
Articles
https://doi.org/10.1038/s41593-018-0310-2

1Center for Neural Science, New York University, New York, NY, USA. 2Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience,
Columbia University, New York, NY, USA. 3Department of Neurobiology, Stanford University, Stanford, CA, USA. 4Howard Hughes Medical Institute,
Stanford University, Stanford, CA, USA. 5Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China. 6Present address:
Courant Institute of Mathematical Sciences, New York University, New York, NY, USA. 7Present address: DeepMind, London, UK. *e-mail: xjwang@nyu.edu

The prefrontal cortex is important for numerous cognitive
functions1–3, partly because of its central role in task repre-
sentation4–7. Electrophysiological experiments using behav-

ing animals have found prefrontal neurons that are either selective
for different aspects of a given task8,9 or functionally mixed10,11.
Much less is known about functional specialization of task repre-
sentations at the neuronal level. Imagine a single-neuron record-
ing that could be carried out with animals switching between
many different tasks. Is each task supported by a ‘private’ cluster
of neurons, does each task involve every neuron in the network, or
somewhere in between? If two tasks require a common underlying
cognitive process, such as working memory or decision-making
(DM), what would be the relationship between their neural rep-
resentations? In other words, what would be the ‘neural relation-
ship’ between this pair of tasks? Would the two tasks use a shared
cluster of neurons?

Humans readily learn to perform many cognitive tasks in a short
time. By following verbal instructions such as ‘release the lever only
if the second item is not the same as the first’, humans can perform
a novel task without any training at all6. A cognitive task is typically
composed of elementary sensory, cognitive, and motor processes5.
At the computational level, correctly performing a new task without
training requires composing elementary processes that are already
learned. This property, called ‘compositionality’, has been proposed
as a fundamental principle underlying flexible cognitive control12.
In a neuronal circuit equipped with a compositional code, a new
task might be represented as the algebraic sum of representations of
the underlying elementary processes. Indeed, human studies have
suggested that the representation of complex cognitive tasks in the
lateral prefrontal cortex could be compositional6,13. However, these
tasks involved verbal instructions; it is unknown whether non-ver-
bal tasks commonly used in animal physiological experiments also
display compositionality and whether compositional task structures
can emerge in relatively simple neural network models.

For a network capable of performing many tasks, should it be
clustered? Should its representation be compositional? Conceptually,
the answer to either question can be yes or no, independently
(Fig. 1a). A randomly connected network can potentially solve
multiple tasks by mixing sensory stimuli and rule inputs in a high-
dimensional space. Such a network will have no clustering and show
no compositionality across tasks. A network where different tasks
are represented by completely non-overlapping populations will
show clustering but no compositionality. A network can be both
clustered and compositional if common cognitive processes across
tasks are represented by distinct clusters of neurons. Finally, imag-
ine linearly mixing neuronal activity of a clustered, compositional
network. The resulting neural activity would still be compositional,
but no longer clustered at the single-unit level.

Verifying these hypotheses remains difficult with conventional
experimental and modeling approaches. Experiments with labora-
tory animals have so far been largely limited to a single task at a
time; on the other hand, human imaging studies lack the spatial res-
olution to address questions at the single-neuron level. Therefore,
the lack of neural recordings from animals performing many dif-
ferent tasks leaves unanswered important questions regarding how
a single network represents and supports distinct tasks. In principle,
these questions could be addressed in neural circuit models, but
designing a single neural circuit model capable of multiple tasks is
challenging and virtually nonexistent.

To explore potential solutions to these problems, we took the
approach of training RNNs11,14–19. In this work, we trained single
RNNs to perform 20 cognitive tasks. We found that after training
all tasks simultaneously, the emerging task representations were
organized in the form of clustering of recurrent units. Through a
systematic examination, we identified the conditions under which
clusters emerge. We found that a simple form of compositional task
representation emerges from training in our network models. These
networks can be instructed to perform certain tasks by combining

Task representations in neural networks trained to
perform many cognitive tasks
Guangyu Robert Yang   1,2, Madhura R. Joglekar1,6, H. Francis Song1,7, William T. Newsome3,4
and Xiao-Jing Wang   1,5*

The brain has the ability to flexibly perform many tasks, but the underlying mechanism cannot be elucidated in traditional
experimental and modeling studies designed for one task at a time. Here, we trained single network models to perform 20
cognitive tasks that depend on working memory, decision making, categorization, and inhibitory control. We found that after
training, recurrent units can develop into clusters that are functionally specialized for different cognitive processes, and we
introduce a simple yet effective measure to quantify relationships between single-unit neural representations of tasks. Learning
often gives rise to compositionality of task representations, a critical feature for cognitive flexibility, whereby one task can be
performed by recombining instructions for other tasks. Finally, networks developed mixed task selectivity similar to recorded
prefrontal neurons after learning multiple tasks sequentially with a continual-learning technique. This work provides a compu-
tational platform to investigate neural representations of many cognitive tasks.

