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The ease with which we move in and interact with our environ-
ment belies the complexity inherent in even the simplest of these
tasks. Movements we make effortlessly, such as reaching for an
object or walking over uneven terrain, involve the specification
and control of a vast number of variables1, ultimately involving
the activation of many thousands of motor units spanning dozens
of muscles. The question of how the nervous system overcomes
these complexities to produce movement effortlessly and effi-
ciently is central to the study of the neural control of movement.

We describe one strategy used by the vertebrate nervous sys-
tem to produce a range of behavior in a simple manner. We
show that the neural circuitry within the frog spinal cord pro-
duces motor responses to hindlimb cutaneous stimulation by
the combined recruitment of a small number of distinct muscle
groups. Such a muscle group, in which the activation level of a
set of muscles is specified together, has been termed a ‘muscle
synergy’ previously2,3. Several researchers have proposed that
such spinally organized muscle groupings might underlie the
production of movement4–7. The present results provide direct
support for these proposals, presenting a quantitative assess-
ment of a testable form of this hypothesis. These experiments
thus provide a novel perspective on this fundamental question
of how the vertebrate nervous system produces movement in a
simple and efficient manner.

RESULTS
We examined the patterns of muscle activations evoked from
cutaneous stimulation of the hindlimb of spinalized frogs (frogs
whose spinal cord was transected). We stimulated a number of
different skin locations to evoke a range of motor responses, to
try to understand how this range was produced by the nervous
system. An example of the muscle activation patterns (Fig. 1b)
evoked from stimulating different regions (Fig. 1a) along the
rostral and caudal margins of the hindlimb is shown for one
animal. The activation level of the majority of muscles in each
frog was significantly dependent on the stimulus location on
the leg (p < 0.05, ANOVA). This dependency caused the pro-
duction of a range of different muscle activation patterns. Stim-
ulation of sites on the back of the calf (regions 1–4) typically

evoked responses with a strong activation of vastus externus
(VE) with a weaker activation of a few other muscles, such as
biceps femoris (BF), iliopsoas (IP) or adductor magnus (AM).
Stimulation of sites on the foot (regions 5–10) typically evoked
responses with a strong activation of semitendinosus (ST) and
IP and weaker activation of other muscles such as sartorius
(SA), rectus internus (RI), AM, vastus internus (VI) and BF. As
the stimulation site was moved along the front of the calf toward
the knee (regions 11–14), the contribution of ST gradually
decreased, whereas the contribution of other muscles, partic-
ularly SA and AM gradually increased (n = 7).

We examined whether these responses were produced from
the combination of distinct groups of muscles. Such muscle
groups might be observed either in the variations among respons-
es evoked from different skin regions (as shown in Fig. 1b), or
in the variations among responses evoked from the same skin
location (as shown in Fig. 2a; each of these five responses were
evoked from stimulation of the front of the calf near the knee
indicated in Fig. 1a). Although the averaged and normalized
responses (Fig. 2b) were generally similar to one another, there
were clear systematic differences between them. For instance, the
fourth and fifth responses were very similar except that there was
a stronger activation of BF and IP in the fifth response. In the
first and second responses, the activation of ST was very similar,
but there was a weaker activation of SA, AM, VI, BF and IP in
the second response. These comparisons suggest the existence of
a set of at least three groups of muscles that could be controlled
independently: one with activation of ST, one with activation of
SA, AM and VI, and one with activation of BF and IP.

We investigated more systematically whether the patterns of
muscle covariations shown in Fig. 2b and the range of muscle
activations shown in Fig. 1a could both result from the combi-
nation of a small number of muscle activation patterns or mus-
cle synergies. An explicit formulation of this hypothesis has been
proposed8,9,10, and we evaluated this formulation here. Accord-
ing to this hypothesis, any given response should be describable
as the linear combination of a small number of such muscle syn-
ergies. Further, both the elements of the synergies and their
weighting within each response should be positive, because we

The construction of movement by
the spinal cord

Matthew C. Tresch1,2, Philippe Saltiel1 and Emilio Bizzi1

1 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, E25–526, Cambridge, Massachusetts 02139, USA
2 Present address: Section of Neurophysiology, Panum Institute, University of Copenhagen, Copenhagen, Denmark

