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Cognitive flexibility, the ability to mentally switch between dif-
ferent thoughts and action plans, is critical for survival in a 
rapidly changing environment1–3. This important process 

allows us to flexibly switch attention among competing inputs4–7. A 
lack of cognitive flexibility is a hallmark of many mental illnesses, 
such as schizophrenia8,9. Furthermore, a key limiting factor to arti-
ficial general intelligence is the inability of deep learning algorithms 
to perform multiple tasks without interference10,11. Therefore, eluci-
dating the circuit and computational principles underlying cogni-
tive flexibility will have a broad multidisciplinary impact.

The PFC plays a central role in cognitive flexibility5,12,13, includ-
ing the differential allocation of attentional resources based on 
learned cues14–16. Multiple recent studies have also demonstrated 
that PFC function is highly dependent on its interactions with  
the mediodorsal thalamus (MD)17–22. In particular, the MD  
sustains task-relevant representations in the PFC by augment-
ing effective connectivity between cortical neurons17. However, 
because previous studies have not included a controllable switch-
ing component, the role of MD–PFC interactions in cognitive  
flexibility remain unclear.

In this study, we examined the substrates of cognitive flexibility 
through a series of behavioral manipulations, temporally precise 
optogenetic perturbations, and multisite multielectrode recordings. 
We found that PFC responses reflected both the individual cues 
and their meaning as task rules, indicating a hierarchical cue-to-
rule transformation in this cortical area. In contrast, MD responses 
reflected the statistical regularity of the cue presentation, which we 
refer to as the cueing context. Using causal perturbations, we found 
that in addition to stabilizing context-relevant representations, 
MD neurons also suppress context-irrelevant PFC representations. 
These processes impart to the PFC the flexibility to dynamically 
switch between different contexts with minimal interference. 
Altogether, our work clarifies how MD neurons regulate prefrontal 
representational switching and provides a computational founda-
tion for thalamic engagement in cognitive flexibility.

Results
Prefrontal neurons display mixed selectivity during attentional 
switching. To examine how mouse PFC ensembles operate when 
cognitive flexibility is required, we expanded an attentional control 
task17,23 to incorporate a cue-switching component (Fig. 1a). At the 
core of the task is sensory selection, where freely behaving mice 
select between spatially conflicting visual and auditory targets. On 
each trial, a mouse selects between the two targets based on one 
of two 100-ms-long learned cues, a high-pass or a low-pass noise 
burst. These cues correspond to two rules: attend to audition and 
attend to vision. Mice were required to hold a pseudorandomly pre-
sented cue in mind for up to 1 s by maintaining snout fixation in the 
initiation port before the simultaneous presentation of the two tar-
gets. The targets corresponded to the spatial location of the reward 
being delivered through the right or left reward port (for example, 
left light-emitting diode (LED) flash on an attend-to-vision trial 
signaled a response on the left reward port). Correct performance 
was rewarded with 10 μ​L of condensed milk, while incorrect per-
formance was punished with a timeout. Logistic regression model-
ing of behavior across all mice used in this study revealed that they 
used the cue to guide their choices (Supplementary Fig. 1a–d and 
see Methods).

Once mice became proficient at using the auditory noise cues, 
we introduced two visual cues, an ultraviolet flash and a green LED 
flash, which corresponded to the same rules (Fig. 1b). To assess how 
mice switched from using one cue set to another, we trained mice 
to perform this task in blocks (Fig. 1b). Mice had equivalent per-
formance across both blocks regardless of their presentation order 
(Supplementary Fig. 1e,f), suggesting that they used different cue 
sets equivalently. Critically, this demonstrates an ability to flexibly 
switch their attention when the cueing context changes.

Given the well-known role for the PFC in cognitive flexibil-
ity1,20,24,25, we asked how PFC neurons (prelimbic cortex; see Methods) 
engage in this task. Using unbiased trial-selection (Supplementary 
Fig. 1g) and spike-waveform-clustering analysis26–28, we classified 
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recorded neurons into two categories: regular spiking (RS, putative 
excitatory) and fast spiking (FS, putative inhibitory; Supplementary 
Fig. 2a–d). As previously reported17, a subset of RS neurons showed 
a brief increase in spike-timing reliability during the delay period. 
We refer to these cells as transient (see Supplementary Fig. 2e–g for 
classification of cells). As a population, these transient cells tiled 
time in the delay period with distinct neurons responding at differ-
ent timepoints (Supplementary Fig. 2h). Notably, these cells could 
be further categorized into two groups. One group responded selec-
tively to one of the four learned cues (Fig. 1c,d; cue-selective, 233 
of 1,789 cells in 5 mice), while another responded equivalently to 
two cues that had the same meaning, which may be interpreted as a 
single task rule (Fig. 1e,f and Supplementary Fig. 2i; cue-invariant, 
102 of 1,789 cells in 5 mice). For example, a cue-invariant PFC neu-
ron selective to the attend-to-vision rule responded with transient 
elevation in spiking reliability at the same delay-period time in both 
low-pass noise and green-LED trials. To our knowledge, this type of 
cue-invariance, indicative of rule-selectivity29,30, has not been previ-
ously reported in mouse PFC.

In stark contrast to the transient RS neural responses, putative 
inhibitory FS neurons showed broad changes in spike rate that dis-
tinguished between the two cueing contexts but not rule meaning 
(Fig. 1g,h and Supplementary Fig. 2j; 418 neurons 5 mice). In fact, 
RS and FS populations encoded distinct cognitive variables, with 
the rule signal being more readily decodable from RS neurons while 
the context signal was more readily decodable from FS neurons 
(Fig. 1i,j). Further analysis confirmed that RS neurons encoded  
cues and rules through changes in spiking reliability (Supplementary 
Fig. 3a,b). On the other hand, FS populations encoded context 
through broader (persistent) changes in spike rates across both  
the intertrial interval and the delay period. Note that in addition  
to transient PFC RS cells, we observed another RS group that  
showed persistent spike rate changes that also correlated with  
context (Supplementary Fig. 3c). However, it was much harder 
to decode context from these cells than from PFC FS neurons 
(Supplementary Fig. 3d,e).

To further test whether transient PFC responses were indeed 
due to the sensory cue, we omitted the cue on 20% of the trials 
(Supplementary Fig. 4a). In addition to a decrease in behavioral 
performance, we observed a significant decrease in tuning strength 
of both PFC cue-selective and cue-invariant neurons (P <​ 0.0001; 
Supplementary Fig. 4b–d). Taken together, these results indicate 
that transient PFC responses were due to the learned cue, with  

cue-selective cells representing a physical cue and cue-invariant 
cells representing its meaning as a task rule.

Is it possible that the observed mixed selectivity among  
cue-invariant neurons reflected differential sampling of local cue-
selective neurons in a context-dependent manner? To address 
this question, we constructed a multineuronal generalized linear  
model (GLM; Fig. 1k) to predict the spike rate of each PFC  
neuron31,32. In addition to external sensory variables, our GLM model 
also included coupling terms to capture the dependencies between  
neurons (see Methods). These coupling terms were in the form of 
a coupling filter that allowed us to explain the effect that spiking 
in other simultaneously recorded neurons had on the unit being 
modeled. Notably, we used a rigorous cross-validation approach 
to statistically evaluate the predicted coupling and to constrain 
the parameters of the model (see Methods). On average, the 
GLM was able to explain close to 75% of the response variance of 
both cue-selective and cue-invariant PFC neurons on each trial 
(Supplementary Fig. 5a–c).

By analyzing the strength of the coupling filters, we were  
able to make inferences about the functional connectivity 
between the different classes of PFC neurons. This analysis 
revealed that cue-selective neurons were strongly coupled among 
themselves only when they encoded the same cue, and they did 
not receive substantial reciprocal coupling from cue-invariant 
neurons (Fig. 1l). Additionally, cue-invariant neurons received 
strong functional inputs from cue-selective neurons across both 
contexts (Fig. 1m). As such, based on this pattern of functional 
connectivity, we reasoned that task-relevant PFC computa-
tions were hierarchically organized, with cue-invariant neurons  
gaining their rule selectivity from cue-selective neurons across 
contexts (Fig. 1n).