NaTuRe NeuRoScieNce | VOL 22 | FEBRUARY 2019 | 297–306 | www.nature.com/natureneuroscience 297

mailto:xjwang@nyu.edu
http://orcid.org/0000-0002-8919-4248
http://orcid.org/0000-0003-3124-8474
http://www.nature.com/natureneuroscience

Articles NaTure NeuroscieNce

instructions for other tasks. To mimic the process of adult animals
learning laboratory tasks, we also trained networks to learn mul-
tiple tasks sequentially with the help of a continual-learning tech-
nique. The resulting neural representation in such networks can
be markedly different from networks trained on all tasks simulta-
neously. Neural recordings from the prefrontal cortex of monkeys
performing context-dependent DM tasks are consistent with the
continual-learning networks. Our work provides a framework for
investigating neural representations of task structures.

Results
Training neural networks for many cognitive tasks. To study
how various cognitive tasks might be implemented in a single neu-
ral circuit, we first trained a RNN model (Fig. 1b) to perform 20
inter-related tasks. Most of these tasks are commonly used in neu-
rophysiological studies of non-human animals and crucial to our
understanding of the neural mechanisms of cognition. The cho-
sen set of tasks includes variants of memory-guided response20,
simple perceptual DM21, context-dependent DM11,22, multi-sensory
integration23, parametric working memory24, inhibitory control
(for example, in anti-saccade)25, delayed match-to-sample26, and
delayed match-to-category27 tasks (Supplementary Table 1 and
Supplementary Fig. 1).

We designed our network architecture to be general enough for
all the tasks mentioned above, but otherwise as simple as possible to
facilitate analysis. For every task, the network receives noisy inputs
of three types: fixation, stimulus, and rule (Fig. 1b). The fixation
input indicates whether the network should ‘fixate’ or respond
(for example, ‘saccade’). Thus, the decrease in the fixation input

provides a ‘go signal’ to the network. The stimulus inputs consist
of two modalities, each represented by a ring of input units that
encodes a one-dimensional circular variable such as motion direc-
tion or color on a color wheel18. A single rule input unit is activated
in each trial, instructing the network on which task it is currently
supposed to perform. The network projects to a fixation output unit
and a group of motor units encoding the response direction as a
one-dimensional variable on a ring of outputs (for example, saccade
direction, reach direction). All network units receive private noise.
In the ‘reference’ setting of our networks, all units have non-nega-
tive and non-saturating activities to mimic biological neurons28,29.

Before training, a network is incapable of performing any task.
It is trained with supervised learning11,15, which modifies all con-
nection weights (input, recurrent and output) to minimize the dif-
ference between the network output and a desired (target) output.
Notably, for the networks analyzed throughout most of the paper,
all tasks were randomly interleaved during training. At the end,
we will present results from sequential training of tasks. Below we
show results obtained from networks of 256 recurrent units, and
our results were robust with respect to the exact network size. After
training, single network models achieved high behavioral per-
formance across all tasks (Fig. 1c). Furthermore, by conducting a
battery of psychometric tests, we demonstrated that the networks
display behavioral features consistent with animal studies. In per-
ceptual DM tasks, an example network achieved better perfor-
mance with higher coherence and longer duration of the stimulus21
(Fig. 1d and Supplementary Fig. 2a–f), and it combined informa-
tion from different sources to form decisions23 (Fig. 1e). In working
memory tasks, the same network was able to maintain information

b

d ec

a

Compositionality

Clustering

Fixation input Recurrent units

Fixation output

Response

Stimulus mod 1

Stimulus mod 2

Rule inputs

Time (ms) 1,0000
1

20

0°

360°

0°

360°

1

256

HighLow

Low

1,000 2,000

Total trials (1,000)

3,000
–0.05

P
(c

ho
ic

e
1)

0.0

0.5

1.0

0.050.00

DM 1 MultSen DM

Stim1 – Stim2 (a.u.)

Stimulus time (ms) Modality
200 1 only

2 only
Both

400
800

–0.05 0.050.00

Stim1 – Stim2 (a.u.)

Go MultSen DM

MultSen Dly DM
DMS
DNMS
DMC
DNMC

Dly DM 1
Dly DM 2

Ctx Dly DM 2
Ctx Dly DM 1

RT Go

Task

Dly Go
Anti
RT Anti
Dly Anti
DM 1
DM 2
Ctx DM 1
Ctx DM 2

0
0

P
er

fo
rm

an
ce

1

High
Potential mechanisms

for multiple tasks
Task 1 Task 2

Fig. 1 | a recurrent neural network model is trained to perform a large number of cognitive tasks. a, Schematic showing how the same network can
potentially solve two tasks with or without clustering and compositionality. b, An example of a fully connected recurrent neural network (RNN) (middle,
1% of connections shown) described by rate units receives inputs (left) encoding a fixation cue, stimuli from two modalities, and a rule signal (that
instructs the system which task to perform in a given trial). The network has 256 recurrent units (top right) and it projects to a fixation output unit (which
should be active when a motor response is unwarranted) and a population of units selective for response directions (right). All units in the reference
recurrent network have non-negative firing rates. All connection weights and biases are modifiable by training using a supervised learning protocol.
c, The network successfully learned to perform 20 tasks. d,e, Psychometric curves in two DM tasks. d, Perceptual DM relies on temporal integration
of information, as the network performance improves when the noisy stimulus is presented for a longer time. a.u., arbitrary unit. e, In a multi-sensory
integration task, the trained network combines information from two modalities to improve performance (compared with performance when information
is only provided by a single modality). Ctx, context dependent; Dly, delayed; DMC, delayed match-to-category; DMS, delayed match-to-sample; DNMC,
delayed non-match-to-category; DNMS, delayed non-match-to-sample.

