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Mental capacities such as anticipation, motor coordination, 
deliberation, and imagination lie at the heart of higher 
brain function. A fundamental feature of these capacities 

is that they are not tied to immediate sensory or motor events and 
unfold at different timescales. To support such temporal flexibility, 
the brain must control the dynamics of ongoing patterns of neural 
activity. An example of such flexible behavior is the control of self-
initiated movements. Humans can precisely control the timing of 
their movements and can make rapid adjustments based on instruc-
tion. However, the mechanisms that confer such flexibility are not 
well understood.

We investigated the neural mechanisms underlying flexible 
temporal control. We developed a task in which monkeys were 
instructed to produce different time intervals using different effec-
tors. While monkeys performed the task, we evaluated the causal 
function and signaling properties of neurons across three brain areas 
that have been strongly implicated in timing: (i) the medial frontal 
cortex (MFC), which has been implicated in the inhibition1, initia-
tion2, 3, and coordination4–7 of movements, (ii) the caudate nucleus 
downstream of MFC, which is thought to play a major role in timing 
tasks8–15, and (iii) thalamic regions that project to MFC and causally 
influence self-initiated movements16.

Neurons exhibited a diversity of complex response profiles that 
could not be reconciled with dominant models of timing13, includ-
ing clock-accumulator models17, 18, oscillation-based models19, and 
population clock models20, 21. Instead, responses were unified under 
a general principle of temporal scaling that was evident at both indi-
vidual and population levels. Specifically, when animals produced 
longer intervals, the population activity evolved along an invariant 
neural trajectory but at a slower speed. Notably, speed was adjusted 
on a trial-by-trial basis and in accordance with the instruction pro-
vided to the animal. Although these findings are at odds with classic 
models of timing, they corroborate observations of temporal scaling 
in other tasks and areas8, 22–25.

To investigate the mechanisms underlying such flexible speed 
control, we analyzed the dynamics of recurrent neural network mod-

els capable of using graded input to produce different time intervals. 
Analysis of these models revealed a previously uncharacterized yet 
simple mechanism for flexible temporal scaling: degree of scaling 
was controlled by an external input acting upon the nonlinear acti-
vation function of individual neurons in a recurrent network.

Results
Behavior. On each trial, monkeys fixated a central spot with their 
hand resting on a button and produced either a Short (800-ms) or 
Long (1,500-ms) interval using one of the effectors (Eye or Hand). 
The desired interval and effector changed on a trial-by-trial basis 
and was cued throughout the trial by the color and shape of the 
fixation point (Fig. 1a). Production intervals (Tp) were measured 
from a brief ‘Set’ flash to the time of movement initiation. Animals 
learned to flexibly switch between conditions (Fig.  1b) and pro-
duced accurate intervals whose variability increased for the Long 
condition compared to the Short condition (Fig. 1c). This is con-
sistent with Weber’s law and is a well-known property of timing 
behavior26, 27. The Weber fraction was significantly larger for button 
presses compared to saccades (one-tailed paired-sample t test, for 
monkey A, n =  31, t30 =  1.80, P =  0.041, and for monkey D, n =  35, 
t34 =  6.44, P <  0.001).

Causal experiments and single-unit electrophysiology. Reversible 
inactivation of MFC (Fig. 2a) with muscimol, a GABAA agonist, sig-
nificantly impaired performance for both Long and Short intervals 
(Fig. 2b). This was evident from a comparison of the distributions of 
within-session increases in the mean-squared error after the musci-
mol injection versus before the injection (for statistics, see Table 1). 
The drop in performance was due to a combination of changes in 
both bias and standard deviation (Fig. 2b). No significant impair-
ment was measured after saline injection (Fig.  2b and Table  1). 
Furthermore, muscimol inactivation had no significant effect on 
reaction times during a memory saccade task (Table 1). Based on 
these results, we concluded that MFC played a causal role in the 
main motor timing task.
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Temporal scaling of complex response profiles. To estimate each 
neuron’s firing rate, we binned trials based on Tp and computed 
average spike counts after aligning trials to the time of the motor 
response (Fig. 2c). Across neurons, response profiles were highly 
heterogeneous and included linear, nonlinear, monotonic, non-
monotonic, and multimodal activity profiles (Fig. 2d). We tested 
each neuron’s activity profile against predictions of various mod-
els of motor timing using a cross-validation procedure (Fig.  2e). 
We considered three variants of the clock-accumulator model: 

one in which flexible timing was achieved by adjusting a thresh-
old over a ramping process, one in which the clock was adjusted, 
and one in which both were adjusted. Since clock models can only 
accommodate neurons with linear ramping profiles17, 18, 28–30, they 
failed to capture the nonlinear profiles exhibited by the majority 
of neurons in the population. Cross-validated polynomial fits of 
different degrees of freedom indicated that only 11% (47 of 416) 
of responses increased linearly; the rest were explained by higher-
order polynomials. This number increased by only 4% when the 
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Fig. 1 | time production task and behavior. a, Trial structure. Animals produced either an 800-ms (Short) or a 1,500-ms (Long) time interval, either by 
making a saccade (Eye) or a button press (Hand). These four conditions were randomly interleaved and were cued throughout the trial by the color and 
shape of two central stimuli, a circular fixation spot for Eye or a square fixation spot that cued the animal to place its hand on a button. The colored shape 
(circle or square) cued the effector, and the hue (red or blue) cued the desired interval (red, Short; blue, Long). After a random delay, a white circle was 
flashed to the left or right of the fixation point. This peripheral flash specified the saccadic target for the eye trials and played no role in the hand trials. 
After another random delay, a Set cue (a ring flashed around the fixation stimuli) initiated the motor timing epoch. The animal’s production interval (Tp) 
was measured as the interval between Set and when either the saccade was made or the button was pressed. When Tp was generated with the desired 
effector and was within a specified reward window, the peripheral target (or square fixation) turned green, auditory feedback was provided, and the animal 
received a juice reward. The reward window was adjusted adaptively on a trial-by-trial basis and independently for the Short and Long conditions so that 
the animal received reward on approximately 50% of trials for both interval context on every session (on average, 57% for monkey A and 51% for monkey 
D). The reward magnitude increased linearly with accuracy as shown by the green triangular reward function. Two example trials are shown, one for the 
Eye +  Short (ES) condition (left) and one for the Hand +  Long (HL) condition (right). b, A typical behavioral session showing Tp while the animal flexibly 
switched between the four trial conditions. For clarity, the Eye (top) and Hand (bottom) trials are plotted separately, although during the task they were 
randomly interleaved. The histograms on the right show the distribution of Tp for each condition with rewarded trials in green. Horizontal lines correspond 
to mean values, which are also reported numerically. c, For both effectors (left, Eye; right, Hand) and both animals (top, monkey A; bottom, monkey D), 
the s.d. of Tp scaled with mean Tp (red, Short; blue, Long). For monkey A, the mean ±  s.e.m. of Tp values across the conditions were ES: 810±48.9 ms, 
Eye +  Long (EL): 1,495±117 ms, Hand +  Short (HS): 822.3±53.7 ms, HL: 1,486±136 ms. For monkey D, they were ES: 808±56.1 ms, EL: 1,481±137 ms, HS: 
836.7±91.3 ms, HL: 1,521±177 ms. The variability was significantly higher for the Long compared to the Short. The average Weber fraction (ratio of s.d. to 
mean) for the Hand (βHand) was significantly larger than Eye (βEye; one-tailed paired-sample t test, for monkey A, n =  31, t30 =  1.80, P =  0.041, and for monkey 
D, n =  35, t34 =  6.44, ***P <  0.001).
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starting and terminating points of the linear ramps were allowed to 
vary by up to 200 ms.