Mediodorsal thalamus encodes cueing context. The MD projects 
extensively to the PFC and has a critical role in maintaining task-
relevant activity in this cortical region18,20–22,33. Furthermore, a recent 
study found that the MD might play a role in cognitive flexibility by 
recruiting cortical inhibitory neurons34. Given our finding that FS 
neurons were contextually selective (Fig. 1h,i), we next asked how 
MD neurons responded in our context-switching task (Fig. 2a). In 
agreement with our previously published results17, we found that 
a subset of MD neurons exhibited a transient increase in spiking 
reliability during the delay and that distinct MD neurons tiled the 
delay period (Fig. 2b). Unlike PFC RS neurons, these transient MD 

Fig. 1 | Prefrontal neurons display selectivity indicative of a hierarchical cue to rule transformation during attentional switching. a, Schematic of task 
design. b, Mice were trained to associate four cues with two rules. These cues were presented in two blocks, each containing two cues. An animal had 
to achieve at least 70 correct trials in a block before moving on to the next block. For details, see Methods. UV, ultraviolet. c, Example peristimulus time 
histogram (PSTH) and raster plot (number of trials vs. time) for an RS PFC neuron that is selective to a low-pass (LP) noise. The black bar above the raster 
marks the cueing period, and the red arrowhead indicates the transient increase in spiking reliability. HP, high-pass. d, Transient responses tile the duration 
of the delay period. Each color is a different cue-selective neuron. e,f, As in c,d but for PFC cue-invariant cells. g,h, As in c,d but for PFC FS cells. Unlike RS 
cells, these neurons have persistent changes in firing rate over the delay period. Representative examples in d, f, and h drawn from n =​ 5 mice (independent 
samples). i, Classification accuracy over time relative to cue onset for a decoder trained to predict either rule (top) or cue context decoding (bottom) 
for PFC RS and FS neuronal populations. Asterisks denote the timepoints at which classification accuracy is significantly (i.e., P <​ 0.05, permutation test 
from n =​ 5 mice) above chance (50% classification accuracy). j, Classification accuracy (within delay period) scales with the number of neurons. As in i, 
the asterisk indicates the number of neurons at which classification accuracy is significantly above chance levels (P <​ 0.05, permutation test from n =​ 5 
mice). k, Top: schematic of Poisson GLM. Bottom: model prediction (gray) of the PSTH (black) for one example PFC neuron. EV, explained variance. l, Left: 
heatmap showing coupling probability between the four cue-selective cell PFC cell types. Right: box-and-whisker plots comparing the coupling strengths 
of inputs to PFC cue-selective neurons from cue-selective neurons preferring the same or different cues (light gray; P =​ 1.23 ×​ 10−4) or cue-invariant 
neurons (dark gray; P =​ 0.18 ×​ 10−4; Bonferroni-corrected Kruskal–Wallis ANOVA with post hoc rank-sum test relative to neurons preferring the same 
cues; n =​ 5 mice). m, As in l but characterizing the inputs to cue-invariant PFC neurons from cue-selective neurons preferring the same or different rules 
(P =​ 1.89 ×​ 10−6) or cue-invariant neurons (P =​ 1.42 ×​ 10−6; Bonferroni-corrected Kruskal–Wallis ANOVA with post hoc rank-sum test relative to neurons 
preferring the same rules; n =​ 5 mice). n, Cartoon schematic showing how cue-invariant neurons gain their selectivity by pooling from cue-selective 
neurons across both cueing contexts. Data is shown as mean ±​ 95% confidence interval (shaded error bars). Boxplots: center line, median; box edges,  
95% confidence interval; whiskers, range.
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neurons did not display cue-selective responses but had equivalent 
responses to both cues within the same block. Additionally, another 
subset of MD neuron showed the same selectivity toward the  
cueing context but through persistent changes in spike rate over the 
delay period (see Fig. 2c, d for classification of transient and per-
sistent MD neurons). At the population level, the cueing context  
was much more decodable from both persistent and transient MD 
neurons than from PFC RS neurons (Fig. 2e, f). Therefore, across 

the PFC–MD network, MD and PFC FS neurons were the most 
informative of the cueing context, whereas PFC transient neurons 
were most informative of the rule (Fig. 2f).

Are these thalamic responses reflective of sensory input (i.e., the 
modality of the cues) or of something more cognitive? To answer 
this question, we required mice to perform the task using blocks 
with cues of different modalities. MD neuronal activity reflected 
these heteromodal cueing blocks (Supplementary Fig. 6a–d). 
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Furthermore, when we presented all four cues in a randomized 
manner, we found MD neurons that responded to all four cues, 
suggesting that their combination was encoded as a single context 

(Supplementary Fig. 6e–h). Altogether, MD activity reflected the 
statistical regularity of cue presentation over a multitrial timescale, 
which we refer to as the cueing context (Supplementary Fig. 6i,j).
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What factors could explain this contextual selectivity in the 
MD? We have previously shown that transient responses in the MD  
are dependent on PFC inputs17. Therefore, one possibility is that  
the MD gains contextual selectivity from PFC inputs, either from 
persistent RS neurons or from cue-selective ones (Supplementary 
Fig. 7a,b). To test these two models, we fit GLMs to MD neurons  
and analyzed how different PFC cell types contributed to their 
selectivity (Fig. 2g). PFC RS persistent cells did not contribute to 

spiking of either MD transient or persistent cells (Supplementary 
Fig. 7c–f). In contrast, more than 75% of the variance in the delay-
period activity of both transient and persistent MD neurons could 
be explained by inputs from cue-selective PFC neurons, with MD 
neurons more likely to receive inputs from the context-congruent 
cortical cue set (Fig. 2h). Also, consistent with the fact that PFC FS 
neurons do not project to the MD, we found that they exerted no 
causal influence on MD spiking, further validating the power of the 
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Fig. 3 | Flexible switching between contexts is associated with MD-dependent changes in PFC activity. a, Comparison of fraction correct trials between 
the different task conditions. Each data point is one session per mouse from 3 mice in total (***P =​ 0.023 ×​ 10−3; Bonferroni-corrected Kruskal–Wallis 
ANOVA). Note that each session is treated as an independent sample. b, Change in behavioral performance (fraction correct) relative to switch 
(**P <​ 0.01, ***P <​ 0.001; one-way rank-sum test relative to 5 trials before the switch; n =​ 33 independent sessions from 3 mice). Data is shown as 
mean ±​ s.e.m. c, Change in filter similarity index of coupling filters from cue-selective to cue-invariant neurons in the PFC relative to switch. Insets: example 
coupling filter changing between the point of switch (black) to its final stable value (red). Red line marks the filter stabilization latency. Shaded area, 95% 
CI. For details, see Methods. d, Scatter plot relating behavioral switch latency with the filter stabilization latency for inputs to cue-invariant PFC neurons. 
Each data point is a session (P =​ 0.0068 ×​ 10−6, two-way rank-sum test, n =​ 33 independent sessions from 3 mice). e, Left: schematic illustrating bilateral 
MD suppression. Right: change in behavioral performance (fraction correct) relative to switch for sessions with bilateral MD suppression. Statistics and 
plotting as in b. f,g, Boxplots comparing the effect of MD suppression on (f) behavioral switching latency (***P =​ 0.78 ×​ 10−4, Kruskal–Wallis ANOVA) 
and (g) cue-invariant input filter stabilization latency (***P =​ 0.19 ×​ 10−4, Kruskal–Wallis ANOVA; n =​ 33 sessions with no suppression, 31 sessions with 
MD suppression, from 3 mice). h, Top: example PSTH of a PFC neuron selective to cues in the second cueing context. Left: time course of the change 
in normalized maximum firing rate (relative to stable behavior) relative to the switch. No significant difference (P =​ 0.92 between suppressed and 
nonsuppressed conditions). Right: scatter plot comparing the maximum firing rate of PFC cue selective neurons (gray) and PFC FS neurons (purple) 10 
trials after switch. i, As in h but showing the effect of MD suppression on PFC cells that are selective for cues in the first cueing context (left: ***P <​ 0.001, 
one-way rank-sum test for each timepoint between suppressed and nonsuppressed conditions, n =​ 3 mice; right, P <​ 0.001, one-way rank-sum test for each 
timepoint between suppressed and nonsuppressed conditions; n =​ 3 mice). Data is shown as mean ±​ s.e.m.
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GLM to infer biologically plausible circuit models (Supplementary 
Fig. 7c,f). Therefore, these findings suggest that MD neurons 
gained their contextual selectivity, at least partly, by pooling con-
text-specific cue inputs from the PFC. MD transient cells pooled 
from PFC cells in a temporally precise manner, while MD persis-
tent cells pooled from PFC cells over a broader temporal window 
(Supplementary Fig. 7g,h).

To further verify these model predictions, we expressed the inhib-
itory channelrhodopsin iC+​+​ in PFC to directly inactivate its neu-
rons or their terminals in MD (PFCMD; Fig. 2i and Supplementary 
Fig. 8a–c) in a temporally precise manner. We reasoned that if MD 
neurons derived contextual selectivity from the PFC, then suppress-
ing PFCMD inputs should decrease its selectivity. To mitigate the  
detrimental effect that bilateral PFC suppression has on behavior 
in this task17, we suppressed the PFC unilaterally once the animal 
achieved stable performance in each block (Supplementary Fig. 8b  
and see Methods). This method allowed us to dissociate neural 
selectivity in the MD from changes in behavioral performance. 
Suppressing PFC neurons themselves, or their terminals in MD, 
diminished contextual signals in the MD (Fig. 2j and Supplementary 
Fig. 8d,e). Notably, removing PFC input filters in the MD GLM had an 
effect on response predictability similar to that of suppressing PFCMD  
terminals, providing further experimental validation of our GLM 
(Fig. 2k). Finally, to test the idea that PFC inputs were causally 
involved in generating and not just modulating contextual selectiv-
ity in the MD, we suppressed PFCMD inputs on every trial during 
the cueing period (Supplementary Fig. 9a). When performed uni-
laterally, this manipulation significantly decreased MD contextual 
selectivity (P <​ 0.0001; Supplementary Fig. 9b,c), and when per-
formed bilaterally, it significantly impaired behavioral performance 
(P <​ 0.0001; Supplementary Fig. 9d–f). Taken together, these results 
suggest that by pooling from cue-specific PFC neurons, the MD 
encodes the cueing context (Fig. 2l).

Encoding a cueing context is critical for behavioral performance 
and flexibility. Our results so far suggest that both MD and PFC 
FS explicitly encode cueing context, while PFC RS neurons encode 

other cognitive variables, such as cue identity and rule. We wondered 
whether behavioral performance benefitted from such a behavioral 
encoding scheme, and if so, how? We noticed that mice performed 
much better on sessions in which the four cues were separated into 
two cueing contexts compared to sessions in which the cues were 
equiprobable (Fig. 3a). This performance advantage occurred regard-
less of how cues in the block were grouped with respect to modality. 
Critically, although performance within either of the two blocks was 
higher than when cues were fully randomized across the session, 
there was a clear and consistent behavioral detriment for 4–8 trials 
upon switching from one block to another (Fig. 3b). This decline in 
behavioral performance at the switch suggested that, despite previous 
learning, mice had to readjust to using cues in the new cueing set.