NaTuRe NeuRoScieNce | VOL 22 | FEBRUARY 2019 | 297–306 | www.nature.com/natureneuroscience298

http://www.nature.com/natureneuroscience

ArticlesNaTure NeuroscieNce

throughout a delay period of up to 5 s1,20,24 (50 times the single-unit
time constant) (Supplementary Fig. 2g).

Functional clusters encode subsets of tasks in reference networks.
The focus of our analysis was to examine the neural representation
of tasks. After training, it is conceivable that each unit of the recur-
rent network is only selective in one or a few tasks, forming highly
specialized task representations. On the other hand, task represen-
tations may be completely mixed, where all units are engaged in
every task (Fig. 1a). We sought to assess where our reference net-
works lie on the continuum between these two extreme scenarios.
In this section, we will focus our analyses on one example network.

To quantify single-unit task representation, we need a measure of
task selectivity that is general enough that it applies to a broad range
of tasks, and at the same time simple enough that it can be easily
computed. We propose a measure that we call task variance (see
Methods). For each task and each unit, the task variance computes
the variance of that unit’s noise-free response across conditions in
that task (Fig. 2a). This measure quantifies the amount of stimulus
information a unit conveyed during a task, without asking how that

stimulus information is encoded. Units with different stimulus tun-
ing can have the same task variance in a task. Task variance is agnos-
tic about the task setup and can be easily computed in models and is
also applicable to the analysis of experimental data.

By computing the task variance for all trained tasks, we were able
to study how individual units are differentially selective in all of the
tasks (Fig. 2b). For better comparison across units, we normalized the
task variance of each unit such that the maximum normalized vari-
ance over all tasks was 1. By analyzing the patterns of normalized task
variance for all active units, we found that units were self-organized
into distinct clusters through learning (Fig. 2c,d and Supplementary
Fig. 3a) (see Methods). We identified about 15 clusters in the net-
work. The ideal number of clusters was chosen to maximize the ratio
of intercluster to intracluster distances (Supplementary Fig. 4). Units
belonging to the same cluster are mainly selective in the same subset
of tasks. Units in the same cluster can have different incoming and
outgoing connection weights however, simply as a result of different
stimulus tuning (Supplementary Fig. 5).

To understand the causal role of these clusters, we lesioned each
of them while monitoring the change in performance across all

Go
RT Go
Dly Go

Anti
RT Anti
Dly Anti

DM 1
DM 2

Ctx DM 1
Ctx DM 2

MultSen DM
Dly DM 1
Dly DM 2

Ctx Dly DM 2
MultSen Dly DM

DMS
DNMS

DMC
DNMC

0

0.5

–0.5

P
er

fo
rm

an
ce

 c
ha

ng
e

af
te

r
le

si
on

in
g

N
or

m
al

iz
ed

 ta
sk

 v
ar

ia
nc

e

1

1 2 3 4 5 6
Clusters

Units

7 9 10 11 128

1 2 3 4 5 6
Clusters

tSNE

Task

Unit 145

Unit 145 Go

a c

b

d e

Time (s) 1.50.0

D
N

M
C

G
o

0.00

0.05

0.5

1.0

0.0
Ta

sk
 v

ar
ia

nc
e

A
ct

iv
iti

ty
 (

a.
u.

)

7 9 10 11 128

Ctx Dly DM 1

Go
RT Go
Dly Go

Anti
RT Anti
Dly Anti

DM 1
DM 2

Ctx DM 1
Ctx DM 2

MultSen DM
Dly DM 1
Dly DM 2

Ctx Dly DM 2
MultSen Dly DM

DMS
DNMS

DMC
DNMC

Ctx Dly DM 1

Fig. 2 | The emergence of functionally specialized clusters for task representation. a, Neural activity of a single unit during an example task. Different
traces correspond to different stimulus conditions. b, Task variances across all tasks for the same unit. For each unit, task variance measures the variance
of activities across all stimulus conditions. c, Task variances across all tasks and active units, normalized by the peak value across tasks for each unit. Units
form distinct clusters identified using the k-means clustering method based on normalized task variances. Each cluster is specialized for a subset of tasks.
A task can involve units from several clusters. Units are sorted by their cluster membership, indicated by colored lines at the bottom. d, Visualization of the
task variance map. For each unit, task variances across tasks form a vector that is embedded in the two-dimensional space using t-distributed stochastic
neighbor embedding (tSNE). Units are colored according to their cluster membership. e, Change in performance across all tasks when each cluster of
units is lesioned.