We also tested two oscillation-based models of interval timing, 
in which the response time is determined by the collective phase 
of oscillators and different frequencies19. In one variant, a single 
sinusoid was fit to the response of each neuron, and in another, 
multiple sinusoids (up to four) of different frequencies were used. 
These models were also unable to capture the diversity of MFC 
responses (Fig. 2e).

Finally, we tested MFC responses against a simple variant of the 
population-clock model20, 21, in which the response profile of each 
individual neuron is  unique and  context-independent, and  the 
collective activity of the population determines  movement initia-
tion time. Accordingly, we modeled each neuron by the best-fitting 
polynomial (cross-validated) that captured the activity across both 
the Short and Long contexts. This model performed better than 
the clock-accumulator and oscillation models. However, MFC data 
violated a key qualitative prediction of the population clock model: 
unlike in the population clock model, the vast majority of MFC 
responses differed for the Short and Long conditions from early on 
after the Set cue (Fig. 2d).

Our initial inspection indicated that response profiles were self-
similar when stretched or compressed in accordance with the pro-
duced interval (Fig. 2c,d and Supplementary Fig. 1). This was true 

for both random fluctuations of Tp within each temporal context 
(i.e., 800 ms or 1,500 ms) and deliberate adjustments of Tp across 
the two contexts. Consistent with this observation, a temporally 
scaled polynomial function fitted to the data for different condi-
tions clearly outperformed all other models in terms of explanatory 
power (Fig. 2e; one-way ANOVA, F6, 2,859 =  125.2, P <  0.001).

Speed control across the population. We quantified the degree of 
scaling by a scaling index (SI) that was computed as a coefficient 
of determination (R2) across temporally scaled responses associ-
ated with different Tp bins. This analysis revealed a wide range of SI 
values across the population (Supplementary Fig. 1a). When activ-
ity of a population of neurons is plotted in a coordinate system in 
which each axis represents the firing rate of one neuron, also known 
as the state space, the response dynamics of the population can be 
depicted as a high-dimensional neural trajectory. In this representa-
tion, perfect temporal scaling would result in perfectly overlapping 
neural trajectories evolving at different speeds. When we plot-
ted MFC neural trajectories within the space spanned by the first 
three principal components (PCs) of neural activity, responses did 
not overlap perfectly, indicating that MFC responses comprised a 
mixture of scaling and nonscaling signals (Fig. 3a), which was also 
evident from the distribution of SI values across individual neurons 
(Supplementary Fig. 1a).
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Fig. 2 | Medial frontal cortex inactivation and electrophysiology. a, Parasagittal view of the brain of one animal (monkey D) with a red ellipse showing 
the targeted region. Stereotactic coordinates used in each animal are shown with respect to anterior commissure (AC) and midline (ML). b, Muscimol 
inactivation. Each line in each panel shows the change in mean squared error (MSE =  Σ(Tp – Ts)2 =  bias2 +  variance; Ts is the desired interval) computed 
from minisession (randomly sampled subsets of trials without replacement; see Methods) before and after the injection of muscimol (above) and saline 
(below) for the two intervals (red, Short; blue, Long) and two effectors (circle, Eye; square, Hand). The white-over-black bar graphs partition MSE to 
bias2 (black) and variance (white). Significance tests correspond to comparisons of MSE (see Table 1 for details) across minisessions (n, number of 
minisessions; **P <  0.001; N.S., not significant). c, Average firing rates were computed after aligning spike times to movement initiation time. Top: raster 
plot of spike times (black ticks) for an example neuron aligned to movement initiation time (dashed line) across trials (rows). Trials were sorted and 
grouped into bins according to the produced interval (Tp). Bottom: average firing rates for each Tp bin plotted with respect to the time of Set (dashed line). 
The Set time in the top panel and the activity profiles in the bottom panels were colored according to Tp bins. d, Activity profiles of 8 example neurons 
for Hand (top) and Eye (bottom) conditions, computed as described in c. e, Analysis of single neurons with respect to various model of timing (n =  416 
neurons for both animals). Whisker plots showing the range of R2 values captured by seven models fitted to the average firing rates of individual neurons 
(median, center line; box, 25th to 75th percentiles; whiskers, ±  1.5 ×  the interquartile range; dots, neurons whose R2 values lie outside whiskers). The 
temporal scaling model (top) had the highest explanatory power (R2) across models (one-way ANOVA, F6, 2,859 =  125.2, P <  0.001; one-tailed paired-sample 
t test between temporal scaling and population-clock model, n =  416, t415 =  6.32, ***P <  0.001). Models were cross-validated.
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We hypothesized that perfect scaling might be found within a 
subspace of the population activity, i.e., a scaling subspace (Fig. 3b). 
As a first step, we examined the degree of scaling in the first few PCs. 
Using the same SI metric used for single neurons, we found that the 
first two PCs that explained nearly 40% of the variance (Fig. 3b) had 
scaling indices of 0.91 and 0.97, respectively (Fig. 3a). The third PC, 
however, did not exhibit temporal scaling and had a SI of 0.20. This 
provided initial evidence that certain high-variance dimensions in 
the state space exhibit strong scaling. However, scaling dimensions 
need not coincide with PCs, since PCs correspond to dimensions of 

maximum variance, not maximum scaling. To identify the scaling 
dimensions, we developed a dimensionality reduction technique 
that furnished a set of scaling components (SCs) that were ordered 
according to the degree of scaling in the data (see Methods).