Correspondence should be addressed to E.B. (emilio@ai.mit.edu)

We used a computational analysis to identify the basic elements with which the vertebrate spinal
cord constructs one complex behavior. This analysis extracted a small set of muscle synergies from
the range of muscle activations generated by cutaneous stimulation of the frog hindlimb. The
flexible combination of these synergies was able to account for the large number of different motor
patterns produced by different animals. These results therefore demonstrate one strategy used by
the vertebrate nervous system to produce movement in a computationally simple manner.

© 1999 Nature America Inc. • http://neurosci.nature.com
©

 1
99

9 
N

at
u

re
 A

m
er

ic
a 

In
c.

 • 
h

tt
p

:/
/n

eu
ro

sc
i.n

at
u

re
.c

o
m



nature neuroscience  •  volume 2  no 2  •  february 1999 163

are ultimately considering muscle activations (Galagan, J. et al.
Soc. Neurosci. Abstr. 23, 512.4, 1997). This specific hypothesis can
be formalized in the following model:

where mj
obs is the jth observed pattern of muscle activations, cij

is the positive weighting coefficient of the ith muscle synergy for
the jth response, wi is the ith muscle synergy and N is the number
of muscle synergies. We tested how well this positive linear com-
bination of muscle synergies model explained the patterns of
muscle activations observed experimentally.

We extracted a set of muscle synergies from the observed mus-
cle activations for each animal using a computational analysis.
This analysis aimed at finding the set of muscle synergies that
could best predict the observed responses according to the model
described above. Briefly, the algorithm began with a set of arbi-
trary synergies, wi. The positive weighting coefficients of these
arbitrary synergies, cij, that best predicted each response were then
found. The muscle synergies were updated by performing a gra-
dient descent on the error between the observed response and the
best-fit, predicted response. This process was then iterated until
the algorithm converged on a particular set of muscle synergies.

In a typical animal (Fig. 2c), the algorithm extracted both a
set of synergies and the weighting coefficients of each synergy
used to reconstruct the responses evoked from cutaneous stim-
ulation. The algorithm extracted a synergy with ST, a synergy
with SA, AM and VI, a synergy with VE, and a synergy with BF
and IP. These synergies corresponded well to the patterns of
covariation observed in Fig. 2b. The derived synergies were very
robust to differences in initial conditions, with an average nor-
malized dot product of .97 ± .04 between the synergies found
on different iterations of the algorithm. Qualitatively, the
observed (Fig. 2b) and predicted (Fig. 2d) responses were very
similar to one another. Quantitatively, this similarity between
observed and predicted responses was found to be very large for

each animal. In each of the seven animals examined here, with
an average of 392 responses per animal, the algorithm consis-
tently explained a large amount of variance in the patterns of
muscle activations (mean r2 = .90 ± .03).

The synergies shown in Fig. 2c were generally similar between
animals. The average similarity (calculated as the normalized dot
product) between synergies found in different animals was
.74 ± .20. The similarity of the first three synergies shown in Fig.
2c was generally higher than that of the fourth (.91 ± .09,
.80 ± .11, .80 ± .22, .45 ± .28, respectively). This similarity, how-
ever, was less than the similarity between synergies found on
repeated iterations of the algorithm for the same animal (.74 ver-
sus .97), suggesting that there were differences between the syn-
ergies found in different animals. Differences in such factors as
electrode placements, link lengths or possibly the strategies used
by different animals could have contributed to these differences.

We compared the results obtained by this algorithm to the
results obtained by the k-means algorithm11,12. K-means attempts
to explain each observed response as one of only a small num-
ber of possible responses. In contrast to our algorithm, k-means
does not allow an observed response to be a combination of more
basic patterns; in k-means, each response reflects the recruitment
of a single pattern. To explain 90% of the variance in the observed
set of responses, k-means required at least 15 different patterns.
This demonstrates that cutaneous stimulation of the hindlimb
did not simply evoke only a few distinct types of muscle patterns.
Instead, the range of responses evoked from cutaneous stimula-
tion was better explained as the combination of a small number
of muscle synergies.

