambiguous and subject to the ‘pulling effect’, illustrated in case (c). Here, 
L2 could match Rx or R2, but L2 can match only R2. Because of this, and because the two 
matches have the same disparity, Lx is assigned to Rx.

There is, however, an alternative strategy, that allows one to deal with the 
matching problem over a larger disparity range. Let us consider the possible 
situations if the disparity between the images is d, where \d\ < w (figure 66). 
Observe firstly that if d >0, the correct match is almost certainly (p < 0.05) the 
only convergent candidate in the range (0, w). Secondly, the probability of a 
(divergent) false target is at most 0.5. Therefore, 50% of all possible matches will 
be unambiguous and correct, and the remainder will be ambiguous, mostly 
consisting of two alternatives, one convergent and one divergent, one of which is 
always the correct one. In the ambiguous cases, selection of the correct alternative 
can be based simply on the sign of neighbouring unambiguous matches. This 
algorithm will fail for image disparities that significantly exceed + w, since the 
percentage of unambiguous matches will be too low (roughly 0.2 for + 1 
Notice that if there is a match near zero disparity, it is likely (p > 0.9) to be the 
only candidate.

Sparse images like an isolated line or bar, that yield few or no false targets, 
pose a different problem. They often give rise to unique matches, and may there



316

fore be relied upon over quite a large disparity range. Hence if the above strategy 
fails to disclose candidate matches in its disparity range, the search for possible 
matches may proceed outwards, ceasing as soon as one is found.

In summary then there are two immediate candidates for matching algorithms. 
The simpler is restricted to a disparity range of ± \w  and in its most straight
forward form will fail to assign 5% of the matches. The second involves some 
straightforward comparisons between neighbouring matches, but even before these 
comparisons, the 50% unambiguous matches could be used to drive eye move
ments, and provide a rough sensation of depth.

D. Marr and T. Poggio

response

disparity

Figure 7 . An implementation of the second matching algorithm. For each mask size of central 
width w, there are two pools of disparity detectors, signalling crossed or uncrossed 
disparities and spanning a range of + w. There may be additional detectors finely timed to 
near-zero disparities. Additional diplopic disparities probably exist beyond this range. 
They are vetoed by detectors of smaller absolute disparity.

The implementation of the first of these algorithms is straightforward. The 
second one can be implemented most economically using two ‘pools’, one sen
sitive in a graded way to convergent and the other to divergent disparities (see 
figure 7). (In this sense, the first algorithm requires only one ‘pool’, that is, a 
single unit sensitive in a graded way to the disparity range ± \w.) Candidate 
matches near zero disparity are likely to be correct, and this fact can be used to 
improve performance. One way is to add, to the two basic pools, high resolution 
units tuned to near-zero disparities.

In the second algorithm, matches that are unambiguous or already assigned 
can ‘pull’ neighbouring ambiguous matches to whichever alternative has the same 
sign. This is a form of cooperativity, and may be related to the ‘pulling effect ’ 
described in psychophysical experiments by Julesz & Chang (1976). Notice 
however that this algorithm requires the existence of pulling only across pools and 
not within pools (in the terminology of Julesz & Chang 1976, p. 119).

Disparities larger than w can be examined in very sparse images. If, for example, 
both primary pools (covering a disparity range of ±w) are silent, detectors 
operating outside this range, possibly with a broad tuning curve, may be con
sulted. In a biologically plausible implementation, these detectors should be 
inhibited by activity in the primary pools (see figure 7). I t  is tempting to suggest



that detectors for these outlying disparities (i.e. exceeding about + w) may give 
rise to depth sensations and eye movement control in diplopic conditions.

If  the image is not sparse, and the disparity exceeds the operating range, both 
algorithms will fail. Can the failure be recognized simply at this low level?

For the first algorithm, no correct match will be possible in the range ± \w. 
The probability of a random match in this range is about 0.4, i.e. significantly 
less than 1.0. When the disparity between the two images lies in the range ± \w, 
there will always be at least one match. I t is therefore relatively easy to dis
criminate between these two situations.

For the second algorithm, an analogous argument applies; in this case the 
probability of no candidate match is about 0.3 for image disparities lying outside 
the range + w, and zero for disparities lying within it. Again, it is relatively easy 
to discriminate between the situations.