The SI values for the first few SCs were relatively large, indicating 
that the optimization process correctly identified the scaling dimen-
sions (Fig. 3c and Supplementary Fig. 2). Because SCs were cross-
validated, the scaling index for SCs of the test data did not follow a 
strictly decreasing order, although this was the case for the dataset 
used to determine the SCs (data not shown). Responses projected 
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different colors (see color bar in f). Diamond shows activity 700 ms after Set. Bottom: time course of the first three PCs with the corresponding SI values. 
b, Top: schematic drawing illustrating the scaling subspace. The response dynamics associated with Short (red) and Long (blue) are depicted as distinct 
trajectories in the state space. Projections of neural responses onto a scaling subspace result in overlapping trajectories (purple) whose speed determines 
the produced interval, fast for Short (red) and slow for Long (blue). Bottom: cumulative percentage variance (cum. var.) explained by PCs and SCs. c, Top: 
population activity sorted according to produced interval (Tp) bins and projected onto the first three SCs. As expected, in this subspace, the trajectories 
overlap. Bottom: the first three SCs with their corresponding SI values. Because of cross-validation, SIs were not in decreasing order (see text). d, Variance 
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conditions. Inset: variance explained as a function of SI derived along 200 random one-dimensional projections of MFC activity in the state space. 
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high variance explained. e, Comparison of SI in the MFC, caudate, and thalamus with surrogate data generated from three Gaussian process models that 
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the hypothesis space in relation to various constraints and their combinations, with distinct colors and their overlaps. Perfect scaling (middle ellipse) is 
a subset of the possibilities that satisfy all four constraints. Each model consisted of the same number of neurons as in the MFC data, and the number of 
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significantly lower than the values associated with the MFC and caudate but not thalamus (N.S., not significant; ***P <  0.001). f, The speed of neural 
trajectory within the scaling subspace spanned by the first three SCs predicted average Tp values across bins. The relationship between speed and Tp was 
fit to a linear log–log function. The scaling subspace was computed from training data (arrows, two Tp bins) and used to evaluate speed on the remaining 
test data (14 Tp bins). R2 was computed by repeating the procedure using bootstrapping (n =  10). Both axes are in log scale.
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onto the subspace spanned by the first three SCs traced nearly iden-
tical trajectories that evolved at different speeds (Fig. 3c), which is 
precisely what is expected in the scaling subspace.

Next, we asked how much variance in the neural data the scal-
ing subspace could account for. Ordered SCs explained less variance 
than the corresponding PCs, suggesting that the scaling dimensions 
were not identical to PC dimensions (Fig. 3c). To better quantify the 
relationship between scaling and variance explained, we performed 
two complementary analyses. First, we examined the relationship 
between SI and variance explained for each SC. This analysis pro-
vided initial evidence that SCs with large SIs explained a relatively 
large percentage of variance (Fig. 3d). Second, we developed a pro-
cedure for quantifying the relationship between scaling and vari-
ance without relying on projections onto specific directions, such 
as PCs or SCs. We used a bootstrap procedure and quantified the 
relationship between variance explained and SI along 200 random 
projections in the state space. We then constructed a two-dimen-
sional probability distribution of the relationship between variance 
explained and SI across those random projections (Fig.  3d). This 
analysis verified that the dimensions with large degrees of scaling 
also explained a large portion of the variance.

To validate SI as a reliable metric for scaling, we quantified SI for 
surrogate data created from Gaussian processes. The surrogate data 
was constructed to statistically match MFC responses in terms of 
smoothness, starting and terminal firing rates, dimensionality, and 
the correlation between Short and Long activity profiles, but it was not 
constrained to exhibit temporal scaling (see Supplementary Note and 
Supplementary Fig. 3). The surrogate data, despite being matched to 
the statistics of MFC responses, had smaller SIs than those computed 
for MFC neurons (Fig. 3e). This verified that a significant portion of 
variance in MFC resides within a scaling subspace in which activity 
evolves along invariant trajectories at different speeds.

Finally, we quantified the relationship between speed in the scal-
ing subspace and behavior. Using cross-validation, we derived the 
scaling subspace from a subset of shortest and longest trials and 
asked whether the speed of neural trajectories of the remaining trials 
in that subspace could predict Tp. Results indicated that longer Tps  
were associated with slower speeds (Fig.  3f and Supplementary 
Fig. 4) and that the average speed was inversely proportional to Tp 
(R2 =  0.87). These results suggest that the brain controls the speed 
of neural trajectories in order to flexibly produce different time 

intervals. Notably, this speed control seemed to explain both behav-
ioral variability within each temporal context and flexible switching 
between the two contexts.

Speed control across cortico–basal ganglia circuits. Having estab-
lished speed control in MFC as a potential mechanism for tem-
poral flexibility, we asked whether this property was also present 
downstream of MFC in the basal ganglia. We focused on a region 
of the caudate that is thought to receive direct input from MFC31,32  
(Fig.  4a,b). First, we used reversible inactivation to verify the 
causal involvement of this region in the task (Fig. 4b and Table 1). 
Afterwards, we recorded from individual neurons (Fig. 4c) and ana-
lyzed their responses with respect to the temporal scaling property. 
Caudate responses, like those in MFC, were complex and hetero-
geneous and had different profiles for Short and Long trials. At the 
level of single neurons, the degree of scaling in the caudate was simi-
lar to that in MFC (Supplementary Fig. 1). At the population level, 
analysis of PCs and SCs verified the presence of a scaling subspace 
in the caudate (Fig.  3e and Supplementary Fig.  5). Finally, the SI 
values of PCs, as well as an unbiased analysis of responses across 
random projections in the state space, indicated that dimensions 
with strong scaling explained a large part of variance in the data 
(Fig. 4d). These analyses verified that neural signals in the caudate 
shared the same key properties with MFC and could contribute to 
subspace speed control.