We also examined how the results of the algorithm explained
the range of muscle activation patterns evoked from different
regions of the skin, such as those shown for the animal in Fig.
1b. We show for three animals how the weighting coefficient of
each synergy extracted by the algorithm varied with the stimulus
location on the hindlimb (Fig. 3). These are the weighting coef-
ficients of the synergies used to reconstruct each response
(Fig. 2c). For instance, in the animal shown in Fig. 3a, to recon-
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Fig. 1. Muscle activation pat-
terns evoked from cutaneous
stimulation of the frog
hindlimb. (a) The divisions of
stimulation sites used to
examine the variation of mus-
cle activation patterns with
stimulus location shown in (b).
Stimulation was applied to
many sites across the skin sur-
face, and the evoked pattern of
muscle activation was mea-
sured for each site. The
hindlimb configuration shown
here corresponds to the con-
figuration used in these exper-
iments. The dot within region
12 indicates the stimulus site
from which the responses
shown in Fig. 2a were evoked.
(b) The variation of muscle activation with stimulus location for one animal. Stimulation sites on the back and front of the femur did not consis-
tently evoke responses in each frog and so were excluded from analysis. The averaged, normalized activation for each recorded muscle is shown
as a function of stimulus location. For this plot, we also normalized each observed response to be of unit magnitude (taken as the vector norm).
The values here therefore reflect the relative contribution of each muscle to a given response. The numbers on the horizontal axis refer to the
stimulus regions indicated in (a). Error bars represent one standard deviation from the mean activation level at each region. The data shown here
were obtained from a total of 688 responses.
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struct responses from sites of the back of the leg (regions 1–4),
the algorithm used a strong weighting of the synergy with VE
(the third synergy in Figs. 2c and 3a). This strong VE activation
is consistent with the responses observed from the back of the
leg (Fig. 1b). Similarly, to reconstruct responses from sites on the
foot (regions 5–10), the algorithm used a strong weighting of the
synergy with ST (the first synergy in Figs. 2c and 3a) along with
weaker weightings of the synergy with SA, AM and VI (the second
synergy in Figs. 2c and 3a). As stimulation sites moved along the
front of the leg (regions 11–14), the weighting of the synergy with
ST gradually decreased, whereas the activation of the SA, AM
and VI synergy and of the VE synergy increased. Activation of
the fourth synergy was more variable across regions of the skin
surface. Generally similar patterns of recruitment of synergies
were observed in each animal (compare Fig. 3a, b and c).

Although Fig. 3 suggests that the use of each type of synergy
was generally similar in each animal, the exact pattern of recruit-
ment of these synergies could differ between animals. In the ani-
mal shown in Fig. 3c, for instance, there were sharp transitions
in the weighting of each synergy between different skin regions.
These sharp transitions were especially clear for the first three

synergies, with the weighting coefficients of these synergies either
being zero or large for most responses. In the animals shown in
Fig. 3a and 3b, however, there appeared to be more of a gradual
transition in the recruitment of different synergies, as indicated
in the more intermediate weighting coefficients of each synergy.
This type of gradual transition was seen in most animals, espe-
cially for the transition from the foot to the front of the leg. These
observations suggest that each animal has access to a similar set of
muscle synergies when producing responses to cutaneous stim-
ulation, but that there is a degree of flexibility in the exact pat-
tern of their use.