NaTuRe NeuRoScieNce | VOL 22 | FEBRUARY 2019 | 297–306 | www.nature.com/natureneuroscience 299

http://www.nature.com/natureneuroscience

Articles NaTure NeuroscieNce

20 tasks (Fig. 2e). We found one cluster (cluster number 3) that was
specialized for the Anti-family tasks. Another two clusters (cluster
numbers 5 and 6) were specialized for DM tasks involving modality
1 and 2, respectively. Furthermore, one cluster (cluster number 8)
selective in the parametric working memory tasks (the delayed DM
or Dly DM task family) was also selective in the perceptual DM
tasks (the DM task family), indicating a common neural substrate
for these two cognitive functions in our reference networks30. We
can also study how units are clustered on the basis of epoch vari-
ance, a measure that quantifies how selective units are in each task
epoch (Supplementary Fig. 3). One cluster of units presumably sup-
ports response generation, as it was highly selective in the response
epoch, but not the stimulus epoch. These findings are robust across
independently trained network with the same setting. Our results
indicate that the reference networks successfully identified common
sensory, cognitive, and motor processes underlying subsets of tasks,
and, through training, developed units dedicated to the shared pro-
cesses rather than to the individual tasks.

Assessing clustering across a wide range of models. We showed
that networks trained to perform many cognitive tasks can develop
clusters of units. Although connection weights in the network are
adjusted with supervised learning, we specified the hyperparam-
eters, such as the neuronal activation function (the input-output
transfer function), the overall network architecture, and further
training objectives. To understand how the emergence of cluster-
ing may depend on the hyperparameters used, we trained networks
with four different activation functions (Softplus, rectified linear
unit or rectified linear function (ReLU), hyperbolic tan function
(Tanh), and rectified Tanh or ReTanh), two different architectures
(leaky RNN and leaky gated recurrent unit (GRU) network), two
weight initializations (diagonal and random orthogonal), four levels
of L1 regularization on weights, and four levels of L1 regularization

on activity (see Methods). We tested all combinations of these dif-
ferent hyperparameters, for a total of 256 networks (Fig. 3a).

We found that the number of clusters differed widely across net-
works that successfully learned all 20 tasks, ranging from the lowest
(2) to the highest number (30) allowed by the clustering algorithm
used (Fig. 3b). Surprisingly, the most prominent factor determining
the number of clusters was the neuronal activation function used
(Fig. 3c). Most networks (> 80%) with Softplus and ReLU activa-
tion functions gave rise to more than five clusters. In contrast, about
80% of the networks with ReTanh and Tanh activation functions
resulted in the minimum number of clusters. The network archi-
tecture, initialization and L1 weight and rate regularizations did
not affect the number of clusters as substantially (Fig. 3d–g). These
findings show that neural networks trained for many tasks do not
necessarily develop clusters of units, but tend to do so when realistic
non-saturating activation functions28,29 are used. The reason for this
discrepancy remains to be elucidated.

Relationships between neural representations of pairs of tasks.
In the following sections, we will focus our analyses on the refer-
ence networks. The map of normalized task variance in Fig. 2c
allowed us to visualize the whole network across many tasks all at
once. However, it is of limited use when we try to compare with
experimental data or to analyze the (dis)similarity of the neural task
representation between any pair of tasks. To quantify how each unit
is selective in one task in comparison to another task, we introduce
a simple measure based on task variance: the fractional task vari-
ance (FTV). For unit i, the FTV with respect to task A and task B is
defined as

=
−
+

A B
A B
A B

FTV(,)
TV() TV()
TV() TV()i

i i

i i

a

b

Activation
function

Network
type

Initialization L1 weight
regularization

L1 rate
regularization

Tanh

ReLU

Softplus
RNN

GRU

Diagonal

Random
orthogonal

0

1 × 10–5

1 × 10–4

1 × 10–3Retanh

0

1 × 10–5

1 × 10–4

1 × 10–3

c d e

f g

Activation function

Softplus

ReLU

Retanh

Tanh

GRU

RNN

Network type Initialization

Diag.

Rand.
Ortho.

0

30

0 30
No. of clusters

L1 weight

1 205
Networks

L1 rate

Initialization

Network type

Activation function

20

10

0N
o.

 o
f c

lu
st

er
s

15 30 0 15 30 0 15 30

Number of clusters Number of clusters Number of clusters

L1 weight
0

1 × 10–5 1 × 10–5

1 × 10–41 × 10–4

1 × 10–3

0 15 30 0 15 30

Number of clusters Number of clusters

1 × 10–3

0
L1 rate

Fig. 3 | The activation function dictates whether clusters emerge in a network. a, A total of 256 networks were trained, each with a different set of
hyperparameters. b, Top, the networks are sorted by their numbers of clusters. Bottom, the hyperparameters used for each network are indicated by
colors, as defined in a. Inset, the distribution of cluster numbers across networks. Only networks that reached the minimum performance of 90% for every
task are shown. c–g, Breaking down the number of clusters according to the activation function (c), network architecture (d), weight initialization (e), L1
weight regularization strength (f), and L1 rate regularization strength (g). In e–g, all networks as in a that learned all tasks are included. In d, only networks
with Softplus and ReLU activation functions are shown, as no RNN with Tanh and ReTanh successfully learned all tasks.

NaTuRe NeuRoScieNce | VOL 22 | FEBRUARY 2019 | 297–306 | www.nature.com/natureneuroscience300

http://www.nature.com/natureneuroscience

ArticlesNaTure NeuroscieNce

where TVi(A) and TVi(B) are the task variances for tasks A and B,
respectively. FTV ranges between − 1 and + 1. Having a FTVi(A,B)
close to + 1 (or − 1) means that unit i is primarily selective in task
A (or B).