In addition to receiving inputs from MFC, the basal ganglia 
also projects back to MFC through the thalamus. The presence of 
this anatomical substrate raises the possibility that MFC inherits 
temporal scaling from the basal ganglia via transthalamic projec-
tions. To test this possibility, we targeted a region of the thalamus 
where MFC-projecting thalamocortical neurons were identified 
antidromically (Fig.  4e and see Methods). Consistent with previ-
ous work16, reversible inactivation strongly influenced animals’ 
timing behavior (Table 1). However, several observations indicated 
that the function of thalamocortical signals was different from the 
functions of caudate and MFC signals (Fig. 4g). First, SIs of single 
thalamic neurons (nthalamus =  846) were significantly smaller across 
the population compared to the other areas (nMFC =  416 and ncau-

date =  278, Mann–Whitney–Wilcoxon test, W1,260 =  310,733, z =  7.89, 
P <  0.001 for MFC; W1,120 =  189,163, z =  6.98, P <  0.001 for caudate; 
Supplementary Fig.  1a). Second, scaling in the thalamus was sig-
nificantly smaller than the C+D+E+S surrogate data that matched 
the neural data in terms of smoothness (S), endpoints (E), dimen-
sionality (D), and correlation (C;  one-tailed two-sample t test, 
n =  200, t398 =  35.2, P <  0.001;  Fig. 3e). Third, scaling was less promi-
nent in the thalamus, as indicated by the relationship between the 
magnitude of scaling and variance explained along random projec-
tions in the state space (Fig. 4h). Fourth, unlike in the caudate and 
MFC, neural trajectories in the thalamus were not invariant in the 
space spanned by the first three SCs (Supplementary Fig. 5). This 
was also evident in the profile of the second PC, which system-
atically changed in average value, as opposed to scaling. Together, 
these observations provide strong evidence that thalamic neurons 
exhibit significantly less scaling than the MFC neurons they project 
to. Since the output of the basal ganglia to cortex is routed through 
the thalamus, the weak scaling in thalamocortical neurons implies 
that scaling may originate within MFC or in other cortical circuits 
projecting to MFC.

A model for flexible subspace speed control. Since the timescales 
of MFC response modulations were slower than the intrinsic time 
constants of single neurons, we assumed that the observed dynam-
ics were the result of network-level interactions. Motivated by 
recent advances in understanding the dynamics of cortical popula-
tion activity using network models33–35, we used a recurrent neural 
network model to investigate the potential underlying mechanisms 

Table 1 | Effects of muscimol inactivation in the three brain 
areas

Muscimol saline

Long short Long short Reaction 
times in 
muscimol

MFC n =  58 n =  63 n =  14 n =  14 n =  12

t57 =  2.48 t62 =  3.8 t13 =  1.39 t13 =  1.13 t11 =  0.066

P =  0.002 P =  0.003 P =  0.095 P =  0.86 P =  0.51

Caudate n =  48 n =  46 n =  15 n =  16 n =  14

t47 =  2.84 t45 =  2.31 t14 =  2.36 t15 =  1.51 t13 =  1.54

P =  0.005 P =  0.036 P =  0.60 P =  0.86 P =  0.26

Thalamus n =  53 n =  50 n =  14 n =  13 n =  12
t52 =  11.7 t49 =  12.4 t13 =  0.19 t12 =  1.35 t11 =  2.68

P ≪ 0.001 P ≪ 0.001 P =  0.81 P =  0.12 P =  0.0065

For the first four columns, we applied one-tailed paired-sample Student’s t tests to evaluate 
treatment effects on MSE in the main task. For the last column, we used two-tailed Student’s t 
tests to evaluate changes in reaction time in a control memory-guided saccade task. Each cell 
in the table reports the number of minisessions (n), the value of the t test with its degrees of 
freedom (tdf), and the corresponding P values (P).
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of speed control (Fig. 5). The model received a context input (Cue) 
whose magnitude specified the desired interval and a transient 
pulse (Set) that cued the start of the interval (Fig. 5a). The network 
was trained so that its output (a weighted linear sum of its units) had 
to breach a fixed threshold at the desired time36.

The network learned to generate the desired output function 
(Fig. 5d), and the activity of model neurons emulated the key fea-
tures observed in MFC: response profiles of individual network 
units were heterogeneous, complex, and temporally scaled (Fig. 5b). 
Moreover, the speed of population dynamics directly determined 
the produced interval (Fig.  5c). These observations were robust 
regardless of whether the training objective was linear, nonlinear, 
scaling, or nonscaling (Supplementary Fig. 6). The scaling behav-
ior also persisted when the Cue input was provided transiently 
(Supplementary Fig. 6). Motivated by the robustness and generality 
of these results, we reverse-engineered the networks to investigate 
the underlying mechanisms of temporal scaling37.

Temporal scaling could be explained in terms of a pair of input-
dependent stable fixed points, Finit and Fterminal. At the start of the trial, 
the Cue initialized the state of the network to an inital fixed point, 
Finit. Activation of the Set pulse drove the system away from Finit, 
allowing the system to evolve toward Fterminal with a speed that was 
determined by the magnitude of the Cue input (Fig. 5c,e). Within 
the network, the input and the recurrent dynamics played comple-
mentary roles (Fig. 5c). The input specified the position of the ini-
tial and terminal fixed points along a direction, which we refer to as 
the input subspace. Recurrent dynamics on the other hand, estab-
lished a recurrent subspace, which determined the neural trajectory 
between these fixed points. These two subspaces emerged from 

different components of the network. The input subspace was gov-
erned by the direction specified by the input weights. In contrast, 
the recurrent subspace emerged from the constraints imposed by 
the recurrent weights. The two subspaces also differed in terms of 
their relationship to the scaling phenomenon. Within the input sub-
space, different intervals were associated with changes in the level of 
activity but did not exhibit scaling. This change in level controlled 
the speed by setting the position of the neural state along the axis of 
the input subspace. The recurrent space, on the other hand, did not 
control the speed but was responsible for the emergence of invariant 
trajectories and temporal scaling.

The division of labor between these subspaces provides a sim-
ple explanation of why scaling and nonscaling signals might coex-
ist within the same network. Nonscaling signals reflect the input 
that sets the speed, and scaling signals correspond to the evolution 
of activity with the desired speed. This organization predicts that 
MFC neurons with weak temporal scaling are likely recipients of 
relatively strong context-dependent input, possibly derived from 
signals in upstream thalamic neurons (Fig.  4g), and that neurons 
with strong temporal scaling are more directly engaged in recur-
rent interactions. Finally, the model-based distinction between 
these two subspaces provides a theoretical basis for analyzing MFC 
responses within a scaling subspace that corresponds to the recur-
rent subspace in the model.