Finally, W. E. L. Grimson (personal communication) has pointed out that 
matching can be carried out from either image or from both. Observe for example 
in figure 6 c, that if matching is initiated from the left image, the match for Lx is 
ambiguous, but for L2 it is unambiguous. Similarly from the right image.

I t  seems most sensible to initiate matching simultaneously from both images. 
Then, before any ‘pulling’, there are three possible outcomes. (1) The matching 
of an element starting from both images is unambiguous, in which case the two 
must agree. (2) Matching from one image is ambiguous, but from the other it is 
not. In this case, the unambiguous match should be chosen. (3) Matching from 
both images is ambiguous, in which case they must be resolved by pulling from 
unambiguous neighbours.

Implications for psychophysical measurements of Panum’s fusional area
Using the second of the above algorithms, matches may be assigned correctly 

for a disparity range ±w. The precision of the disparity values thus obtained 
should be quite high, and a roughly constant proportion of w (which one can 
estimate from stereoacuity results at about ^  ). For foveal channels, this means 
± 3' disparity with resolution 10" for the smallest, and +12' (perhaps up to 
+ 20' if Wilson & Bergen (1979) holds for stereopsis) with resolution 40" for the 
largest ones. At 4° eccentricity, the range is ± 5.3' to about ± 34'. We assume 
that this range corresponds to stereoscopic fusion, and that outside it one enters 
diplopic conditions, in which disparity can be estimated only for relatively 
sparse images.

Under these assumptions, our predicted values apparently correspond quite 
well to available measures of the fusional limits without eye movements (see 
Mitchell 1966; Fender & Julesz 1967; Julesz & Chang 1976; and predictions 
3-6 below).

Human s 317



318 D. Marr and T. Poggio

D ynamic memory storage: the 2|-D sketch

According to our theory, once matches have been obtained using masks of a 
given size, they are represented in a temporary buffer. These matches also control 
vergence movements of the two eyes, thus allowing information from large 
masks to bring small masks into their range of correspondence.

The reasons for postulating the existence of a memory are of two kinds, those 
arising frdm general considerations about early visual processing, and those 
concerning the specific problem of stereopsis. A memory like the 2|-D sketch 
(see figure 3) is computationally desirable on general grounds, because it provides 
a representation in which information obtained from several early visual processes 
can be combined (Marr 1977; § 3.6 and table 1). The more particular reason associ
ated specifically with stereopsis is the computational simplicity of the matching 
process, which requires a buffer in which to preserve its results as (1) disjunctive 
eye movements change the plane of fixation, and (2) objects move in the visual 
field. In this way, the 2|-D sketch becomes the place where ‘global’ stereopsis is 
actually achieved, combining the matches provided independently by the different 
channels and making the resulting disparity map available to other visual 
processes.

The nature of the memory
The 2|-D sketch is a dynamic memory with considerable intrinsic computing 

power. I t  belongs to early visual processing, and cannot be influenced directly 
from higher levels, for example via verbal instructions, a priori knowledge or 
even previous visual experience.

One would however expect a number of constraints derived from the physical 
world to be embedded in its internal structure. For example, the rule R2 stated 
early in this article, that disparity changes smoothly almost everywhere, might 
be implemented in the 2|-D sketch by connections similar to those that implement 
it in Marr & Poggio’s (1976) cooperative algorithm (figure 2c). This active rule in 
the memory may be responsible for the sensation of a continuous surface to which 
even a sparse stereogram can give rise (Julesz 1971; fig. 4.4-5).

Another constraint is, for example, the continuity of discontinuities in the 
visible surfaces, which we believe underlies the phenomenon of subjective contours 
(Marr 1977, § 3.6). I t is possible that even more complicated consistency relations, 
concerning the possible arrangements of surfaces in three dimensional space, are 
realized by computations in the memory (e.g. constraints in the spirit of those 
made explicit by Waltz 1975). Such constraints may eventually form the basis 
for an understanding of phenomena like the Necker-cube reversal.

From this point of view, it is natural that many illusions concerning the inter
pretation of three dimensional structure (the Necker cube, subjective contours, 
the Muller-Lyer figure, the Poggendorff figure, etc., Julesz 1971, Blomfield 1973) 
should take place after stereoscopic fusion.