For every pair of tasks, we were able to compute the FTV for all
units that were active in at least one of the two tasks. Each distri-
bution of FTVs contained rich information about the single-unit
level neural relationship between the pair of tasks. Having 20 tasks
provided us with 190 distinct FTV distributions (Supplementary
Fig. 6), from the shape of which we informally summarized five
typical neural relationships (Fig. 4).

1. Disjoint (Fig. 4a). When two tasks have a disjoint relationship
such as the Anti task and the DM1 task, the FTV distribution was
characterized by two peaks at the two ends and few units in between.
There was little overlap between units selective in the two tasks. The
shape of the FTV distribution was rather robust across indepen-
dently trained networks: the FTV distribution from one sample net-
work closely matches the averaged distribution from 20 networks.

2. Inclusive (Fig. 4b). This relationship was embodied by a
strongly skewed FTV distribution, suggesting that one task is neu-
rally a subset of another task. In this case, there were no units that
were selective in the DM1 task but not in the Dly DM 1 task.

3. Mixed (Fig. 4c). A mixed relationship was characterized by
a broad unimodal FTV distribution centered around zero with no
clear peak at the two ends. This distribution suggests that the two
tasks use overlapping neural circuits.

4. Disjoint-equal (Fig. 4d). For Ctx DM 1 and 2, the FTV distri-
bution was trimodal, with two peaks at the two ends and another
peak around zero. This relationship can be considered to be a com-
bination of the disjoint relationship and the equal relationship. The
equal relationship is represented by a single, narrow peak around
zero. In this scenario, the two tasks each get a private neural popula-
tion and share the third population.

5. Disjoint-mixed (Fig. 4e). This relationship is a combina-
tion of the disjoint and the mixed relationships. Many units only

participated in one of the two tasks, whereas the rest of the units
were mixed in both tasks.

Consistent with the findings above (Fig. 3), networks with the
Tanh activation function showed very different FTV distributions.
In such networks, the FTV distribution for a pair of tasks typically
involved a single narrow peak, indicating that units were involved
with similar strengths in both tasks (Fig. 4f–j).

In summary, we introduced a simple yet informative measure
to study the potentially diverse neural relationships between pairs
of tasks. We found that, in the reference networks, these relation-
ships could be categorized into several typical classes. FTV dis-
tributions could be easily computed using neural data, facilitating
comparisons with experiments on pairwise neural relationships
between tasks.

Dissecting the circuit for the context-dependent DM tasks.
Here we ‘open the black box’31 and demonstrate how an example
network could be dissected and analyzed based on its clusters in
two sample cognitive tasks. Context-dependent DM tasks11 require
selective processing, integration and memory of sensory inputs.
Our set of tasks includes two such tasks, Ctx DM 1 and Ctx DM 2
(Supplementary Table 1). Three subgroups of units emerged in the
network (Fig. 5a). Group 1 (2) units were primarily engaged in con-
text 1 (2), whereas group 12 (one-two) units were engaged equally
in both contexts. Inactivating or ‘lesioning’ all group 1 (2) units at
once resulted in a failure in performing the Ctx DM 1 (2) tasks,
respectively (Fig. 5b and Supplementary Fig. 7). In contrast, lesion-
ing group 12 units impaired performance across all DM tasks. These
results suggest that, in this network, groups 1 and 2 are responsible
for selective processing of sensory inputs, whereas group 12 is criti-
cal for DM.

We next studied the connection weights of groups 1, 2, and 12
units to understand their roles. Sensory inputs from modality 1
sent strongly tuned projections to group 1 units, but not to group
2 units (Fig. 5c). Group 12 units also received direct, tuned sensory

Disjoint

a

f g h i j

b c d e

Inclusive Disjoint-equal Disjoint-mixedMixed

P
ro

po
rt

io
n

GRU + tanh

0.2

0.1

0.1

0.0

–1 10

FTV(DM 1, Anti) FTV(Dly DM 1, DM 1) FTV(DM 1, Ctx DM 1) FTV(Ctx DM 1, Ctx DM 2) FTV(DMC, DNMC)

FTV(DM 1, Anti) FTV(Dly DM 1, DM 1) FTV(DM 1, Ctx DM 1) FTV(Ctx DM 1, Ctx DM 2) FTV(DMC, DNMC)

Example network
All networks

Example network
All networks

–1 10 –1 10 –1 10 –1 10 –1 10

–1 10 –1 10 –1 10 –1 10

0.2

0.1

0.0

0.2

0.2

0.4

0.1

0.0

0.0

0.2

0.1

0.0

0.00

0.05

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.0

Fig. 4 | a diversity of neural relationships between pairs of tasks. For a pair of tasks, we characterized their neural relationship by the distribution of FTV
over all units. a–e, In networks with the Softplus activation function, we observed five typical relationships: disjoint (a), inclusive (b), mixed (c), disjoint-
equal (d), and disjoint-mixed (e). Blue: distribution for one example network. Black: averaged distribution over 20 networks. f–j, In networks with the Tanh
activation function and the leaky GRU architecture (blue shaded background), the FTV distributions were largely mixed or equal for the same pairs of
tasks. The pairs of tasks analyzed were DM1 and Anti (a,f), Dly DM 1 and DM 1 (b,g), DM 1 and Ctx DM 1 (c,h), Ctx DM 1 and Ctx DM 2 (d,i), or DMC and
DNMC (e,j). Results from networks with the leaky RNN architecture and Tanh activation function are not shown because none of them learned all tasks.