Notably, the model allows us to infer that within the nonscal-
ing input subspace, production times should be correlated with the 
average level—not speed—of neural activity. To test this predic-
tion, we investigated whether Tp could be predicted by the non-
scaling component of MFC activity. We inferred the least-scaling 
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direction from our scaling component analysis. SCs specified an  
orthonormal basis whose axes were ordered according to the level 
of scaling (Supplementary Fig. 7). Therefore, we used the last SC 
(SC9) as an estimate of the least-scaling direction and compared 
Tp to average MFC activity projected onto SC9. As predicted by the 
model, the average activities of the nonscaling components of MFC 
were indeed predictive of Tp (Supplementary Fig. 8). This is a com-
pelling result, as it bears out a key prediction about an unsuspected 
relationship between cortical activity and behavior made by a model 
that was constrained only to perform the task.

A potential neural mechanisms for speed control. To further inves-
tigate the role of input in speed control, we analyzed the eigenvalues 
of the system near Fterminal. In the vicinity of this fixed point, stronger 
inputs caused the eigenvalues to decrease systematically (Fig. 5f). In 
a linear dynamical system, such contraction in the eigenvalue spec-
trum corresponds to a systematic increase in the network’s effective 
time constants, τeff (Fig. 5f). From this, we concluded that the action 
exerted by the input is equivalent to adjusting the system’s effective 
time constant in a flexible input-dependent manner.

To gain insight into the mechanism that provides such powerful 
and modular control of time constants, we focused on a simplified 
model composed of only two mutually inhibitory neurons with a 
common input (Fig. 6a and Supplementary Note). Previous work 
has demonstrated that adjustments of the common input in this 
model could alter its recurrent dynamics to either relax to a single 
fixed point with a specific time constant or act as an integrator with 
exceedingly long time constants38. We reasoned that exploring the 
model’s behavior while between these two regimes might lead us to 
a mechanistic understanding of how the effective time constant of a 
network can be flexibly adjusted.

In the presence of balanced input (Cue), the two-neuron model 
is associated with an energy landscape that engenders a pair of stable 
fixed points, similarly to the recurrent model (Fig. 6b). We analyzed 
the phase plane of the model (Fig. 6c) and verified that the input 
level can be used to create a continuum of τeff. This is analogous 
to the recurrent network model in which activity along the input 
subspace served to control the speed. However, the two-neuron 
model helped us understand the underlying mechanisms: stronger 
input drives neurons toward their saturating nonlinearity, where 
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the slopes of activation functions are shallower (Fig. 6d). Shallower 
slopes correspond to smaller derivatives and larger values of τeff. In 
other words, the presence of single-neuron nonlinearities provides a 
reservoir of slopes that an input can exploit to control the network’s 
energy gradients (Fig. 6b).

Having established a low-level mechanism in the two-neuron 
model, we asked whether the same mechanism was operative in the 
recurrent network model. For the recurrent model, we analyzed the 
operating points of units as a function of the input drive near Fterminal. 
Notably, for stronger inputs, units were systematically driven fur-
ther toward their saturating nonlinearity (Fig. 5g,h), which is con-
sistent with the mechanism of speed control in the simple network 
model. These results underscore a simple and powerful mechanism 
at the level of single neurons for controlling the speed of dynamics 
independent of the neural trajectory.

Discussion
We found that flexible motor timing was governed by controlling 
the speed of slow dynamics across populations of MFC and cau-
date neurons. Speed control also emerged as a natural solution in 
recurrent network models trained to produce different time inter-
vals. This was achieved by an input that drove the system to the 
appropriate region of the state space, where recurrent interactions 
unfolded at desired speeds. In both systems, fluctuations of speed 
predicted variability within each temporal context, and systematic 
adjustments of speed provided the means for flexible control of tim-
ing. These results suggest that the brain uses a speed-control mecha-
nism to deliberately control movement initiation time.

The division of labor conferred by the input and recurrent 
interactions has broad implications for flexible control of behav-
ior, allowing the same motor and cognitive functions to unfold 
along the same neural trajectory at different timescales. For 
example, in decision-making tasks, adjustment of a speed com-
mand could explain how the brain might flexibly implement dif-
ferent speed–accuracy tradeoffs39. Indeed, if the speed command 
is controlled by a sensory input, our recurrent network would 
behave similarly to more detailed network models consisting of 
excitatory and inhibitory units that approximate temporal inte-
gration of sensory information40. However, biophysical models 
of decision making have not yet been extended to generate the 
diversity of scaling response profiles that we observed in vivo and 
in our recurrent model.

The engineered two-neuron model highlights the crucial role of 
single-neuron nonlinearities; adjustments of speed were governed 
by the interaction of input with these nonlinearities. This finding 
suggests that circuits and subcircuits could exploit different inputs 
and different biophysical properties to adjust speed independently 
and operate at different timescales. It also predicts that neuromodu-
latory effects and pharmacological treatments that interfere with 
the nonlinear response curve of individual neurons could alter the 
speed of cortical dynamics, as observations from numerous studies 
of interval timing might suggest41.

The source of the external input that adjusts the speed remains 
a pertinent and unresolved question. One possibility is that MFC 
receives this input directly from neurons in other cortical areas, 
which is consistent with recent observations in the parietal cor-
tex42. Another possibility is that the input has a thalamocortical 
origin. Thalamic neurons, in turn, may inherit this signal from 
other cortical and/or subcortical regions. Neuromodulatory sig-
nals could also alter cortical dynamics. A number of physiology 
and pharmacology studies have implicated dopamine in regu-
lating timing behavior43, 44. Cortical dynamics are also known to 
depend on cellular properties, such as those mediated by NMDA 
receptors, which are thought to facilitate the generation of stable 
slow cortical dynamics45.