According to this theory, the memory roughly preserves depth (or disparity) 
information during the scanning of a scene with disjunctive eye movements, and 
during movement of viewed objects. Information management will have limi
tations both in depth and in time, and the main questions here are over what range 
of disparities can the 2|-D sketch maintain a record of a match in the presence 
of incoming information, and how long can it do this in its absence ? The temporal 
question is less interesting because the purpose of the buffer is to organize in
coming perceptual information, not to preserve it when there is none.

The spatial aspects of the 2£-D sketch raise a number of interesting questions. 
First, are the maximal disparities that are preserved by the memory in stabilized 
image conditions the same as the maximum range of disparities that are simul
taneously visible in a random dot stereogram under normal viewing conditions? 
Secondly, does the distribution of the disparities that are present in a scene affect 
the range that the memory can store? For example, is the range greater for a 
stereogram of a spiral, in which disparity changes smoothly, than in a simple 
square-and-surround stereogram of similar overall disparity ?

For the first question, the available evidence seems to indicate that the range 
is the same in the two cases. According to Fender & Julesz (1967), the range is 
about 2° for a random dot stereogram. When the complex stereograms given by 
Julesz (1971, e.g. 4.5-3) are viewed from about 20 cm, they give rise to disparities 
of about the same order. If this were true, it would imply that the maximal range 
of simultaneously perceivable disparities is a property of the 2|-D sketch alone, 
and is independent of eye movements.

With regard to the second question, it seems at present unlikely that the 
maximum range of simultaneously perceivable disparities is much affected by 
their distribution. I t  can be shown that the figure of about 2°, which holds for 
stabilized image conditions and for freely viewed stereograms with continuously 
varying disparities, also applies to stereograms with a single disparity.

Perception times do however depend on the distribution of disparities in a 
scene (Frisby & Clatworthy 1975; Saye & Frisby 1975). A stereogram of a spiral 
staircase ascending towards the viewer did not produce the long perception times 
associated with a two planar stereogram of similar disparity range. This is to be 
expected, within the framework of our theory, because of the way in which we 
propose vergence movements are controlled. We now turn to this topic.

V e r g e n c e  m o v e m e n t s

Disjunctive eye movements, which change the plane of fixation of the two eyes, 
are independent of conjunctive eye movements (Rashbass & Westheimer 19616), 
are smooth rather than saccadic, have a reaction time of about 160 ms, and 
follow a rather simple control strategy. The (asymptotic) velocity of eye vergence 
depends linearly on the amplitude of the disparity, the constant of proportionality 
being about 8°/s per degree of disparity (Rashbass & Westheimer 1961 a). Vergence

Vol. 204. B.
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movements are accurate to within about 2' (Riggs & Niehl i960), and voluntary 
binocular saccades preserve vergence nearly exactly (Williams & Fender 1977). 
Furthermore, Westheimer & Mitchell (1969) found that tachistoscopic presen
tation of disparate images led to the initiation of an appropriate vergence movement, 
but not to its completion. These data strongly suggest that the control of vergence 
movements is continuous rather than ballistic.

Our hypothesis is, that vergence movements are accurately controlled by 
matches obtained through the various channels, acting either directly or in
directly through the 2|-D sketch. This hypothesis is consistent with the observed 
strategy and precision of vergence control, and also accounts for the findings of 
Saye & Frisby (1975). Scenes like the spiral staircase, in which disparity changes 
smoothly, allow vergence movements to scan a large disparity range under the 
continuous control of the outputs of even the smallest masks. On the other hand, 
two-planar stereograms with the same disparity range require a large vergence 
shift, but provide no accurate information for its continuous control. The long 
perception times for such stereograms may therefore be explained in terms of a 
random-walk-like search strategy by the vergence control system. In other words, 
guidance of vergence movements is a simple continuous closed loop process (cf. 
Richards 1975) which is usually inaccessible from higher levels.

There may exist some simple learning ability in the vergence control system. 
There is some evidence that an observer can learn to make an efficient series of 
vergence movements (Frisby & Clatworthy 1975). This learning effect seems 
however to be confined to the type of information used by the closed loop vergence 
control system. A priori, verbal or high level cues about the stereogram are 
ineffective.