NaTuRe NeuRoScieNce | VOL 22 | FEBRUARY 2019 | 297–306 | www.nature.com/natureneuroscience 301

http://www.nature.com/natureneuroscience

Articles NaTure NeuroscieNce

inputs from both modalities. All groups projected to the output
units (Fig. 5d), although group 12 units were more critical for DM
(Fig. 5b). Group 1 and group 2 units excited themselves while inhib-
iting each other. Both projected to group 12 units (Fig. 5e). Group
1 units received negative connection weights from the rule input
units representing the Ctx DM 2 task (Fig. 5f), which explained why
group 1 units are silent during context 2. In summary, from train-
ing emerged two groups of units that were specialized for selective
input processing. Along with the sensory inputs from both modali-
ties, both groups fed into the third group that was specialized for
DM (Fig. 5g). Our dissection of a reference network here relies on
the existence of clusters. Analyzing networks with no cluster, state-
space, and dynamical-system approaches may be more appropriate11.

Compositional representations of tasks. A cognitive task can, in
general, be expressed abstractly as a sequence of sensory, cognitive
and motor processes, and cognitive processes may involve a com-
bination of basic functions (such as working memory) required
to perform the task (Supplementary Table 1). The compositional-
ity of cognitive tasks is natural for human subjects because tasks
are instructed with natural languages, which are compositional in
nature12. For example, the Go task can be instructed as ‘saccade to
the direction of the stimulus after the fixation cue goes off ’, whereas

the Dly Go task can be instructed as ‘remember the direction of the
stimulus, then saccade to that direction after the fixation cue goes
off ’. Therefore, the Dly Go task can be expressed as a composition
of the Go task with a particular working memory process. Similarly,
the Anti task can be combined with the same working memory pro-
cess to form the Dly Anti task.

Here, we tested whether the reference network developed a
simple algebraic form of compositional representations for tasks,
even when it was never explicitly provided with the relationships
between tasks. We studied the representation of each task as a single
high-dimensional vector. To compute this ‘task vector’, we averaged
neural activities across all possible stimulus conditions in each task
and focused on the steady-state response during the stimulus epoch
(Fig. 6a). Thus, the neural population state near the end of stimulus
presentation was able to represent how the network processed the
stimulus in a particular task to meet the computational need of sub-
sequent behavioral epochs. Indeed, this idea was confirmed using
principal component analysis, which revealed that task vectors in
the state space spanned by the top two principal components were
distinct for all 20 tasks (Supplementary Fig. 8).

We found that the vector pointing from the Go task vector toward
the Dly Go task vector was very similar to the vector pointing from
the Anti vector to the Dly Anti vector (Fig. 6b). This finding was

a

c d

f

e

b

Ctx DM 1 rule input

1

2

12

S
tim

 m
od

 1
S

tim
 m

od
 2 R

es
po

ns
e

Ctx DM 2 rule inputg

1 2 12
To group

40

1

–2

0.25

0.00

–0.25

0

0

To group

Preferred mod 1 input
direction

Input from rule units

Preferred output
direction

C
on

ne
ct

io
n

w
ei

gh
t

fr
om

 m
od

 1
C

on
ne

ct
io

n
w

ei
gh

t

C
on

ne
ct

io
n

w
ei

gh
t

to
 o

ut
pu

t

T
o

1
2
12

From group
1

1

1

2

2

2

12

12

12
0.25

–0.40

R
ec. w

eight

From

20

0
0.0 0.5

FracVar(Ctx DM 1,
Ctx DM 2)

1.0

Group

Intact
Lesion group 1

Tasks

Lesion group 2
Lesion group 12

P
er

fo
rm

an
ce

1

1

2

0

Ctx
DM

 1

Ctx
DM

 2
DM

 1
DM

 2

M
ult

Sen
 D

M

Ctx
DM

 1

Ctx
DM

 2
DM

 1
DM

 2

M
ult

Sen
 D

M

12

U
ni

ts

Fig. 5 | Dissecting a reference network for the context-dependent DM tasks. a, The FTV distribution for the Ctx DM 1 and 2 tasks in an example network.
Most units are segregated into three groups on the basis of their FTV values. b, After lesioning all group 1 units together (green), the network could no
longer perform the Ctx DM 1 task, whereas performance for other tasks remained intact. Instead, lesioning all group 12 units disrupted the performance for
all DM tasks. c,d, Average connections from modality 1 input units to recurrent units (c) and from recurrent units to output units (d). Modality 1 input units
made strongly tuned projections to group 1 units. Input and output connections are sorted by each unit’s preferred input and output direction, respectively,
defined as the direction represented by the strongest weight. e, Network wiring architecture that emerged from training, in which group 1 and group 2 units
excited themselves and strongly inhibited each other. Both group 1 and 2 units excited group 12 units. Rec, recurrent. f, Group 1 (2) units received strong
negative connections from rule units representing the Ctx DM 2 (1) task. The boxplot shows the median (horizontal line), the confidence interval of the
median obtained with bootstrapping (notches), lower and upper quartile values (box), and the range of values (whisker). g, Cluster-based circuit diagram
summarizing the neural mechanism of the Ctx DM tasks in the reference network.