Another question for future work concerns the exact mecha-
nisms that give rise to the diversity of response profiles in MFC. 
According to our model, this diversity emerges from recurrent 
interactions in direct response to an input drive. Alternatively, these 
activity patterns could be the result of cortical nonlinearities act-
ing upon simpler ramping inputs, which constituted a minority of 
response profiles in the cortico–basal ganglia circuits we recorded 
from. Indeed, considering the bidirectional connections between 
thalamus and cortex, we cannot rule out the possibility that ramp-
ing activity in thalamus and/or other cortical areas might con-
tribute to the scaling of more complex response profiles in MFC. 
Nevertheless, the model seems to provide the most parsimonious 
account of the data for both cortex and thalamus. The exact details 
of the signaling pathways, recurrent microcircuitry, and biophysical 
properties notwithstanding, the mechanisms that we have identified  
have the potential to explain how the brain flexibly controls the 
speed of cortical dynamics.
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Fig. 6 | A simple two-neuron implementation of speed control. a, Two 
inhibitory units (U and V) with recurrent inhibition receive a common 
excitatory input (Cue). b, The energy landscape of the two-neuron model. 
The network has a bistable energy landscape whose gradients depend 
on the strength of the Cue input. Stronger inputs (blue) lead to shallower 
energy gradients, and vice versa (red). The Set pulse moves the state  
away from the initial fixed point (Finit, filled circle) and over the saddle  
point (Fsaddle, open circle). The network then spontaneously moves  
toward the terminal fixed point (Fterminal, filled circle). The speed of the 
movement toward Fterminal is relatively slow when the energy gradient is 
shallow (blue) due to stronger common input. c, Phase plane analysis  
of the two-neuron model. The two axes on the lower left correspond  
to the activity of the two neurons (U and V). The input is applied to  
both units and thus drives the system along the diagonal (input subspace). 
The input level moves the sigmoidal nullclines of the two units (du/dt =  0, 
dashed; dv/dt =  0, solid; see Supplementary Note) and adjusts the location 
of the three fixed points (Finit, Fterminal, and the intermediate Fsaddle). The  
figure shows the two nullclines and the corresponding fixed points for 
two inputs levels (red and blue). Activation of Set moves the system 
along a recurrent subspace, which is orthogonal to the input subspace. 
The proximity of nullclines (crosses below the input subspace) controls 
the speed. When the input is stronger, the nullclines are closer, which 
causes the system to become slower. d, Interaction of the input drive 
with the saturating nonlinearity of one unit. The action of the input upon 
the nonlinear activation functions moves the saddle point and controls 
the speed of the system. Stronger inputs push the neurons toward the 
shallower part of the nonlinear activation function and move the saddle 
point to slower regions of the phase plane, causing recurrent interactions  
to slow down.
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Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41593-017-0028-6.
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Methods
Methods. Two adult rhesus monkeys (Macaca mulatta, a 6.5-kg female and a 
9.0-kg male, both 5 years old) were trained on a two-interval two-effector motor 
timing task. All surgical, behavioral, and experimental procedures conformed 
to the guidelines of National Institutes of Health and were approved by the 
Committee of Animal Care at Massachusetts Institute of Technology.

Behavior. The MWorks software package (https://mworks.github.io/) running on a 
Mac Pro was used to deliver stimuli and to control behavioral contingencies. Visual 
stimuli were presented on a 23-inch (58.4-cm) monitor at a refresh rate of 60 Hz. 
Eye positions were tracked with an infrared camera (Eyelink 1000; SR Research 
Ltd, Ontario, Canada) and sampled at 1 kHz. A custom-made manual button, 
equipped with a trigger and a force sensor, was used to register button presses.

Motor timing task. Each trial began with the appearance of two fixation cues 
(FCs), a circle at the center of the screen and a square 0.5° below the circle. The 
animal had to shift its gaze to the circle, and the square informed the animal to 
hold its hand gently on the button. On each trial, one FC was colored and the 
other was white. The colored FC indicated the desired response effector (colored 
circle for saccade and colored square for button press). The color indicated the 
desired interval (red for 800 ms and blue for 1,500 ms). We denote these four trial 
conditions by EL, ES, HL, and HS, where E and H refer to Eye and Hand and S 
and L to Short (800-ms) and Long (1,500-ms) intervals. After a delay period (500–
1,500 ms, uniform hazard), the saccade target was briefly presented 8° to the left 
or right of the FC. For button-press trials (colored square), the saccadic target was 
not relevant but was presented so that stimuli were consistent across trials. After 
another delay (500–1,500 ms, uniform hazard), a 48-ms annulus (Set cue) flashed 
around the FCs cued the animal to start timing. Trials were aborted if the animal 
made premature eye or hand movements (before Set or long before the desired 
time). To receive the reward, animals had to initiate a movement with the desired 
effector (cued by the colored FC) within a small window (‘acceptance window’) 
around the desired interval (cued by the color of FC). The saccade responses 
had to land inside a circular window of radius 2.5° centered on the location 
of the extinguished target and had to be made directly (less than 33 ms after 
exiting the FC window). Button-press responses had to be made with the hand 
contralateral to the recorded hemifield46. The production interval was measured 
from the endpoint of Set to the moment the saccade was initiated or the button 
was triggered. The width of the acceptance window was adjusted dynamically on 
a trial-by-trial basis and independently for the Short and Long conditions using a 
one-up-one-down staircase procedure. As such, animals were rewarded for nearly 
half of trials (on average, 57% in monkey A and 51% in monkey D) for both 
temporal contexts. For trials that were rewarded, in addition to reward delivery, 
the color of the stimulus changed to green and an auditory clicking sound was 
simultaneously presented. Within the acceptance window, the magnitude of the 
reward scaled with accuracy.

Electrophysiology. Animals were comfortably seated in a dark and quiet 
room. Each session began with an approximately 10-min warm-up period to 
allow animals to recalibrate their timing and exhibit stable behavior during 
electrophysiology recordings. Recordings were made through a craniotomy 
within a recording chamber while the animal’s head was immobilized. Structural 
MRI scans were used to aid in targeting regions of interest. Single- and multiunit 
responses were recorded using a 24-channel laminar probe with 100-µ m or 200-µ m 
interelectrode spacing (V-probe, Plexon Inc.). Eye position was sampled at 1 kHz, 
and all behavioral and electrophysiological data were time-stamped at 30 kHz and 
streamed to a data acquisition system (OpenEphys).

The dataset collected for this study included 1,967 single units or 
multiunits recorded from the MFC, caudate and thalamus of two monkeys 
(Table 2), in which 69% (1,351/1,967) were tentatively single units. Neurons 
with firing rates less than 2 spikes per s during the timing epoch were excluded 
from subsequent analyses.