This behavioral switching dynamic was associated with several 
neural ones. We found that cue-selective PFC neurons showed reli-
able spiking earlier than cue-invariant ones upon first exposure to 
the new context (Supplementary Fig. 10a). This suggests that the 
decrease in behavioral performance at the point of context switch 
could be due to a remapping of inputs onto the shared cue-invari-
ant cells. To test this hypothesis, we analyzed the temporal evolu-
tion of coupling filters from cue-selective to cue-invariant PFC 
cells on a trial on a trial-by-trial basis at the point of the switch 
(Supplementary Fig. 10b and see Methods). Notably, the time 
taken for these coupling filters to stabilize followed broadly simi-
lar dynamics to that of the behavioral performance (Fig. 3c) and 
could explain close to 87% of the variance in the behavioral switch 
latency: sessions in which the mouse took longer to switch were 
also associated with a longer time to stabilize cue-selective inputs 
into cue-invariant neurons (Fig. 3d). This would be expected if PFC 
cue-invariance was the source of cognitive control signals (attend-
to-vision versus attend-to-audition). In contrast, although the cou-
pling between cue-selective PFC neurons and context-selective MD 
neurons followed broadly similar dynamics, they were too fast to 
correlate with behavioral performance (Supplementary Fig. 10c–g). 
Therefore, the output of the PFC cue-invariant cells, and not the 
MD or PFC cue-selective cells, were most likely used for controlling 
sensory selection and successful task performance.

Fig. 4 | Distinct MD neurons augment and suppress context-relevant PFC representations. a, Schematic of Poisson GLM used to model PFC neurons 
including MD interactions. b, Boxplot comparing the coupling probability between MD and PFC cue-selective (n =​ 230 neurons from 5 mice) or cue-
invariant neurons (n =​ 86 neurons from 5 mice; ***P =​ 0.58 ×​ 10−5; two-way rank-sum test relative to cue-selective neurons). c, Left: scatter plot relating 
the coupling strength between MD and PFC cue-selective cell with the difference in contextual selectivity for both cells that prefer the current context or 
the previous context. Inset: two different coupling filters between MD and PFC cells. Each data point is one PFC cell from 5 mice. Right: boxplot comparing 
the difference in coupling strength between MD and PFC neurons preferring the same context (n =​ 141 MD neurons from 5 mice) or the opposite context 
(n =​ 211 MD neurons from 5 mice; ***P =​ 0.89 ×​ 10−4; two-way rank-sum test). d, Clustering analysis relating MD–PFC coupling strength to MD spiking 
reliability. Each data point is one MD cell (n =​ 352 neurons from 5 mice). Shaded gray area is the 95% confidence interval ellipse of a Gaussian mixture 
model. Inset: median filter shape from each cluster. e, Right: scatter plot relating FS to PFC cue-selective coupling strength with difference in contextual 
modulation. Each data point is one PFC cell from 5 mice. Left: boxplot comparing the difference in coupling strength between FS and PFC neurons 
preferring the same context (n =​ 141 neurons from 5 mice) or the opposite context (n =​ 211 neurons from 5 mice; **P =​ 0.31 ×​ 10−2; two-way rank-sum test). 
f, Boxplot of coupling probabilities between MD and PFC FS cells (**P =​ 0.78 ×​ 10−2; two-way rank-sum test relative to transient MD neurons; n =​ 410 PFC 
FS neurons, 5 mice). g, Left: method for unilaterally suppressing the MD. Right: PSTHs of two example MD neurons. Persistent MD cells (top) are less 
affected by weak MD suppression than transient MD cells (bottom). Shaded blue area marks the duration of the laser; black bar marks the cueing period. 
h, Scatter plot comparing the effect of weak MD suppression on the firing rates of transient (n =​ 260 neurons from 3 mice, P =​ 0.89 ×​ 10−3) and persistent 
MD cells (n =​ 247 neurons from 3 mice, NS, P =​ 0.22, Friedman test between laser ON and laser OFF trials). i, Left: example MD–PFC coupling filters with 
(orange) and without (green) MD suppression. Right: boxplot comparing the effect of MD suppression on the coupling strength between transient and 
persistent MD cells and PFC cue-selective neurons (n =​ 177 neurons, 3 mice; ***P =​ 1.02 ×​ 10−4 and P =​ 0.12 (NS), two-way rank-sum text). j, Scatter plot 
showing the change in tuning strength of cue selective (left, n =​ 177 neurons) and cue-invariant (right, n =​ 127 neurons, 3 mice) neurons caused by weak 
MD suppression. Friedman test between laser ON and laser OFF trials. k, As in j, but showing no significant effect of weak MD suppression on PFC FS 
neurons (264 neurons, 3 mice, P =​ 0.81). l, Time course of the change in normalized maximum firing rate relative to switch of PFC cells selective for cues in 
the first cue set (n =​ 3 mice; ***P <​ 0.0001, one-way rank-sum test relative to laser OFF condition). Colors indicate various levels of MD suppression; data 
shown as mean ±​ s.e.m. m, Boxplot comparing the change in firing rate of PFC FS neurons with weak and strong MD suppression (n =​ 264 and 212 neurons, 
respectively, from 3 mice; **P =​ 0.71 ×​ 10−2, one-way Kruskal–Wallis ANOVA). n, Boxplot comparing cue-selective to cue-invariant filter stabilization 
latency (laser OFF, n =​ 33 sessions; weak laser, n =​ 31 sessions; strong laser =​ 18 sessions from 3 mice; ***P =​ 0.063 ×​ 10−4, one-way Kruskal–Wallis ANOVA 
with post hoc rank-sum test). o, Cartoon summarizing the distinct effect that MD transient and persistent cells exert on the PFC. All boxplots: center line, 
median; box edges, 95% confidence interval; whiskers, range.
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These results also suggest that the contextual selectivity of the 
MD may be required for the generation of rule signals in the PFC 
by adjusting the functional connectivity between cue-selective and 
cue-invariant PFC neurons in a context specific manner. To caus-
ally test this model, we designed and executed a series of optoge-
netic perturbation experiments. Our previous study demonstrated 
that bilateral suppression of MD neurons during the duration of 
the delay period diminished task-relevant activity in the PFC17. In 
addition, in tasks lacking a delay period, MD suppression via halor-
hodopsin (see Methods) during the cueing period (100 ms) had 

minimal effect on behavioral performance17. As such, we first asked 
whether cue-specific, interleaved, bilateral MD suppression had a 
measurable impact on behavioral performance. Notably, once an 
animal achieved stable performance within a block, such manipula-
tion had no impact (Fig. 3e). Instead, the biggest behavioral deficit 
that we observed was the prolonged time taken to achieve stable 
performance in the new context (Fig. 3f and Supplementary Fig. 11).  
Consistent with the idea that MD contextual signals are relevant for  
establishing PFC task-relevant connectivity patterns, this MD 
manipulation also increased the number of trials taken to stabilize  
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cue-invariant representations in the PFC (Fig. 3g). Notably, this 
laser manipulation had no unwanted effects on the MD, as the 
same laser power and duration had no effect in control mice that 
expressed GFP in the MD (data not shown).

MD neurons regulate PFC representational switching, likely 
through cortical inhibition. In addition to the effects on behav-
ioral performance and PFC representational stability, we also noted 
that temporally precise MD suppression during the cueing period 
impacted cue-selective PFC neural spiking. Specifically, although 
the increase in spiking of cells preferring the second context was 
unaffected (Fig. 3h), we observed that cells preferring the first con-
text continued to fire even though their sensory cue was no longer 
present (Fig. 3i). Suppressing MD terminals in the PFC resulted  
in a similar ‘out-of-context’ spike rate elevation (Supplementary 
Fig. 12). Critically, these MD-dependent changes in PFC RS spiking 
activity were contrasted by changes in PFC FS firing; MD suppres-
sion attenuated the normal elevation of FS neural spiking associ-
ated with the second context (Fig. 3i). Therefore, at least a subset of 
MD neurons may regulate representational switching by suppress-
ing out-of-context activity in the PFC through cortical inhibitory 
mechanisms.

To more directly probe this process, we turned to our multi
neuronal GLM to assess the impact of MD neurons on PFC targets  
(Fig. 4a). We found that, in contrast to cue-invariant PFC  
neurons (Fig. 4b), cue-selective PFC neurons received substantial 
MD inputs, which varied according to context (Fig. 4c). These  
functional inputs could be broadly segregated into two types, one 
predominantly inhibitory and another predominantly excitatory 
(Fig. 4c). Notably, these functional inputs originated from the two 
distinct MD functional subgroups; persistent MD neurons were 
more likely to provide inhibitory functional inputs, while transient 
MD neurons predominantly provided excitatory ones (Fig. 4d).