E x p e r i m e n t s

In this section, we summarize the experiments that are important for the 
theory. We separate psychophysical experiments from neurophysiological ones, 
and divide the experiments themselves into two categories according to whether 
their results are critical and are already available (A), or are critical and not 
available and therefore amount to predictions (P). In the case of experimental 
predictions, we make explicit their importance to the theory by a system of stars; 
three stars indicates a prediction which, if falsified, would disprove the theory. 
One star indicates a prediction whose disproof remnants of the theory could 
survive.

Computation
The algorithm we have described has been implemented, and is apparently 

reliable at solving the matching problem for stereo pairs of natural images 
(Grimson & Marr 1979). I t depends on the uniqueness and continuity conditions 
formulated at the beginning of this article, and it is perhaps of some interest to 
see exactly how.

The continuity assumption is used in two ways. First, vergence movements
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driven by the larger masks are assumed to bring the smaller masks into register 
over a neighbourhood of the match obtained through the larger masks. Secondly, 
local matching ambiguities are resolved by consulting the sign of nearby un
ambiguous matches.

The uniqueness assumption is used in quite a strong way. If a match found from 
one image is unique, it is assigned without further checking. This is permissible 
only because the uniqueness assumption is based on true properties of the 
physical world. If the algorithm is presented with a stereo pair in which the 
uniqueness assumption is violated, as it is in Panum’s limiting case, the algorithm 
will assign a match that is unique from one image but not from the other (0. J. 
Braddick, in preparation).

Psychophysics
1 (A, P**). Independent spatial-frequency-tuned channels are known to exist 

in binocular fusion and rivalry. The theory identifies these with the channels 
described from monocular experiments (Julesz & Miller 1975; Mayhew & Frisby 
1976; Frisby & Mayhew 1979; Wilson & Giese 1977; Cowan 1977; Wilson 1978 a, 
6; Wilson, Phillips, Rentschler & Hilz 1979; Wilson & Bergen 1979; and Felton, 
Richards & Smith 1972).

2 (P***). Terminations, and signed, roughly oriented zero-crossings in the 
filtered image are used as the input to the matching process.

3 (P**). In the absence of eye movements, discrimination between two dis
parities in a random dot stereogram is only possible within the range + w, where 
w is the width associated with the largest active channel. Stereo acuity should 
scale with the width w of the smallest active matched channels (i.e. about 10" 
for the smallest and 40" for the largest foveal channels).

4 (P***). In the absence of eye movements, the magnitude of perceived depth 
in non-diplopic conditions is limited by the lowest spatial-frequency channel 
stimulated.

5 (p***) j n the absence of eye movements, the minimum fusable disparity 
range (Panum’s fusional area) is ± 3.1' in the fovea, and ± 5.3' at 4° eccentricity. 
This requires that only the smallest channels be active.

6 (P***). In the absence of eye movements, the maximum fusable disparity 
range is +12' (possibly up to + 20') in the fovea, and about + 34' at 4° eccen
tricity. This requires that the largest channels be active, for example by using bars 
or other large bandwidth stimuli.

Comments. (1) Mitchell (1966) used small flashed line targets and found, 
in keeping with earlier studies, that the maximum amount of convergent 
or divergent disparity without diplopia is 10-14' in the fovea, and about 
30' at 5° eccentricity. The extent of the so-called Panum fusional area is 
therefore twice this.

Under stabilized image conditions, Fender & Julesz (1967) found that 
fusion occurred between line targets (13' by 1° high) at a maximum
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disparity of 40'. This value probably represents the whole extent of 
Panum’s fusional area. Using the same technique on a random dot stereo
gram, Fender & Julesz arrived at a figure of 14' (6' displacement and 8' 
disparity within the stereogram). Since the dot size was only 2', one may 
expect more energy in the high frequency channels than in the low, 
which would tend to reduce the fusional area. Julesz & Chang (1976), 
using a 6' dot size over a visual angle of 5°, routinely achieved fusion up 
to +18' disparity. Taking all factors into account, these figures seem 
to be consistent with our expectations.