Reversible inactivation. Injections were made with a microinjection pump 
(UMP3, World Precision Instruments) and a Hamilton syringe, which was 
connected to a custom 30 G stainless steel injection cannula via a fused 
silica injection line (365-µ m OD, 100-µ m ID, Polymicro Technologies). In 
each injection session, we first established the animal’s baseline behavioral 
performance. Afterwards, we pressure-injected muscimol hydrobromide (5 µ 

g/µ L in saline) in the region of interest at a rate of 0.2 µ L/min. In the MFC 
and caudate, a total of 2 µ L was injected per session. In pilot inactivation 
experiments in the thalamus, we noticed that animals stopped performing 
the task after 2 µ L muscimol injection. To ensure animals would perform 
the task, the total volume of muscimol in the thalamus was reduced to 1.5 µ 
L. The behavioral task was resumed 10 min after the injection was completed. 
As a control, in separate sessions, sterile saline was injected following the 
same procedure. The experimental data consisted of unequal test sessions for 
muscimol and saline, and unequal numbers of trials in the before and after 
muscimol injection. For statistical comparison, these inequalities may introduce 
sampling biases. To avoid such biases, we created 50-trial minisessions from 
before and after the injections, in which the trials within a minisession were 
randomly sampled. The sampling was made without repeats to ensure trials 
were not counted twice. We quantified the effects of inactivation by comparing 
mean squared error, bias and variance, = ∑ − = +( )T TMSE Bias Varp s

2 2 , before 
and after the injection for every minisession. The same procedure was used to 
assess the results of the saline injection experiments.

Antidromic stimulation. We used antidromic stimulation to localize 
thalamocortical MFC-projecting neurons. Antidromic spikes were recorded on 
a 24-channel electrode (V-probe, Plexon Inc.) in response to a single biphasic 
pulse of duration 0.2 ms (current <  500 µ A) delivered to MFC via low-impedance 
tungsten microelectrodes (100–500 kΩ , Microprobes). The guide tube for the 
tungsten electrode was used as the return path for the stimulation current. 
Antidromic activation evoked spikes reliably at a latency ranging from 1.8 to 3 
ms, with less than 0.2 ms jitter. The region of interest targeted in the thalamus was 
within 1 mm of antidromically identified neurons.

Mathematical notation. Throughout the manuscript, we have used lowercase 
for scalars (x), bold and lowercase for vectors (x), bold and uppercase for 
matrices (X ). Brackets were used for indexing vectors and matrices (x i[ ] 
and X i j[ , ]). Subscripts were used for indexing a set of scalars (xi), vectors 
(xi), or matrices (Xi). Subscripts were also used to show projections onto 
a subspace. For example, xPC k(1: ) refers to a vector projected onto the first 
k principal components. Curly brackets were used to indicate a subset of 
conditions. For example, = =a a b bx{ ; }0 1  refers to a vector computed for a 
subset of trials in which both a = a0 and b = b1 conditions were satisfied. The 
symbol ∪ was used to indicate data combined across a number of variables. 
For example ⋃ x{ }i

N
i  denotes data collected across a union of vectors xi

. The symbol < x> i was used to show averaging of a vector x across i. Point 
functions were shown as lowercase ( .f ( )) regardless of whether they were 
applied to scalars or vectors.

Data analysis. All offline data processing and analyses were performed in Matlab 
(2016b, MathWorks). Spiking data were bandpass-filtered between 300 Hz and 
7 kHz, and spike waveforms were detected at a threshold that was typically set to 
3 ×  the RMS noise. Single units and multiunits were sorted offline using custom 
software, MKsort (https://github.com/ripple-neuro/mksort). The majority of the 
neurons were recorded in separate behavior sessions.

Estimating firing rates accurately is challenging when rates change 
dynamically and trials have different durations47, 48, which was the case in our 
data. Since our focus was on firing rates leading up to the movement, we aligned 
trials with respect to movement time (Fig. 2c). Additionally, for each condition, 
we discarded trials with Tp values more than 3 s.d. away from the mean (1.46% 
of trials). Firing rates were estimated by (i) averaging spike counts per time bin, 
(ii) using a 40-ms Gaussian kernel to compute smooth spiking density functions, 
and (iii) z-scoring to minimize sampling bias due to baseline and amplitude 
differences across neurons.

To examine the relationship between firing rates and Tp values, we binned 
trials according to Tp and compared average firing rates for each bin. For the 800-
ms interval, we used seven bins centered on 740 to 860 ms every 20 ms, and for the 
1,500-ms interval, we used nine bins centered on 1,300 to 1,620 ms every 40 ms. 
We denoted the average firing rate of a neuron as a function of time by r t( ), average 
firing rate for a specific condition c (EL, ES, HL or HS) by r t c( ; ), and average firing 
rate for a specific condition and a specific Tp bin by r t c Tp( ; , ). For population 
analyses, response vectors of individual neurons were organized into rows of a 
matrix denoted by r t c Tp( ; , ).

To test whether activity profiles could be described by a linear function (for 
example, ramping activity), we compared 0-order to 8th-order polynomial fits to 
r t( ) using cross-validation with randomized train and test sets. All neurons that 
were best explained by a polynomial of order 0 or 1 were considered linear so long 
as the fit explained at least 50% of variance. We also applied the same procedure 
allowing up to 200 ms offset from the beginning or end of the timing interval to 
ensure our results were robust.

Comparing the motor timing models at the level of single- and multiunits. 
To avoid overfitting and facilitate comparison of models with different levels of 
complexity, all model fitting was performed on the training set and the goodness 

Table 2 | Numbers of neurons recorded in each area

MFc (included/
total)

caudate 
(included/total)

thalamus 
(included/total)

Monkey A 281/356 101/200 481/534

Monkey D 135/166 177/309 365/402

Both animals 416/522 278/509 846/936
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of fit (R2) was quantified on the test set. In the clock-accumulator model with 
a flexible threshold, a linear ramp with fixed slope and different thresholds 
for different production intervals was fit to the response profile. In the clock-
accumulator model with a flexible clock, the threshold was fixed and the ramping 
rate was adjusted according to the interval. In the clock-accumulator model with 
both flexible clock and flexible threshold, a linear ramp was adjusted according 
to the interval and its offset was independently adjusted for each interval. In the 
oscillation based models, sinusoidal functions or a sum of up to four different 
sinusoids were fit to activity profiles, in which the frequency, amplitude, and 
phase for each sinusoid were free parameters. In the population clock, a single 
polynomial of up to 8th order was fit to the response profiles for both Short and 
Long contexts. For the temporal scaling model, the response profiles for the Short 
condition  were used to find the best-fitting polynomial, and the temporally scaled 
versions of the fitted functions were used to test the goodness of fit for Long trials.