Similar to MD neurons, PFC FS neurons also exerted a  
context-dependent inhibitory effect on cue-selective neurons, with 
FS neurons having a larger inhibitory effect on PFC neurons that 
preferred cues of the opposite context (Fig. 4e). Consistent with the 
idea that MD cell types may be exerting part of their effects on the 
PFC through local inhibitory circuits34,35, we found that MD inputs 
could explain more of the variance of PFC FS neuron firing than 
PFC cue-selective neurons could (Supplementary Fig. 13a–c). MD 
persistent neurons were more coupled to PFC FS neurons than MD 

transient neurons were (Fig. 4f). Also, in contrast to FS neurons, 
PFC RS persistent neural responses were poorly explained by inputs 
from either the MD or cue-selective PFC neurons (Supplementary 
Fig. 13d), reinforcing the notion that they may be part of a dis-
tinct functional circuit other than the one under study. Altogether, 
these results support a model in which the MD controls contextual 
switching by suppressing PFC neurons of the irrelevant context 
through mechanisms that involving cortical inhibition.

To further test this model causally, we needed to gain a degree 
of selectivity over the two identified functional MD subtypes  
(Fig. 4g). MD neurons in vitro may have a bimodal resting-mem-
brane-potential distribution36, suggesting different degrees of excit-
ability. Because our analysis suggested that two MD populations are 
driven by different degrees of cortical engagement (Supplementary 
Fig. 7), we reasoned that this might also be due to differential excit-
ability that may impart differential susceptibilities to optogenetic 
inhibition. Specifically, the less-excitable MD population (likely 
transient MD cells) would require stronger or more-coincident PFC 
inputs to fire and hence would be more susceptible to weak suppres-
sion. Conversely, persistent MD neurons may be more excitable and 
would require weaker and less-coincident PFC inputs to fire.

By parametrically controlling laser power on an animal-by-ani-
mal basis without influencing behavior (Supplementary Fig. 14a,b),  
we found that MD transient cells were far more susceptible than MD 
persistent cells to low levels of yellow laser power (556 nm, power at 
fiber tip: 0.6–1.1 mW; Fig. 4h and Supplementary Fig. 14c,d). These 
laser powers did not have an appreciable effect on the spiking prop-
erties of MD persistent cells (Supplementary Fig. 14e–g). Higher 
laser powers (power at fiber tip: 2.1–3.5 mW) affected both transient 
and persistent MD neurons (Supplementary Fig. 14h). In support  
of the predictions made by our GLM, selectively suppressing 
MD transient cells with weak laser powers selectively eliminated 
excitatory functional inputs to the PFC but had no impact on the 
inhibitory functional inputs from transient MD neurons (Fig. 4i). 
Suppressing MD terminals in the PFC had a similar effect on the PFC 
without affecting the firing rates of these neurons (Supplementary 
Fig. 14i–k). This manipulation also revealed a selective effect on  
the response properties of both transient PFC RS neuron subtypes 
(Fig. 4j and Supplementary Fig. 15a), but not on PFC FS neurons 
(Fig. 4k). In agreement with our earlier studies17, temporally limited  
MD suppression had a stronger effect on the maintenance of these 
peaks than on their initiation in the PFC, confirming that the  

Fig. 5 | Benefit of PFC–MD over PFC-only architecture on switching contexts. a, Recurrent neural network (RNN) model of the PFC–MD network. The 
drawing depicts neural activation in a single context; gray RNN neurons represent the currently irrelevant context. b, The mean squared error (MSE) in 
decoding the desired output from the PFC over two context switches (indicated by the arrows). For details, see Methods. c, Trial-averaged responses  
of 1,000 neurons in the PFC to LP noise (blue) and HP noise (red). Horizontal lines below the plots indicate the sets of neurons activated by the input  
cues. Shaded area shows s.e.m. d, Trial averaged change (n =​ 200 trials) in connection weights (Δ​W) per trial, from current-context neurons (black)  
and from other-context neurons (gray) to rule-selective output neurons during context 1 and context 2 presentations. Each box extends from lower to 
upper quartiles, the middle line marks the median, and the whiskers represent the range (from 10 network instances). e, Schematic of the three-block 
switching task that mice were required to complete. f, Boxplots showing the effect of bilateral MD suppression in the second context on behavioral 
performance (fraction correct). Shaded area indicates 95% confidence interval of chance behavioral performance derived from a probabilistic model 
(n =​ 12 independent sessions without MD suppression and 12 sessions with MD suppression from 3 mice; ***P =​ 0.05 ×​ 10−4, Bonferroni-corrected rank-
sum test). g, Comparison of performance on the consecutive sessions (separated by 1 d; one-way rank-sum test relative to chance; n =​ 10 independent 
sessions each; ***P =​ 0.08 ×​ 10−4). h, Relationship between the reduction in performance and the number of MD suppression trials. Data shown as 
mean ±​ 95% confidence interval (shaded error bar); n =​ 3 mice. i, Bilateral MD suppression significantly increases the latency of switch back to the first 
context (n =​ 12 independent sessions each from 3 mice; ***P =​ 0.09 ×​ 10−4, Bonferroni-corrected Kruskal–Wallis ANOVA with post hoc rank-sum test).  
j, Scatter plot relating the tuning strengths of PFC cue-selective (left, n =​ 236 neurons) and cue-invariant (right, n =​ 158 neurons from 3 mice) cells in 
the first block with their tuning strengths in the third block. NS, nonsignificant by Friedman test. k, Change in normalized maximum firing rate relative 
to the second switch of PFC cells selective for cues in the first cue set showing an increase in maximal spiking for out-of-context neurons when the MD 
is ontogenetically suppressed (n =​ 3 mice; ***P <​ 0.0001, one-way rank-sum test relative to no MD suppression group). Data shown as mean ±​ 95% 
confidence interval. l, Scatter plot of the coupling strength between first context PFC cue-selective neurons and cue-invariant ones averaged over trials 
10–20 following the switch (gray dots, n =​ 223 neurons). Unilateral optogenetic MD suppression substantially diminishes the size of these functional 
connections (yellow dots, n =​ 150 neurons from 3 mice). P values calculated using Friedman test between first and third cueing contexts. All boxplots: 
center line, median; box edges, 95% confidence interval; whiskers, range.
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MD was not the source of PFC cue information (Supplementary 
Fig. 15b). Although the congruence between terminal and somatic 
inactivation is surprising, the relatively large volumes of MD termi-
nals may result in a larger impact on somatic excitability than would 
otherwise be expected.

Consistent with the idea that persistent MD neurons provide 
cross-contextual PFC suppression, strong laser suppression signi
ficantly increased out-of-context cue-selective PFC spiking (Fig. 4l)  
and concomitantly decreased PFC FS neural spiking (Fig. 4m). 
Because of this, inputs from cue-selective PFC neurons onto  
cue-invariant neurons took a longer time to stabilize (Fig. 4n). Weak 
laser suppression, which targeted only transient cells, did not have a 
similar effect. Taken together, our findings strongly suggest that the 
MD has two distinct computational functions: (i) transient MD cells 
maintain the context-relevant representation in the PFC, permitting 

cue information to be held in working memory; and (ii) persistent 
MD cells suppress context-irrelevant representations in the PFC by 
recruiting FS neurons in a context-dependent manner (Fig. 4o).

MD-dependent suppression of context-irrelevant representa-
tions protects them for near-future use. Our data thus far suggest 
a model in which persistent MD neurons suppress PFC represen-
tations when they are no longer relevant for the current context. 
What computational advantage could this architecture impart? 
Recent theoretical work37 has shown that a context-dependent gat-
ing mechanism, which suppresses task-irrelevant nodes in deep 
neural network, can increase flexibility by allowing the network to 
learn more tasks sequentially. We wondered whether MD-mediated 
inhibition could impart such a benefit onto PFC, allowing it to  
flexibly switch between the different cueing contexts.
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To test this idea, we used a reservoir network of rate neurons as 
a model for PFC function38,39 and incorporated an MD-like node38 
that suppressed context-irrelevant reservoir neurons (Fig. 5a). The 
network was trained to perform a classification task in which it had 
to classify four cues into two rules, which was analogous to the task 
that mice were trained to do. Notably, the PFC–MD model outper-
forms a PFC-only model in being able to flexibly switch between 
cueing contexts (Fig. 5b). Without an MD, weights relevant to 
context 1 change in the second context (Fig. 5c,d), which in turn 
increase errors when context 1 is required again. Incorporating the 
MD limits the spread of recurrent excitation to the context-relevant 
PFC neurons, making the two contextual representations practically 
disjoint and disabling weight changes involving context-irrelevant 
neurons. Notably, this weight-protection benefit generalizes to a 
more computationally demanding exclusive-or classification task 
that is (by design) not linearly separable40,41 (Supplementary Fig. 16). 
Overall, the computational benefits imparted by an MD-like node 
are even more relevant in the exclusive-or task, suggesting broad 
benefits of cross-contextual suppression in cognitive flexibility.

We reasoned that we could test these theoretical weight-protec-
tion benefits experimentally if we employed a three-block switch-
ing framework (Fig. 5e and see Methods), in which mice were 
re-exposed to the first cueing context in the third block. In this 
experiment, PFC neurons selective for the first cue-set should be 
suppressed in the second block, but perhaps reactivated again in the 
third, as it would be computationally efficient to simply re-engage 
the same functional ensemble rather than generate a new one de 
novo. We found that mice performed this three-block switching 
task well, with no significant difference in performance across 
blocks (Fig. 5f). Notably, cue-specific and bilateral MD suppression 
after behavior stabilized in the second block significantly impaired 
performance when the animal was re-exposed to the first block  
(Fig. 5f). Although performance was close to chance (as if the mouse 
had forgotten the first context), this manipulation did not have any 
long-lasting effects, as performance returned to normal the follow-
ing day (Fig. 5g). This reduction in behavioral performance on re-
exposure to the first block parametrically varied with the number of 
trials suppressed in the second block; suppressing a larger number 
of trials in the second block resulted in a larger behavioral deficit 
(Fig. 5h; inflection point, 20 trials). Notably, although the switching 
latency was marginally shorter when the animal moved from the 
second context back to the first cueing context, MD suppression in 
the second block prolonged this switch (Fig. 5i and Supplementary 
Fig. 17). This effect was stronger than what we show in Fig. 3f, 
because unlike in the two-block switching task, mice were now 
required to reactivate representations for the first cueing context in 
the PFC.