(2) Prediction 6 should hold for dynamic stereograms with the following 
caveats. First, motion cues must be eliminated. Secondly nonlinear 
temporal summation between frames at the receptor level may intro
duce unwanted low spatial-frequency components in the two images.

7 (P**). In the absence of eye movements, the perception of rivalrous random 
dot stereograms is subject to certain limitations. For example, for images of 
sufficiently high quality, fig. 2bof Mayhew & Frisby (1976) should give rise to 
depth sensations, but fig. 2 c should not. In the presence of eye movements, fig. 2 c 
gives a sensation of depth. This could be explained if vergence eye movements 
can be driven by the relative imbalance between the numbers of unambiguous 
matches in the crossed and uncrossed pools over a small neighbourhood of the 
fixation point.

8 (A). As measured by disparity specific adaptation effects, the optimum 
stimulus for a small disparity is a high spatial frequency grating, whereas for 
large disparities, the most effective stimulus is a low spatial frequency grating. 
Furthermore, the adaptation effect specific to disparity is greatest for gratings 
whose periods are twice the disparity (Felton, Richards & Smith 1972). (In our 
terms, in fact, A is approximately 2.2 wwhere A is the centre frequency of the 
channel.)

9 (A). Evidence for the two pools hypothesis (Richards 1970, 1971; Richards 
& Regan 1973) is consistent with the minimal requirement for the second of the 
matching algorithms we described (figures 6 and 7).

10 (P***). In the absence of eye movements, the perception of tilt in stereo- 
scopically viewed grating pairs of different spatial frequencies is limited by 4, 
5, and 6 above.

11 (A). Individuals impaired in one of the two disparity pools show corres
ponding reductions in depth sensations accompanied by a loss of vergence move
ments in the corresponding direction (Jones 1972).

12 (P*). Outside Panum’s area, the dependence of depth sensation on disparity 
should be roughly proportional to the initial vergence velocity under the same 
conditions.

13 (P***). Por a novel two planar stereogram, vergence movements should 
exhibit a random-search-like structure. The three star status holds when the 
disparity range exceeds the size of the largest masks activated by the pattern.
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14 (P***). The range of vergence movements made during the successful and 
precise interpretation of complex, high frequency, multi layer, random dot 
stereograms should span the range of disparities.

15 (P*). Perception times for a random dot stereogram portraying two small 
planar targets separated laterally and in depth, against an uncorrelated back
ground, should be longer than the two planar case (13). Once found, their 
representation in the memory should be labile if an important aspect of the 
representation there consists of local disparity differences.

Neurophysiology
16 {partly A). At each point in the visual field, the scatter of bar mask receptive 

field sizes is about 4 : 1 (Hubei & Wiesel 1974, figs. 1 and 4; Wilson & Gieze 1977, 
p. 27). More data are however needed on this point. This range is spanned by four 
populations of receptive field size.

17 (P**). There exist binocularly driven cells sensitive to disparity. A given 
cell signals a match between either a zero-crossing pair or a termination pair, 
both items in its pair having the same sign, size and rough orientation.

18 (P**). Each of the populations defined by (17) is divided into at least two 
main disparity pools, tuned to crossed and uncrossed disparities respectively, with 
sensitivity curves extending outwards to a disparity of about the width of its 
corresponding receptive field centre (see figure 7). Being sensitive to pure disparity, 
these cells are sensitive to changes in disparity induced by vergence movements. 
In addition, there may be units quite sharply tuned to near-zero disparities.

19 (P*). In addition to the basic disparity pools of (18), there may exist cells 
tuned to more outlying (diplopic) disparities (compare figure 7). These cells 
should be inhibited by any activity in the basic pools (cf. Foley, Applebaum & 
Richards 1975).

20 (P**). There exists a neural representation of the 2|-D sketch. This includes 
cells that are highly specific for some monotonic function of depth and disparity, 
and which span a depth range corresponding to about 2° of disparity. Within a 
certain range, these cells may not be sensitive to disjunctive eye movements. This 
corresponds to the notion that the plane of fixation can be moved around within 
the 2° disparity range currently being represented in the 2§-D sketch.

21 (P*). The diplopic disparity cells of (20) are especially concerned with the 
control of disjunctive eye movements.