Finally, we examined the generality of the synergies derived
from the responses evoked from stimulation of the sites shown
in Fig. 1a. We examined how well these synergies were able to
explain the responses evoked from other regions of the skin sur-
face; if similar synergies were used to produce responses from
these other regions, we would expect the responses to be
explained well by these synergies. We evoked responses from
stimulation of sites on the dorsal surface of the foot, the dorsal
surface of the calf, the contralateral ankle, the ipsilateral and con-
tralateral back and both forelimbs. The synergies obtained from
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Fig. 2. Example of muscle covariation patterns within evoked responses. (a) Raw EMGs for five responses evoked from stimulation of the same skin
region. The hindlimb was fixed in the configuration shown in Fig. 1a for all responses and the region of the skin indicated in Fig. 1a was stimulated using
a handheld probe (see Methods). (b) Averaged, normalized activation for the muscles recorded in each of the responses shown in (a). Note that each
muscle was normalized to the maximal value observed for that muscle across all responses evoked from any stimulation site in this animal. As a result,
the muscle balances seen in (a) are slightly different than those shown in (b). (c) Responses can be explained as a linear combination of a set of mus-
cle synergies. The synergies obtained from applying the algorithm described in the text to the entire set of responses obtained from this animal are
shown to the left. The weightings of each of these synergies used to reconstruct the responses in (b) are shown to the right. For instance, the first
response was reconstructed as .65 of the first synergy, plus 2.47 of the second synergy, 0 of the third synergy, and 1.09 of the fourth synergy. 
(d) Responses resulting from the combination of muscle synergies shown in (c).
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stimulation of the hindlimb were able to explain over 80% of the
variance in the responses evoked from sites on the dorsal surface
of the foot and calf, the ipsilateral back and the contralateral ankle
(Fig. 4). Responses from the other skin regions, however, were
not well explained by these same synergies. The observation that
the synergies explained some responses poorly also demonstrates
that the synergies were not so general as to be able to explain any
possible motor response. These results suggest that the synergies
used to produce the responses from the hindlimb might also be
used in the motor responses evoked through other pathways.

DISCUSSION
These results demonstrate that the neural circuitry within the
vertebrate spinal cord seems to produce a behavior through the
combination of a small number of muscle synergies. By using a
computational analysis, we show that such a combination of mus-
cle synergies is able to explain the range of muscle activations
evoked by cutaneous stimulation of the frog hindlimb. Such a
strategy of combining a small number of basic motor elements
greatly simplifies the complexity intrinsic to the production of
movement by the nervous system.

These results provide direct support for previous hypotheses
of the production of movement by the spinal cord4–6. For
instance, the nervous system was proposed to produce a range
of movement through the combination of a small number of ‘unit
burst generators’ organized within the spinal cord5. Each of these
unit bursters was proposed to control the activation of a small
group of synergistic muscles. These units could then be coupled
in many different ways to produce a wide range of behavior. The
hypothesis considered here, that the spinal cord produces move-
ment through the combination of a small number of motor ele-
ments, is similar to this unit burst generator hypothesis.

The main contribution of this study has been to state this
hypothesis in an explicit form, allowing it to be examined quan-
titatively. The computational analysis described here provided a

method to identify the basic elements
underlying the production of movement
in a systematic and objective manner. The
consistency of the results of this algorithm
with qualitative examination of the data
helps to validate the approach used here.
This explicit formulation of the hypothe-
sis also allowed it to be falsified: the results
of this algorithm could easily have failed
to consistently explain the responses with
the fidelity observed here. Further, the
particular model we tested, as expressed
in Eq. 1, was relatively simple, assuming
a linear and independent combination of
muscle synergies. This simplicity makes it
all the more surprising that the model was
able to explain these responses so well.

The results and methods of our study
might be used to examine how the spinal
cord is used by the rest of the nervous sys-
tem to produce movement. We found that
the set of synergies described here could
explain some, but not all, of the respons-
es evoked from other regions of the skin
surface. This result suggested that these
synergies might be utilized by different
pathways in the production of movement.
We might be able to use similar proce-

dures to examine whether descending systems also use these syn-
ergies to produce movement. For instance, vestibular stimulation
in the frog evokes a low-dimensional set of hindlimb move-
ments13. It will be interesting to examine the relationship between
the low dimensionality of that set of movements and the com-
bination of a small number of muscle synergies identified here.
Further, it will be important to examine whether the model
described here is capable of explaining the complete time course
of motor responses. In many behaviors, there is a great deal of
temporal precision in muscle activation patterns3, and it will be
interesting to examine whether this precision can be described
in terms of a small number of synergies. Further experiments
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Fig. 4. The ability of synergies from sites on the rostral and caudal mar-
gins of the hindlimb to explain responses evoked from other skin
regions. Synergies were derived from the regions shown in Fig. 1a and
then used to describe the responses evoked from the other skin regions
indicated on the horizontal axis. The vertical axis shows the r2 values for
the fits for each of these data sets.