To examine the neural substrates of this behavioral detriment, 
we again aimed at dissociating behavioral from neural manipula-
tions and therefore employed a unilateral optogenetic suppression 
condition, in which we suppressed MD neurons during the cue, 
once behavior stabilized in the second block. In sessions in which 
no such optical manipulation was deployed, both PFC cue-selective 
and cue-invariant neurons were largely shared between the first 
cue-set and their repeat in the third block (Fig. 5j). As expected, 
unilateral cue-specific MD suppression resulted in out-of-context 
spiking of the first cue-set neurons during the second block (Fig. 5k  
and Supplementary Fig. 18). Although this was not associated with 
a delay in how these neurons were recruited in the third context, 
their functional inputs onto cue-invariant neurons were much 
weaker upon the switch (Fig. 5l). Therefore, our data suggest that in 
addition to suppressing context-irrelevant cortical representations, 
such that context-relevant functional connections rapidly stabilize, 
such processes may protect recently engaged but currently irrele-
vant connectivity patterns for near-future use (see Supplementary 
Fig. 19 for summary model).

Discussion
In this study, we expanded on a behavioral experiment we had previ-
ously developed17,23 by nesting it in a cognitive hierarchy. Specifically, 
while our previous studies explored the neural correlates of cross-
modal sensory selection based on two learned cues, the current 
design nested the selection process within multiple cueing contexts. 
Crucially, these contexts were under complete experimental control 
and could be arbitrarily constructed on a session-by-session basis.

This allowed us to make multiple observations. First, we identi-
fied a prefrontal neural hierarchy that matches the cognitive one; 
neurons that reflected the meaning of the cue (the rule) derived 
their representations from local cue-selective inputs. Similar hier-
archies are seen in sensory areas42, potentially speaking to broadly 
similar cortical organization principles. Notably, we found only 5% 
of cells in the mouse PFC to be rule-selective, a contrast to higher 
species, which have substantially larger fractions of such cells29,43. 
This difference may explain certain cross-species differences in  
generalization and cognitive capacity.

Second, unlike structures like the lateral geniculate nucleus or 
thalamic circuits that primarily drive excitatory responses in the 
cortex44, we found that the MD exerts effects on cognitive switch-
ing through local inhibitory cortical interneurons. This builds 
on similar recent studies22,34,35, but also provides a computational 
framework linking thalamic output to cortical inhibitory microcir-
cuits. For example, transient MD neurons could recruit disinhibi-
tory motifs45 to maintain activity in the PFC, while persistent MD 
neurons could target soma-targeting interneurons35. Without fur-
ther evidence however, we can only speculate that the diversity of 
thalamocortical computations may match the diversity of cortical 
interneurons46.

Third, the unique connectivity patterns of the lateral MD are 
consistent with our physiological results; convergence of indi-
vidual small cortical terminal inputs onto single MD neurons20,47 
may explain their lack of selectivity to categorical information that 
originates in cortex. Instead, our model shows that this convergence 
of PFC inputs may facilitate the emergence of contextual signals 
in the MD20. Additionally, the lack of thalamic lateral connectiv-
ity may allow MD neurons to multiplex incoming signals, a process 
that would be harder for cortical circuits to implement given their 
extensive recurrence.

Fourth, the experiments involving multiple switches point to a 
variety of plasticity rules governing cortical function, as has been 
recently shown through recurrent neural network simulations48. 
Within this framework, our data suggest a unique role for the thala-
mus in generating contextual representations that may regulate 
cortical plasticity. The exact nature of cortical inhibitory neurons 
involved in cross-contextual suppression is still unknown, and our 
study provides a starting point for such detailed exploration.

Lastly, it is worth mentioning that recent progress in artificial intel-
ligence research has shown that incorporating context-specific gating 
mechanisms in convolutional networks is beneficial for the ability 
to perform multiple tasks and the mitigation of ‘catastrophic forget-
ting’10,37. The key idea in these studies is the generation of non-over-
lapping, task-specific representations in a context-specific manner49. 
We envision that the MD imparts a similar computational benefit 
for task-specific PFC representations: rapid separation of potentially 
overlapping representations such that they are more easily decoded. 
Overall, our findings may not only be relevant to future research in 
neuroscience but may also lead to the generation of artificial net-
works that exhibit more stable learning and robust performance.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41593-018-0269-z.
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Methods
Mice. All experiments were carried out under protocols approved by MIT’s 
Committee on Animal Care and conformed to NIH guidelines. With the exception 
of one mouse that had the Sst-IRES-Cre (Jax: 013044) genotype, all mice were 
C57/BL6 (Taconic Biosciences). Only male mice older than 8 weeks old were used 
in this study. Please refer to the Nature Research Reporting Summary for further 
details. Mice were housed in the vivarium on a standard 12-h light/dark cycle 
and were singly housed throughout the experimental period. Experiments were 
performed during the light portion of the cycle.

Behavioral setup. Behavioral training and testing took place in gridded floor-
mounted, custom-built enclosures made of sheet metal covered with a thin layer of 
antistatic coating for electrical insulation (dimensions in cm: length, 15.2; width, 
12.7; height, 24). All enclosures contained custom-designed operant ports, each of 
which was equipped with an IR LED/IR phototransistor pair (Digikey) for nose-
poke detection. Trial initiation was achieved through an ‘initiation port’ mounted 
on the grid floor 6 cm away from the ‘response ports’ located at the front of the 
chamber. Task rule cues and auditory sweeps were presented with millisecond 
precision through a ceiling-mounted speaker controlled by an RX8 Multi I/O 
processing system (Tucker-Davis Technologies). Visual stimuli were presented by 
two dimmable, white-light-emitting diodes (Mouser) mounted on each side of 
the initiation port and controlled by an Arduino Mega microcontroller (Ivrea). 
Similarly, the visual cues were delivered through a pair of a wall-mounted 5-mm 
LEDs (UV: 320–380 nm, green: 495–510 nm, 100-mW, 25° viewing angle Mouser). 
These LEDs were bright enough to illuminate the whole arena. Two response ports 
were mounted at the angled front wall 7.5 cm apart, respectively. Milk reward (10 μ​
L evaporated milk, Carnation) was delivered by a single syringe pump (New Era 
Pump Systems) when mice made a correct choice. Access to the response ports was 
restricted by vertical sliding gates which were controlled by a servo motor (Tower 
Hobbies). The TDT Rx8 sound production system (Tucker Davis Technologies) 
was triggered through Matlab (MathWorks), interfacing with custom-written 
software running on an Arduino Mega (Ivrea) for trial logic control.

Multielectrode array construction and implantation. Custom multielectrode 
array scaffolds (drive bodies) were designed using 3D CAD software (SolidWorks) 
and printed in Accura 55 plastic (American Precision Prototyping) as described 
previously17,23,50. Prior to implantation, each array scaffold was loaded with 12–18 
independently movable microdrives carrying 12.5-μ​m nichrome (California Fine 
Wire Company) stereotrodes or tetrodes. Electrodes were pinned to custom-
designed, 96-channel electrode interface boards (EIB, Sunstone Circuits), along 
with a common reference wire (A-M systems). For combined optogenetic 
manipulations and electrophysiological recordings of the PFC, optic fibers 
delivering the light beam lateral (45° angled tips) were embedded adjacent to the 
electrodes.

During implantation, mice were deeply anaesthetized with 1% isoflurane and 
mounted on a stereotaxic frame. A craniotomy was drilled centered at AP –2 mm, 
ML 0.6 mm for PFC recordings and at AP 1 mm, ML 1.2 mm for mediodorsal 
recordings. The range of coordinates covered in our recordings for the lateral MD 
are: AP: –1 to –1.5 mm, ML: 0.3 to 0.8 mm relative to bregma. Similarly, for the 
PFC, the range of coordinates covered in our recordings are: AP: 2.1 to 2.7 mm, 
ML: 0.25 to 0.6 mm relative to bregma.

The dura was carefully removed, and the drive implant was lowered into the 
craniotomy using a stereotaxic arm until stereotrode tips touched the cortical 
surface. Surgilube (Savage Laboratories) was applied around electrodes to guard 
against fixation through dental cement. Stainless-steel screws were implanted into 
the skull to provide electrical and mechanical stability and the entire array was 
secured to the skull using dental cement.

Optogenetic manipulation. We used a dual-wavelength, optical-silencing method 
to independently suppress neurons in the PFC and MD. Specifically, we virally 
expressed the inhibitory channelrhodopsin iC+​+​ in the PFC (AAV-CaMKIIA-iC+​
+​-eYFP)51, which is selective to blue-shifted wavelengths (473 nm), and expressed 
halorhodopsin (AAV-CaMKIIA-eNpHR3.0-eYFP) in the MD52. Since the peak 
spectrum of eNpHR is red-shifted (peak at ~550 nm), we could independently 
suppress both populations without affecting their terminals in either structures. 
Light was delivered to these structures using optic fibers that were part of the 
microdrive (as described above). We used a 473-nm laser and a 556-nm laser 
(OptoEngine) to activate iC+​+​ and eNpHR, respectively.