Comments. Because of the computational nature of this approach, we have 
been able to be quite precise about the nature of the processes that are 
involved in this theory. Since a process may in general be implemented 
in several different ways, our physiological predictions are more specu
lative than our psychophysical ones. They should perhaps be regarded 
as guidelines for investigation rather than as necessary consequences of 
the theory.

Unfortunately, the technical problems associated with the neuro-
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physiology of stereopsis are considerable, and rather little quantitative 
data is currently available. Since Barlow, Blakemore & Pettigrew’s (1967) 
original paper, relatively few examples of disparity tuning curve have 
been published (see for example, Pettigrew, Nikara & Bishop 1968; 
Bishop, Henry & Smith 1971; Nelson, Kato & Bishop 1977). Recently 
however, Poggio & Fischer (1978, in the monkey), and von der Heydt, 
Adorjani, Hanny & Baumgartner (1978, in the cat) have published 
properly controlled disparity tuning curves. On the whole, these studies 
(see also Clarke, Donaldson & Whitteridge 1976) favour the pools idea 
(see prediction 18).

D. Marr and T. Poggio

D i s c u s s i o n

Perhaps one of the most striking features of our theory is the way it returns 
to Fender & Julesz’s (1967) original suggestion, of a cortical memory that accounts 
for the hysteresis and which is distinct from the matching process. Consequently 
fusion does not need to be cooperative, and our theory and its implementation 
(Grimson & Marr 1979) demonstrate that the computational problem of stereo
scopic matching can be solved without cooperativity. These arguments do not 
however forbid its presence. Critical for this question are the predictions about 
the exact extent of Panum’s fusional area for each channel. If the empirical 
data indicate a fusable disparity range significantly larger than ± w, false targets 
will pose a problem not easily overcome using straightforward matching tech
niques like algorithm (2) of figure 6. In these circumstances, the matching problem 
could be solved by an algorithm like Marr & Poggio’s (1976) operating within 
each channel, to eliminate possible false targets arising as a result of an extended 
disparity sensitivity range.

As it stands, there are a number of points on which the theory is indefinite, 
especially concerning the 2|-D sketch. For example :

(1) What is its exact structure, and how are the various constraints implemented 
there ?

(2) What is the relationship between the spatial structure of the information 
written in the memory and the scanning strategy of disjunctive and conjunctive 
eye movements?

(3) Is information moved around in the 2|-D sketch during disjunctive or 
conjunctive eye movements, and if so, how? For example, does the current 
fixation point always correspond to the same point in the 2|-D sketch?

Finally, we feel that an important feature of this theory is that it grew from an 
analysis of the computational problems that underlie stereopsis, and is devoted to 
a characterization of the processes capable of solving it without specific reference 
to the machinery in which they run. The elucidation of the precise neural mech
anisms that implement these processes, obfuscated as they must inevitably be by 
the vagaries of natural evolution, poses a fascinating challenge to classical 
techniques in the brain sciences.
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Ap p e n d ix . Statistical analysis of zero-crossings 
We assume that f(x) = J I{x,y) h(y) dy, where I(x,y) is the image intensity and 

h(y) represents the longitudinal weighting function of the mask, is a white Gaussian 
process. Our problem is that of finding the distribution of the intervals between 
alternate zero-crossings by the stationary normal process obtained by filtering f(x) 
through a linear (bandpass) filter.

Assume that there is a zero-crossing at the origin, and let P0(£), be the 
probability densities of the distances to the first and second zero-crossings. P0 and 
P1 are approximated by the following formulae (Rice 1945, § 3.4; Longuet-Higgins 
1962, eqns 1.2.1 and 1.2.3; Leadbetter 1969):
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where \[r{E,) is the autocorrelation of the underlying stochastic process, a prime 
denotes differentiation with respect to £, and also

jwa = - r(o) (̂ 2(o) - - r\t),
M J®  = r  (£) (^2(0) -  ^*(£)) + ̂ (£) ^ '2(£).

These approximations cease to be accurate for large values of £ (i.e. of order A, 
where 2tc/ A is the centre frequency of the channel; see Longuet-Higgins (1962) for 
a discussion of various approximations), where they overestimate P0 and Pv The 
autocorrelation \Jf{E) can be easily computed analytically for the two filters of 
figure 5.