Fig. 3. The contribution of each muscle synergy to responses evoked from different regions of the
skin surface for three different animals (a, b, c). The order of the synergies shown here corresponds
to the order of the synergies shown in Fig. 2c. The correspondence between synergies was made
using the normalized dot product between them. The numbers on the horizontal axis refer to the
regions shown in Fig. 1a. The vertical axis shows the average weighting coefficient for each muscle
synergy used to reconstruct the observed responses, such as those shown in Fig. 1b.
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will be required to define the extent and limits of the generality of
the synergies described here to other behaviors, including those
produced by descending systems.

Sherrington first proposed that the responses to cutaneous
stimulation might also be used in other classes of movement,
such as locomotion4. Although the movements produced by the
spinal cord in response to cutaneous stimulation are often con-
sidered to be simple and stereotyped, it is well established that
these responses can be precisely tuned depending on the site of
stimulation14–17. This flexibility might be used in the movements
produced by descending systems18. Our study might provide a
novel perspective from which to test this hypothesis.

METHODS

Data acquisition. All procedures were approved by the Committee on
Animal Care at M.I.T. Seven adult frogs (Rana catesbiana) were spinal-
ized at the level of the obex under tricaine anesthesia. Nine hindlimb
muscles were implanted with bipolar EMG electrodes (see ref. 9 for
details): semitendinosus (ST), sartorius (SA), rectus internus (RI),
adductor magnus (AM), vastus internus (VI), semimembranosus
(SM), vastus externus (VE), biceps femoris (BF) and iliopsoas (IP). In
one animal, we recorded from rectus anterior in the place of IP.
Crosstalk from electrical pickup between adjacent muscles was elimi-
nated by suturing small pieces of insulation to the fascia in the major-
ity of animals. The effectiveness of this insulation was confirmed by
observing no EMG signals in muscles with their nerve supply cut. The
hindlimb was fixed in the horizontal plane at the level of the hip by
means of bone screws attached at the ankle and the metatarsus. This
restraint prevented all movement of the hindlimb. The foot was fixed
at a right angle relative to the calf (see Fig. 1a). The hindlimb was
mechanically stimulated by scratching restricted sites on the skin sur-
face (1 mm2 tip, .01 to .1 N force, 1–4 Hz, over a range of 1–3 mm).
Stimulation strength was regulated so as to evoke only threshold
responses. EMG signals were filtered and amplified (25 k) before being
digitally sampled (1 kHz) for offline analysis. Response onsets and off-
sets were identified offline using interactive software written in Matlab,
and the activation level of each muscle was averaged within each
response. The activation of each muscle was then normalized to the
maximal value observed for that muscle in any response. Weak
responses with a magnitude (taken as the vector norm) less than .3
were excluded from further analysis because EMG noise often obscured
the balance of muscle activations in these weaker responses.

We assessed the repeatability of the stimulation procedures used here
by examining the variability in the responses evoked from repeated stim-
ulation of a site on the skin. The standard deviation in the most activat-
ed muscle in a response was .27 across all animals. This variability was
comparable to the variability in the responses evoked from repeated elec-
trical stimulation of the same site in spinal cord (standard deviation,
0.21, data not shown). Such electrical stimulation would be expected to
activate the same neural substrate on each application of stimulation and
should therefore give a lower bound of the variability in the motor
responses evoked in this preparation. Such variability in the responses
evoked in this preparation has been observed previously19.