NaTuRe NeuRoScieNce | VOL 22 | FEBRUARY 2019 | 297–306 | www.nature.com/natureneuroscience302

http://www.nature.com/natureneuroscience

ArticlesNaTure NeuroscieNce

robust across many independently trained networks (Fig. 6c). The
Go-to-Dly Go vector and the Anti-to-Dly Anti vector presumably
reflect the cognitive process of working memory. Similar findings
were made with another set of tasks. The vector pointing from the
Ctx DM 1 task to the Ctx DM 2 task was similar to the vector point-
ing from the Ctx Dly DM 1 task to the Ctx Dly DM 2 task (Fig. 6d,e).
The Ctx DM 1 to Ctx DM 2 vector reflects the difference between
the gating modality 1 and the gating modality 2 processes. These
results suggest that the representation of a task can potentially be
expressed as the algebraic sum of vectors representing the underly-
ing sensory, cognitive, and motor processes. This finding is reminis-
cent of previous work showing that neural networks can represent
words and phrases compositionally32.

Performing tasks with composition of rule inputs. We showed
that the representation of tasks could be compositional in principle.

However, it is unclear whether in our reference network this prin-
ciple of compositionality can be extended from representing to per-
forming tasks. The network is normally instructed which task to
perform by activation of the corresponding rule input unit. What
would the network do in response to a compositional rule signal
as a combination of several activated and deactivated rule units?
We tested whether the network can perform tasks by receiving com-
posite rule inputs (Fig. 7a).

Consider the same two sets of tasks as in Fig. 6. The network
was able to perform the Dly Anti task well when provided with
the particular combination of rule inputs: Anti + (Dly Go − Go)
(Fig. 7b). In contrast, the network failed to perform the Dly Anti
task when provided with several other combinations of rule inputs
(Fig. 7b). Similarly, the network can perform the Ctx Dly DM
1 task best when provided the composite rule inputs of Ctx Dly
DM 2 + (Ctx DM 1 − Ctx DM 2) (Fig. 7c). In accordance with
these results, we found that connection weights from individual
rule input units to recurrent units also displayed an algebraic com-
positional structure (Supplementary Fig. 9). Similar results were
found when each rule activates and inactivates a distributed set
of rule units (Supplementary Fig. 10). However, similar success
was not obtained for the family of matching tasks (DMS, DNMS,
DMC, DNMC) (Supplementary Table 1). The network cannot per-
form the DMS task when provided with the composite rule inputs
DMC + DNMS − DNMC (Supplementary Fig. 11). These results
indicated that the reference networks learned several, but not all,
implicit compositional relationships between tasks.

In a network with this simple form of compositionality, acquir-
ing a new task may need no modification to the recurrent con-
nections because all components for this task have already been
learned. Instead, a new task may be acquired by learning the appro-
priate rule input that controls the information flow in the network2.
To test these hypotheses, we studied how well networks can learn
new tasks when pre-trained on a set of tasks. Networks were able to
learn a new task substantially faster when pre-trained on tasks with
similar components (Fig. 7d). A network pre-trained on related
tasks was even able to learn a new task by modifying only the con-
nection weights from rule input units to the recurrent network
(Fig. 7e). Preliminary analysis showed that Ctx DM-pre-trained
networks slowly learned the Dly Anti task (Fig. 7e) by engaging
recurrent units that have different preferences for stimulus and
response directions.

Continual task training alters the neural representation. In most
of the networks presented so far, all tasks were randomly interleaved
during training, and the networks adjusted all of the connection
weights to perform the 20 tasks optimally. However, adult animals
typically learn tasks sequentially. When an adult animal is learn-
ing some new tasks, its brain needs to implicitly balance the need
of learning with the need of retaining past memories. Otherwise,
the brain could suffer from a common problem in artificial neural
networks known as ‘catastrophic forgetting’. Learning new tasks will
happen at the expense of forgetting previous memories. The net-
work learns to perform a task by modifying parameters to minimize
the loss function for this task. During sequential training of two
tasks, if the network uses traditional learning techniques, training
for the second task can easily result in the failure of performing the
first task, as the minima of the loss functions of tasks 1 and 2 are far
apart (Fig. 8a, gray line).