Behavioral training. Mice were trained to perform this task in subsequent stages. 
First, 10 μ​L of evaporated milk (reward) was delivered randomly to each reward 
port for shaping and reward habituation. Next, the location of the rewarded 
port was signaled by a white LED (same used as the visual target) to establish 
an association between the location of the visual target and the location of the 
reward port. Following this, mice learned the association between the auditory 
targets—up-sweep, 10–15 kHz, and down-sweep, 16–12 kHz—with the left and 
right ports, respectively. An individual trial was terminated 20 s after reward 
collection, and a new trial became available 5 s later. As soon as mice achieved 

criterion performance in this block (>​60% correct), visual and auditory targets 
were randomly interleaved.

Second, mice learned to poke (i.e., break the IR barrier in each reward port) 
in order to receive reward. All other parameters remained constant. An incorrect 
poke had no negative consequence. By the end of this training phase, all mice 
collected at least 20 rewards per 30-min session.

Third, mice were trained to initiate trials. Initially, mice had to briefly 
(50 ms) break the infrared beam in the initiation port to trigger target stimulus 
presentation and render reward ports accessible. Trial rule (attend to vision or 
attend to audition) was indicated by 10-kHz low-pass-filtered white noise (vision) 
or 11-kHz high-pass-filtered white noise (audition) sound cues. Stimuli were 
presented in blocks of six trials consisting of single-modality stimulus presentation 
(no conflict). An incorrect response immediately rendered the response port 
inaccessible. Rewards were available for 15 s following correct response, followed 
by a 5-s intertrial interval (ITI). Incorrect responses were punished with a time-
out, which consisted of a 30-s ITI. During an ITI, mice could not initiate new trials. 
During this stage, the duration of the initiation time was gradually increased from 
50 ms to 800 ms. Mice progressed to the next stage only when they were able to 
maintain snout fixation for at least 800 ms.

Fourth, conflict trials were introduced, in which auditory and visual targets 
were co presented indicating reward at opposing locations. Four different trial 
types were presented in repeating blocks: (i) three auditory-only trials; (ii) three 
visual-only trials; (iii) six conflict trials with auditory target; and (iv) six conflict 
trials with visual target. The time that mice had to break the IR barrier in the 
initiation port was continuously increased over the course of this training stage 
(1–2 weeks) until it reached 0.5 s. At the same time, duration of the target stimuli 
was successively shortened to a final duration of 0.1 s. Once mice performed 
successfully on conflict trials, single-modality trials were removed, and block 
length was reduced to three trials.

Fifth, during the final stage of training, trial availability and task rule were 
dissociated. Broadband white noise indicated trial availability, which prompted 
a mouse to initiate a trial. Upon successful initiation, the white noise was 
immediately replaced by either low-pass or high-pass filtered noise for 0.1 s to 
indicate the rule. This was followed by a delay period (variable, but for most 
experiments it was 0.4 s) before target stimuli presentation. All block structure was 
removed, and trial type was randomized. Particular steps were taken throughout 
the training and testing periods to ensure that mice used the rules for sensory 
selection.

Once mice were fully familiarized with the main structure of the task and 
achieved consistent performance on the final stage of training, they were exposed 
to the visual cueing condition. After achieving 40 correct responses, mice were 
moved to an association block in which the LEDs were paired with the congruent 
auditory cues (LP with green LED and HP with UV LED). The volume of the 
sound decayed linearly over the course of trials, with full volume for the first 10 
trials up to 1/5 of the volume for the last few trials. The sound volume was changed 
only after the mouse made two consecutive correct responses (an indication 
that the mouse understands the task). At the end of 70 trials, and depending on 
performance, mice progressed to the visual-only block, in which no auditory 
cues were played. In the following session, the length of the association block 
was gradually reduced. Once mice were able to achieve a consistent performance 
of >​ 60% on three consecutive sessions in the visual-only block, the association 
block was removed completely. At this point, mice were considered experts on  
the task.

Behavioral testing. In the double block cueing experiment, mice were required 
to complete 70 trials in each block. Blocks were constructed based on either cues 
of the same modality (HP–LP and UV–green) or cues from both modalities (HP–
green and UV–LP). In each block, cues were drawn pseudorandomly and the order 
of blocks was randomized from session to session. Sessions in which mice did not 
perform >​ 60% overall in each block were discarded and were not analyzed further.

In the randomized cueing experiment, mice were required to complete a total 
of 200 trials per session. On each trial, one cue of a possible four cues (HP, LP, 
UV, and green) was drawn at random. To further ensure that the cues appeared in 
random order (i.e., without any regularity), we imposed the additional constrained 
that no more than three draws could be from the same modality. That is, after 
three UV–green draws, the next cue had to be either HP or LP. A new random 
seed was used each day. Mice that were previously trained on the block design took 
approximately a week to adjust to this new cueing condition. Although average 
performance was low, mice had brief periods in which their local performance was 
close to 80%.

In the three-block switching experiment, mice were required to complete a 
total of 70 trials in the first two blocks and 90 trials in the third block. The identity 
of the first block (i.e., visual or auditory) was pseudorandomized from day to 
day. In total, we mice completed four sessions per mouse (two auditory–visual–
auditory, two visual–auditory–visual) on the standard version of the task, and four 
sessions per mouse with MD suppressed in the second block. We did not notice 
a difference in the effect of MD suppression in the visual block compared to the 
auditory cueing block, and hence have pooled these sessions for analysis.
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Behavioral analysis. To quantify the behavior, we carried out regression analysis 
to weigh the contributions of rule and history of choice and reward on the animal’s 
choice on the current trial53. To do so, we concatenated data from multiple sessions 
for each mouse and fit the animal’s choice with a logistic regression model of the 
form
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where T is the number of trials in the past. For this model, we calculated that 
the model explained behavioral variance best when we included up to 10 trials 
in the past. In this equation, S(t),F(t) ∈​[+​1,–1] if a trial is a success or a failure, 
respectively. Similarly, R(t) ∈​[+​1,–1] if the rule on that trial is attend-to-vision or 
attend-to-audition, respectively. This model was fit using a custom-written ridge 
regression routine in Matlab. The hyperparameter value for ridge regression was 
calculated using fivefold cross-validation.

To assess the effect that choice history had on the probability of success on 
the next trial, we developed a probabilistic model. Given the 2-AFC structure of 
our task, we assumed that on each trial, the mouse makes a coin-flip choice with a 
bias (q =​ Psuccess) that depends on the animal’s success on past trials. Therefore, the 
likelihood of a success given s successes and f failures in the past 10 trials is given 
by the binomial distribution:
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Knowing that the conjugate prior of the binomial distribution is the beta 
distribution, we can calculate the posterior distribution using Bayes’ theorem
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Using this, the expected probability of success (E(q)) on the next trial is then
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All models were fit separately for each mouse (n =​ 5) using 1,000 runs of fivefold 
cross-validation. For each run, we computed the log-likelihood for the test dataset 
for the mean value if P(vision) or P(success). Model fit quality was assessed 
by computing the deviance statistic. We also used this model to assess overall 
behavioral performance. Trials in which behavior was close to the predicted chance 
levels were ignored and the overall fraction correct was computed from trials in 
which actual behavior deviated substantially from the model (we define these 
periods as ‘stable’ behavior). As such, changes in performance accuracy reported 
throughout are only calculated over the period of stable behavior and do not 
include switch trials.

Trial selection. By comparing the two models (a model that includes rule-
dependent components and a reward-history model) we were able to determine 
trials over which the animal was making either an informed choice based on the 
current cue or a biased choice based on history of reward. We used this to select 
trials. Specifically, for each trial, we computed the deviance between the full 
model and the history model and selected a trial if deviance was above a threshold 
value that was calculated using cross-validation for each session. Unexpectedly, 
tuning peaks (described in the following section) were much more apparent in 
the selected trials than in the rejected trials. Please refer to the Nature Research 
Reporting Summary for further details on omitted data.

Electrophysiological recordings and spike sorting. Signals were acquired 
using a Neuralynx multiplexing digital recording system (Neuralynx) through a 
combination of 32- and 64-channel digital multiplexing headstages plugged into 
the 96-channel EIB of the implant. Signals from each electrode were amplified, 
filtered between 0.1 Hz and 9 kHz, and digitized at 30 kHz. For thalamic recordings, 
tetrodes were lowered from the cortex into the mediodorsal thalamus over the 
course of 1–2 weeks where recording depths ranged from −​2.8 to −​3.2 mm DV.  
For PFC recordings, adjustments accounted for the change of depth of PFC across 

the AP axis. Thus, in anterior regions, unit recordings were obtained –1.2 to  
−​1.7 mm DV, whereas for more posterior recordings, electrodes were lowered  
−​2 to −​2.4 mm DV.

Spike sorting was done automatically using MountainSort54. Following sorting, 
each cluster was manually inspected for quality. Only well-isolated clusters with 
biologically plausible waveforms were selected for further analysis.

Identification of FS and RS cells. For each spike waveform, we extracted four 
metrics: (i) peak-to-trough time; (ii) peak-to-trough ratio; (iii) spike width; and 
(iv) spike amplitude. We combined this four-dimensional feature vector with 
the overall firing rate of the neuron to form a five-dimensional feature vector 
for each cell. We applied k-means clustering (k+​+​ algorithm, 1,000 runs with 
randomly initialized seed) and determined the optimal number of clusters using 
the Calinski–Harabasz criterion55. Cluster separability was assessed statistically by 
calculating the ratio of between-cluster variance to within-cluster variance. For 
most sessions, the waveforms clustered reliably into two clusters, corresponding to 
FS and RS waveforms. Approximately 10% of all recorded spike waveforms could 
not be reliably classified into either subtype (based on 1,000 runs) and hence were 
not included in further analysis.