Algorithm to extract muscle synergies. A set of synergies, wi, consists of
coefficients chosen randomly between 0 and 1 for each muscle. We then
approximated each observed response as a positive linear combination
of these synergies, described by Eq. 1. A slightly different form of Eq. 1 in
the actual fitting procedure was used to impose the restriction of the syn-
ergies to positive numbers.

mj
obs is the jth observed pattern of muscle activations, mj

pre is the jth
predicted pattern of muscle activations and g(x) is a positive valued
function of x. We tried several different forms of g(x), including one in
which negative values of x were arbitrarily set to 0, the simple quadratic
g(x) = x2 and an exponential g(x) = ex. The results of the algorithm

using these different transformations were very similar. We only pre-
sent the results of the algorithm using the exponential transformation.

Given a certain set of synergies, the set of best-fit weighting coeffi-
cients, cij, was found using the non-negative least-squares algorithm20

supplied by Matlab. This algorithm finds the set of nonnegative coeffi-
cients that minimizes the error between the predicted and observed
responses, given a particular set of synergies. This procedure is similar
to standard regression techniques except that the weighting coefficients
are constrained to be positive.

Once the weighting coefficients were found, the error between the
predicted and observed responses was used to update the synergies. The
error was minimized using gradient descent, in which the synergies are
incrementally changed to reduce the prediction error. The change in the
synergies was calculated as Eq. 2:

where g’ is the first derivative of the transformation used in Eq. 1 and µ
determines the step size of the gradient descent. Because the process of min-
imizing the error using gradient descent is generally very erratic, the step
size of the descent is usually set to be low; we used a value of µ = .005. To fur-
ther ensure smoothness of the error minimization, we used a ‘momentum’
coefficient, in which the change in synergy at iteration t is equal to the
change in the synergy calculated by Eq. 2 plus a fraction (we used .99) of
the change in weight at iteration t – 1. This momentum coefficient serves as
a type of running average of the synergy changes. These procedures are
standard in gradient descent techniques11,12. After updating the synergies,
they were normalized so that the vector norm of each synergy was equal to
one. The best-fit weighting coefficients were then again found using these
new synergies, the synergies updated, and the process repeated.

We applied this algorithm to 90% of the data for each animal, chosen
randomly from the responses evoked from the sites in Fig. 1a. After each
iteration, we assessed the ability of the synergies found by the algorithm
to predict the remaining 10% of responses. When the amount of vari-
ance explained by the derived synergies in this set of test data decreased
for 20 consecutive iterations, we considered the algorithm to have con-
verged. This procedure reduces overfitting by the algorithm. We repeat-
ed the algorithm on 10 different sets of 90% of the data for each animal
with different initial synergies for each repetition, to examine effects of
different initial conditions on the results of the algorithm. Qualitative
analyses suggested that the algorithm required around 50–100 respons-
es to produce consistent results. The algorithm was applied to the entire
data sets from each animal, ranging between 177 and 688 responses.

We calculated the similarity between two synergies found by the algo-
rithm as the normalized dot product between them. This value ranges
between zero and one, with one representing identical synergies. To estab-
lish correspondences between two different sets of synergies, we took all
possible dot products between the two sets of synergies. A synergy from
one set was matched to the synergy in the other set with which it had its
largest dot product. The process of correspondence was also inspected
visually in case of ambiguities.

We also applied the k-means algorithm to the set of evoked respons-
es11,12. This algorithm is similar to the algorithm described above except
that the cij are equal to zero for all except one synergy.

The algorithm described above is generally similar to factor analytic
models21, with the difference that both the factor loading and factor
scores are constrained to be positive. It is also similar to that described22

except that we are not explicitly imposing a particular prior distribution
for the weighting coefficients. We therefore implicitly impose a uniform
distribution.

We describe the results of the algorithm using four synergies to fit the
data for the following reasons. First, we did a principal components
analysis on this data and found that the smallest number of components
necessary to explain at least 90% of the variance in each animal was four.
Similarly, four synergies were needed for the algorithm used here to
explain at least 90% of the variance. Adding an additional synergy to the
algorithm explained only an extra 3% of the variance. Finally, applying
the algorithm with four synergies corresponded well to a visual inspec-
tion of the data and gave consistent results between different animals.

mobs
j ≈ mpre

j     = ∑ cijg(wi) (1)
N

i = 1

∆wi = ∑ µ(mobs
j – mpre

j    ) cijg´(wi) (2)

j
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