Scaling subspace. We used a principal component analysis (PCA) as a first step to 
compute a low-dimensional and unbiased estimate of data. We found that the first 
nine principal components (PCs) captured nearly 80% of the variance in the data 
(Fig. 3b). We therefore computed the scaling components (SCs) from data captured 
by the first nine PCs, which was computed as follows:

= r V rt c t c( ; ) * ( ; )PC  where = . . .





V v v v; ; ;T T
N
T

1 1 PC
 is the projection matrix and 

vi is the ith PC direction. Therefore, the denoised activity across all conditions 
and time points r t c( ; )PC is of size × ×N T C( )pc . We computed the corresponding 
scaled responses using our scaling procedure and denoted the result by r t c( ; )PC

S

. To find the scaling subspace, we solved an optimization problem that minimized 
the difference between average firing rates associated with different Tp values (for 
example, Tpi

 and Tpj
). We denote the corresponding projection by USC and refer 

to its columns as scaling components (SCs). The resulting projection rSC can be 
computed as follows:

= −
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


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We hypothesized that the speed of activity in the scaling subspace predicts Tp. 
We computed the instantaneous speed in the scaling subspace from projections of 
responses on to the first three SCs as follows:

∑= ∕
=

( ) ( )rS T
T

d t T dt1 ,p
t T

SC p
1:

1:3

=r rt c U t c( ; ) * ( ; )SC SC PC1:3 1:3

For each interval bin, we obtained an unbiased estimate of the relationship 
between speed and Tp by resampling trials with replacement within each interval 
bin. The relationship between the average speed S Tp( ) and production intervals 
was fitted in the log space by a linear function:

= − .log S Tp A B log Tp( ( )) ( )

Scaling index for population data. We quantified temporal scaling in single 
units, principal components (PCs) and scaling components (SCs) using a scaling 
index (SI) that represented a general measure of the degree of similarity between 
multiple response profiles associated with different intervals. SI was computed as 
follows: (i) trials were sorted based on production interval (Tp); (ii) sorted trials 
were grouped into bins of similar Tp values (as described above); (iii) the first 
nine PCs and the corresponding SCs for each bin were computed; and (iv) for 
each PC and SC, the index was computed as the coefficient of determination(R2) 
after the PCs and SCs were temporally scaled. This metric, which varies between 
0 and 1, quantifies the degree to which each PC/SC undergoes temporal scaling 
for different Tp values.
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We evaluated the degree of scaling among populations in each region of 
interest by computing the scaling index for each PC and SC in those populations. 
Additionally, we computed the variance explained by each SC. Finally, to gain 

an unbiased estimate of the relationship between variance explained and scaling 
index, we computed these two metrics along randomly selected dimensions within 
the state space. This analysis revealed the full distributions of variance explained 
and scaling index and their relationship within the whole state space.

Recurrent network architecture. We constructed a firing rate recurrent neural 
network (RNN) model with N nonlinear units (N = 200). The network dynamics 
was governed by the following differential equation:

τ ρ= = − + + + +
∙

F x x x Jr Bu ct t t( ) ( ) ( ) ( )x

=r xt tanh t( ) ( ( ))

Variable x(t) is an N-dimensional vector representing the activity of all the 
units. Variable r(t) represents the firing rates of those units by transforming x 
through a tanh saturating nonlinearity. The time constant of each neuron was set 
to τ =  10 ms. This value is different from τeff, which emerges at the network level. 
Variable cx is a vector representing a stationary offset the units receive, and ρ t( ) is 
a vector representing white noise N(0, 0.01) sampled at each time-step Δ t = 1 ms. 
The recurrent connections in the network are specified by matrix J, whose initial 
values, following previous work on balanced networks, are drawn from a normal 
distribution with zero mean and variance ∕N1 . The network receives a two-
dimensional input u consisting of a context cue uc(t) and a transient Set pulse us(t). 
The network received these inputs through synaptic weights =B b b[ , ]c s , which were 
initialized to random values drawn from a uniform distribution with range –1 to 1.

The context input, uc, represents the interval-dependent context cue input. The 
value of uc was set to 0 for 100 ms and then jumped to a graded value proportional 
to the length of one of 16 desired intervals distributed within a range 500–1,700 
ms. The offset of uc was sampled proportionally from the range 0.1 to 0.6 and was 
perturbed with Gaussian noise N(0,0.25) at each Δ t. Increasing input noise did 
not qualitatively alter the network training solutions. The transient Set pulse us(t) 
was active for 10 ms with magnitude 0.1 and zero elsewhere. On each training and 
test trial, the interval between the onset of uc and us(t) was drawn from a uniform 
distribution with range (100–200 ms).

The network produced a one-dimensional output z(t), read out by the 
summation of linear units with weights wo and a bias term cz. The output weights 
were initialized to zero at the start of training.

= +w rz t t c( ) ( )o
T

z

Statistics. The Weber fractions across behavioral sessions (Fig. 1c), MSEs 
before and after inactivation (across minisessions; Table 1 and Figs. 2a and 
4b,f), scaling indices obtained from a bootstrap procedure for various brain 
areas, and surrogate data (Fig. 3e) were assumed to be normally distributed, 
but this was not formally tested a priori. Depending on assumptions associated 
with various sessions, one-tailed paired or unpaired sample t tests were used. 
Neurons with extremely low firing rates (less than 2 spk/sec) during the 
timing epoch were excluded from further analysis. The number of neurons 
recorded in all three areas in both monkeys and those excluded are reported in 
Table 2. For single-neuron responses with respect to the seven types of timing 
models, we used one-way ANOVA to establish that the explanatory power 
quantified by R2 of various models were significantly different. Then we used 
post hoc paired-sample t tests to compare temporal scaling model with each 
alternative model (Fig. 2e). The scaling indices of neurons in different brain 
areas (Supplementary Fig. 1a) were not normally distributed. For this reason, 
we used a nonparametric unpaired Mann–Whitney–Wilcoxon test to compare 
independent samples from pairs of brain areas under examination (thalamus 
and MFC, thalamus and caudate).

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Data availability statement. The data that support the findings of this study are 
available from the corresponding author upon reasonable request.
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Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population
characteristics of the human research participants.

Software

Materials availability

Antibodies

Eukaryotic cell lines

Description of human research participants
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