Analysis of firing rate. For all PFC and mediodorsal neurons, changes in firing 
rate-associated task performance were assessed using peristimulus time histograms 
(PSTHs). PSTHs were computed using 10-ms bins for individual neurons in each 
recording session, convolved with a Gaussian kernel (25 ms full-width at half-
maximum) to create a spike-density function (SDF) which was then converted to 
a z-score by subtracting the mean firing rate in the baseline (500 ms before event 
onset) and dividing by the variance over the same period. For comparison of 
overall firing rates across conditions, trial number and window size were matched 
between groups. Except for switching analysis, we analyzed firing rates only in 
trials in which local performance deviated significantly from the probabilistic 
model (Supplementary Fig. 1).

Computing reliability and tuning strength. For each recorded neuron, we computed 
trial-to-trial reliability using a 150-ms sliding window. Reliability was simply the 
correlation in spike times between each pairwise combination of trials, such that 
a neuron with perfect reliability had no spike time variation and a correlation 
coefficient of 1. Only neurons with responses on 15 trials or more were selected for 
this analysis.

To determine whether the observed level of reliability was significantly 
different from chance, we used a randomization test where the time period of 
analysis was randomly picked in the range [–2.5, 1.5], the trials randomly shuffled, 
and the reliability score recalculated. By repeating this process 1,000 times, a null 
distribution of the reliability time series was constructed. A neuron was reliable 
if the unshuffled reliability time series exceeded the null distribution by 1.5 s.d. 
(z-score >​ 1.5). Using this method, we were able to calculate a significant reliability 
trace for each neuron and for each stimulus condition.

Classification of cells into persistent and reliable. The method described above 
allowed us to extract reliability scores (max in the delay period). In the PFC RS 
and MD populations, we noticed a bimodal distribution of reliability scores: some 
neurons responded with high trial-to-trial spiking in the delay period (transient) 
and others responded with low reliability (persistent). To formally classify these 
cells, we used the expectation-maximization algorithm (Python sklearn package) to 
fit a Gaussian mixture model to the reliability histogram. This procedure was run 
separately for PFC RS, FS, and MD neurons. The goodness of fit of the Gaussian 
was assessed using the Bayes information criterion (BIC). Separability of the 
resulting Gaussians was assessed by ROC analysis. PFC RS and MD populations 
had separable Gaussians and passed the Hartigan’s dip-test for bimodality. In 
these populations, we classified cells as transient if they were within 95% CI of the 
mean of the high-reliability Gaussian model. Cells were classified as persistent if 
they were within the 95% CI of the mean of the low-reliability Gaussian model. 
This method allowed us to robustly classify neurons without the need to define an 
arbitrary threshold.

Classification of cells into cue-selective or cue-invariant. Using the reliability time 
series across the delay period, we computed a cross-correlogram for all pairs of 
conditions (six-way comparison). Neurons with significant correlation with lags 
within ±​ 50 ms were scored. A neuron was classified as cue-selective if it had a 
significant reliability event for only one of the four stimulus conditions. A neuron 
was classified as mixed-selective if it had a significant reliability event for two of 
the four stimulus conditions. We found no neurons in either the MD or PFC with 
significant reliability in more than two conditions (except for randomized cueing 
experiments).

To further assess the tuning strength of PFC neurons, we first sampled trials 
with replacement to calculate an estimate of d-prime for either cues or rules for 
each cell. Second, we also computed a bootstrapped value of the reliability of that 
cell. We defined the tuning strength as the slope of the regression line between 
reliability and d-prime. As such, a neuron with high reliability and high d-prime 
had a higher tuning-strength value, indicating that this neuron was strongly 
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selective to a cue. We used this tuning-strength metric to better define cue-
invariant neurons. Cue-invariant, rule-selective neurons should respond to both 
cues that map onto the same rule. Hence, we calculated the selectivity angle for 
each pair of cues corresponding to the same rule using the formula6
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Neurons with selectivity angle of 45° had the same tuning strength for both cues 
in the same rule and were hence classified as cue-invariant. Therefore, we used 
a hierarchical selection process to classify cue-invariant cells: (i) the significant 
reliability time series for cues 1 and 2 of rule A must be correlated within a lag 
of 50 ms and (ii) the selectivity angle must be close to 45°. Since MD and PFC FS 
neurons were weakly reliable, we calculated their selectivity using trial-averaged 
firing rates instead. In this way, MD and FS neurons were classified as context 
selective when (i) they had correlated responses for both cues within a context and 
(ii) they had a within-context selectivity angle was also close to 45°. Each of these 
measures was tested for significance using a permutation test in which hybrid data 
were created by shuffling trial labels.

Calculating contextual modulation index. We assessed the contextual modulation 
index (CMI) of the trial-averaged firing rate of a neuron using the following 
formula:
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As such, because the firing rate is non-negative, CMI ∈​ [+​1,–1]. To determine 
significance, we calculated the CMI for two hybrid spike trains created by randomly 
shuffling trial labels from 1,000 iterations. This created a null distribution. A cell was 
considered significantly contextually modulated if the unshuffled CMI was outside 
the 95% confidence interval of the shuffled CMI (P <​ 0.05, two-tailed Student’s t test).

Decoding analysis. Trial-by-trial classification analysis was performed using a 
support vector machine (SVM) implemented through LIBSVM and the Matlab 
neural decoding toolbox56. The firing rates of neurons on each trial from the 
entire population (pooled across sessions) were first smoothed using a 20-ms-
wide Gaussian filter. The SVM classifier with a Gaussian radial basis function 
kernel was then trained on 60% of the data (randomly selected) while 40% of 
the data were used for prediction. This classifier works by first constructing 
an optimal hyperplane based on labeled training data and then generating 
predictions of the labels on testing data. Accuracy of the decoding was  
assessed by comparing the predicted labels to the actual labels. Classification 
accuracy was also quantified by computing the mutual information via the 
following equation
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where pij is the probability of observing label i (cue, rule, or context) given that the 
original label is j. This classification process was repeated 1,000 times to obtain and 
accurately estimate the error of the classification accuracy.

To test the dependence of the number of neurons on classification, we used a 
Monte Carlo sampling technique (repeated 500 times) to pick n neurons (range:  
1 to population size) at random from the population with replacement. The single-
trial responses from these n neurons were compared to the template as described 
above.

Generalized linear model (GLM). We modeled the spike trains of neurons using 
a generalized linear model (GLM)31,32,57. The spike trains were discretized (Δ​) into 
5-ms bins. As explained elsewhere58, the log-likelihood for a single neuron (up to 
an additive constant) is given by the formula

∑φ Δφ Δφ= −L r r t t tlog ( , ) ( ) log( ( )) ( )
t

where φ(t) is the instantaneous spike rate (conditional intensity) of the fully 
coupled GLM

φ = + − + +k h ct x t r t s t b( ) exp( ( ) ( 1) ( ) )

In this equation, k is the weights on the stimulus covariates (akin to a receptive 
field), h is the postsynaptic weights that integrate the neuron’s own spiking history, 
and c is the coupling weights (filters) on other simultaneously recorded spikes 
(s). In the uncoupled model, we ignored this coupling term. To avoid overfitting, 
regression weights were fit with a maximum a posteriori estimate with an L2 
penalty. Matlab scripts used to build the GLM can be found here: https://github.
com/pillowlab/neuroGLM.

These coupling filters are analogous to the positive lag of a cross-correlogram, 
with the additional benefit of accounting for the response variance that is not 
already explained by the cue and other task-relevant variables. In other words, each 
neuron produces a coupling filter that, when convolved with the spike train of that 
neuron, explains part of the variance of the neuron being modeled. Mathematically, 
this operation can be written as
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where m is the number of simultaneously recorded neurons and fi are temporal 
basis functions that we assumed to be nonlinearly time-scaled, raised cosine 
functions32. In each session, the GLM was constructed using a median of 25 PFC 
and 18 MD neurons with well-isolated units.

To statistically validate these coupling filters, we randomized both neuronal 
labels and trial order and used leave-one-neuron-out cross-validation59. This 
allowed us to determine the probability of a coupling being significant above 
chance levels. We also calculate the coupling strength as the integral (area under 
the curve) of each coupling filter. Because each neuron can receive many coupling 
filters, we used a dimensionality reduction (SVD) to determine the most common 
filter shapes (i.e., those that explained the largest fraction of variance). We note 
here that we fit each GLM in an unbiased manner and determined the most 
significant couplings based on shuffling. When we tested the effect of removing 
certain filters on predicting the firing rate of neurons, we first fit a model to 80% 
of the trials, set the necessary filter components to 0, and then used that model 
to predict the remaining 20% of the trials. We computed explained variance (EV) 
using the following formula
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We repeated this procedure 100 times. In this way, we do not bias the other terms of 
the model by removing terms before performing the regression.

We derived a filter similarity index to determine how inputs to a neuron 
changed as the animal switched from one context to another. First, we used the 
behavioral model (see section on trial selection above) to determine trials in which 
choice behavior was stable in each context. Using these trials, we derived coupling 
filters (i) between PFC cue-selective cells, (ii) from PFC cue-selective cells to MD 
cells, and (iii) from PFC cue-selective cells to PFC cue-invariant cells. We refer 
to these filters as stable input filters. Next, we refit the GLM on a trial-to-trial 
basis from 10 trials before the switch to 10 trials after the switch and extracted 
single-trial input filters. The filter similarity index is the Pearson’s correlation 
coefficient between the single-trial coupling filter and the stable coupling filter 
in each context. In particular, for cells preferring the second context, we report 
the correlation coefficients between the single-trial input filters and the stable 
filter in the second context. This analysis allowed us to visualize the remapping of 
intracortical and corticothalamic inputs as mice switched from one cueing context 
to another. We defined the filter stabilization latency as the trial number at which 
the correlation coefficient between the single-trial coupling filter and the stable 
coupling filter in each context is significantly above chance levels.

For the clustering analysis in Fig. 4d, we quantified the shape of the filter using 
a filter score. For filters with a larger inhibitory magnitude, the filter score was the 
signed area under the curve of the inhibitory component. For filters with a larger 
excitatory magnitude, the filter score was the area under the curve of the positive 
component. In this way, negative filter scores correspond to MD neurons that exert 
an inhibitory effect on their targets, while positive filters scores correspond to MD 
neurons that exert an excitatory effect on their targets.

Model to explain MD responses. We constructed a simple model to determine 
whether and how MD neurons derive their contextual selectivity from PFC cue-
selective neurons (Supplementary Fig. 7). To do so, we first generated a population 
of 1,000 Poisson spiking units with transient elevations that spanned the duration 
of the delay period (50-ms peak spacing). These model neurons mimicked, for 
example HP and LP selective neurons in the PFC, with the aim of predicting the 
responses of the auditory cueing context-selective MD cells. For each model PFC 
neuron, we computed a PSTH. Each PSTH was then convolved with the PFC–MD 
input kernel (described above). This convolved output was then weighted and 
summed. We then used a least-squares method to determine the best fit model 
that could explain the trial-averaged firing rate of either persistent or transient MD 
neurons. For persistent MD neurons, weights were almost uniformly distributed 
over all PFC inputs, suggesting that their inputs were not temporally selective. In 
contrast, transient MD neurons weighted inputs from co-tuned PFC neurons more 
strongly, suggesting that they receive temporally selective inputs from these co-
tuned cue-selective neurons.

Computational modeling. We use a recurrently connected reservoir of 1,000 rate 
neurons to model the PFC. The rate of each neuron, indexed by i, is given as a 
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function of its input Ii as ri = tanh(Ii) if Ii >​ 0, and 0 otherwise. The input consists 
of cue input, recurrent input, and MD gating together, filtered with a decaying 
exponential synapse with time constant τ =​ 20 ms, as
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where cuek is a vector of length equal to the number of possible cues (corresponding 
to HP and LP noise and UV and green LED flash). It has entries 1 for cues that are 
on at the current time and 0 for those off. The input weights wik

in are set such that 
each cue k stimulates a set of 200 neurons, disjoint with the sets for other cues, 
with each weight chosen uniformly between 0.75 and 1.5. wij is set as a Gaussian-
distributed variable with mean =​ 0 and s.d. =​  . ∕0 75 400 , and then the mean is 
subtracted across each row of the matrix. rl

MD is a vector representing the activity of 
MD neurons with dimensionality equal to the number of contexts. We set the entry 
for the current context to 1 and the rest to 0. +wil

MD  is set to –10 for those neurons 
that are not stimulated by cues belonging to context l and to 0 for those that are, 
effectively suppressing activity of context-irrelevant neurons. µi mediates the 
multiplicative effect of the MD on the total recurrent input to neuron i and  
is given by
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×wim
MD  is set to 8 if neuron i is one of the neurons stimulated by cues belonging to 

context m, else it is set to 0, effectively enhancing the recurrent input for context-
relevant neurons. Note that all sums run over all the full range of the summed indices.

When simulating the PFC-only network, we set all +wil
MD  to zero and all ×wim

MD  
to 2, effectively removing all context-specific suppression and enhancement, yet 
ensuring enough recurrent input to sustain activity in the delay period. The model 
has two output neurons: the first corresponding to attend to audition and the 
second to attend to vision, receiving input from the PFC as
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where τw =​ 200 s, and the instantaneous error ∈n in output n is defined in terms 
of the target output rn

targetwhich is cue-specific as below. Learning on the output 
weights is on throughout the simulations.

Each task was simulated as a run of 1,000 cycles of context 1 (block 1), 
followed by 1,000 cycles of context 2 (block 2), and then again followed by 200 
cycles of context 1 (block 3). Each cycle consists of two trials of cue = (1,0,0,0) and 
cue = (0,1,0,0) during context 1 and two trials of cue = (0,0,1,0) and cue = (0,0,0,1) 
during context 2, in random order within each cycle, for the experimental linearly 
separable task, representing high-pass and low-pass noise and UV and green LED 
flash, respectively. The target output rn

target values for these cues are (1,0), (0,1), 
(1,0), and (0,1) respectively. The two longer blocks allowed the network to learn the 
two contextual tasks sequentially, while the shorter third block served to test the 
ability of the network to recall the first context.

Similarly, for the XOR task, each cycle consists of 4 trials of cue equal to 
(0,0,0,0), (0,1,0,0), (1,0,0,0), and (1,1,0,0) during context 1 and (0,0,0,0), (0,0,0,1), 
(0,0,1,0), and (0,0,1,1) during context 2, in random order. These must map to target 
output rn

target equal to (1,0) if only one of the cues in a context is active and to (0,1) 
if none or both are active.

Each trial consists of a 100-ms-long cue presentation followed by a 100-
ms delay period when (0,0,0,0) is presented. The target output is maintained 
throughout the trial for plasticity of the output weights, and the mean squared 
error is computed over the full trial and across the two outputs.

Statistical testing. All data in this paper are pooled from 5 mice (except for 
optical perturbation, for which we used 3 mice). No statistical tests were done 
to determine the sample size, but our sample sizes are similar to those reported 
in previous publications17,23. Note that data collection and analysis were not 
performed blind to the conditions of the experiments.

Data were first tested for normality using the Shapiro–Wilk test. All data 
presented in this paper are non-normally distributed; thus, all statistical tests were 
conducted using nonparametric statistics. Our experiments involved testing the 
influence of different conditions (cues, optical manipulations, etc.) on the same 
population of neurons; thus, all comparisons were performed using nonparametric 
repeated-measures ANOVA (Friedman test) with Bonferroni’s correction for 
multiple comparisons. Comparisons between independent measures were 
performed using the nonparametric Kruskal–Wallis ANOVA. For Bonferroni 
corrections, the significance value was set to 0.05. Post hoc tests were performed 
using two-tailed signed-rank tests (for repeated measures) or Wilcoxon rank-sum 
tests for independent measures. All other statistical tests that were performed are 
described in the text. The 95% CIs were computed by bootstrapping.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. All Matlab and python scripts used to analyses the 
data will be deposited on GitHub at https://github.com/toxine4610/
ThalamusContextSwitchingCode and https://github.com/adityagilra/PFC_MD_
weights_stability.

Data availability
All data are available from the corresponding author upon reasonable request.
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n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
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variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)
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Software and code
Policy information about availability of computer code

Data collection Electrophysiological data was collected using the Neuralynx (Cheetah 6.3.2) system. Behavioral data was collected using custom MATLAB 
(Mathworks, version: 2016a) scripts that interfaced with and Ardunio Uno using custom-written  code.

Data analysis All analysis was conducted using custom written code in MATLAB (Mathworks, version: 2016a) using standard toolboxes. Links to non-
standard toolboxes (eg. GLM) are provided in the Methods section of the paper. All statistical analysis was performed in MATLAB using 
standard toolboxes. Code used for analysis can be found in the Github link provided in the Methods section of the paper.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data that support the findings presented in this study are available from the corresponding author upon request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size calculation was performed. However, sample sizes, such as the number of neurons or animals, were similar to, or exceeded 
those reported in recently published papers from our laboratory (Schmitt et al. 2017, Nature) and others (Runyan et al. 2017, Nature).

Data exclusions Behavioral sessions in which mouse performance was close to chance (as assessed by regression models, described in the Methods) were 
excluded from further analysis. Neurons with spiking on less that 25% of trials were also excluded from analysis. For all neural Poisson GLM 
data analysis, only cells with explained variance greater than 70% were used

Replication Reproducibility of all modeling results was ensured via 200 runs of five-fold cross-validation. For electrophysiological results, reproducibility 
was ensured by sampling from a similar number of neurons across 3-4 different mice. Most experiments also included data collected by 
different experimenters. Optical perturbations of both the MD and PFC resulted in similar effects in each session, and all attempts at 
replicating the behavioral results reported in the paper were successful.

Randomization Due to the design of our task, we did not have different experimental groups. Each mouse was trained to complete all the tasks described in 
the paper. The order of cues in each context block, as well as the order of the context blocks, were pseudo-randomized from session to 
session with a new random seed for each session. Optogenetic manipulations were also pseudorandomized.

Blinding Due to the nature of our experiments, the experimenters were not blind to the type of optogenetic manipulation being performed. This is 
because the laser intensity had to be carefully calibrated for each mouse to ensure weak suppression of MD neurons. This is discussed further 
in the Methods section of the paper.
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Animals and other organisms
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals This study involved a total of 5 mice. All mice were male and were 8 weeks of age at the time of surgery. One mouse had a SOM-
Cre genotype (Jax: 013044, Sst-IRES-Cre). Four mice had the C57BL/6J genotype (Taconic Biosciences).
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Wild animals No wild animals were used in this study.

Field-collected samples No field-collected samples were used in this study.
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