Continual-learning techniques can protect previously learned
tasks by preventing large changes of important network parameters
(Fig. 8a, red line). Here we distinguish sequential training, which
describes the task presentation, from continual learning, which
refers to particular learning algorithms. Several continual-learning
methods have recently been proposed to battle catastrophic forget-
ting33–35. These methods typically involve selective protection of

b

d

c

e

Task 2

Task 3

Task 1

Neural activity
Task 1

Neural activity
Stimulus-free

State space

Unit 1

Unit 2

Unit 3
Unit 1

Unit 2

Unit 3

a

2

–2
–2

rPC 1
2 –2

–2

rPC1
2

rP
C

 2
Anti Anti

Go
Dly Anti

Dly GoDly Go

Dly Anti
Go

Ctx DM 2

Ctx Dly DM 1 Ctx Dly DM 1

Ctx Dly DM 2

Ctx DM 2

Ctx DM 1Ctx DM 1

rP
C

 2

rP
C

 2

Ctx Dly DM 2

–2 2 2–2

rPC 1 rPC 1

–1

1 1

–1

rP
C

 2

2

Fig. 6 | compositional representation of tasks in state space. a, The
representation of each task is the population activity of the recurrent
network at the end of the stimulus presentation, averaged across different
stimulus conditions (black). Gray curves indicate the neural activities in
individual task conditions. b, Representations of the Go, Dly Go, Anti, and
Dly Anti tasks in the space spanned by the top two principal components
(PCs) for a sample network. For better comparison across networks, the
top two PCs are rotated and reflected (rPCs) to form the two axes (see
Methods). c, The analysis described in b was performed for 20 networks,
and the results are overlaid. d, Representations of the Ctx DM 1, Ctx
DM 2, Ctx Dly DM 1, and Ctx Dly DM 2 tasks in the top two PC for a
sample network. e, The analysis described in d was performed for n =  40
independent networks.

NaTuRe NeuRoScieNce | VOL 22 | FEBRUARY 2019 | 297–306 | www.nature.com/natureneuroscience 303

http://www.nature.com/natureneuroscience

Articles NaTure NeuroscieNce

connection weights that are deemed important for previously
learned tasks. By employing one such technique35, we were able
to substantially improve the performance of networks that were
sequentially trained on a set of cognitive tasks (Fig. 8b,c). Notably,
all of the networks were initialized with random connection weights.
The tasks were made easier to facilitate training (see Methods). The
continual-learning technique was especially effective at helping the
network retain performance of tasks learned earlier. For example,
the continual-learning networks can retain high performance in a
working memory task (Dly Go) after successfully learning five extra
tasks (DM1, DM2, MultSen DM, Ctx DM 1, and Ctx DM 2) (Fig. 8b).
An example network achieved high performance on the DM1, DM2,
and MultSen DM tasks even before being trained on them, suggest-
ing that these tasks rely on structures that can be learned through
other tasks. In addition, continual learning resulted in a much slower
acquisition of difficult tasks (Ctx DM 1 and 2) (Fig. 8c).

To understand the impact of continual learning on neural rep-
resentation, we analyzed the FTV distributions for the Ctx DM 1
and 2 tasks in the sequentially trained networks. The shapes of the
FTV distributions were markedly different across networks trained
with or without the continual-learning technique (Fig. 8d). Instead
of a strongly trimodal distribution, the FTV distribution of a con-
tinual-learning network contained a strong peak at the middle, with
only minor peaks at the two ends.

The continual-learning technique works by selective protec-
tion of connection weights, and we can directly mimic this effect
by training networks that are partially plastic17. In contrast with
the fully plastic networks, the FTV distributions for the Ctx DM 1
and 2 tasks in the partially plastic networks were again mainly uni-
modal (Supplementary Fig. 12a).

Finally, we analyzed single- and multi-unit recordings from the
frontal eye field of macaque monkeys performing similar context-
dependent DM tasks11 (Fig. 8e and Supplementary Fig. 12b–e). The
FTV distribution derived from experimental data mainly consists of
a broad, unimodal distribution, consistent with networks sequen-
tially trained using a continual-learning technique (Fig. 8d, red) and
with partially plastic networks (Supplementary Fig. 12a, dark blue).
These findings suggest that adult brains do not necessarily develop
the ‘optimal’ circuit-level solution for newly learned tasks, even if
they have been trained for months on the same tasks. Instead, the
brain may balance the need between performing the tasks at hand
and retaining past memories.

Discussion
Higher-order cortical areas, especially the lateral prefrontal cortex,
are markedly versatile in their engagement in a wide range of cogni-
tive functions. Here we investigated how multiple cognitive tasks
are represented in various RNN models. In the networks with non-
saturating activities, we identified clusters of units that were each
specialized for a subset of tasks. Each cluster potentially represents
a particular sequence of the sensori-motor events and a subset of
cognitive processes that serve as these networks’ building blocks
for flexible behavior. We showed that realistic neuronal activation
functions28,29 robustly led to clustering across a wide range of net-
works. In addition, we found that the representation of tasks in our
network showed a form of compositionality, a critical feature for
cognitive flexibility. By virtue of the compositionality, a task can
be correctly instructed by composing instructions for other tasks.
Finally, using a recently proposed continual-learning technique,
we were able to train networks to learn many tasks sequentially.

b c

a

R
ul

e
in

pu
t u

ni
ts

R
ec

ur
re

nt
 u

ni
ts

Activation

R
ul

e
in

pu
t u

ni
ts

R
ec

ur
re

nt
 u

ni
ts

Activation

≈

+1–1 +1–1

Training only rule input connections

Training all connectionsd

e

Pretrained on

Go, Dly Go, Anti

Ctx DM 1, Ctx DM 2, Ctx Dly DM 2

1

Performance on
Dly Anti (n = 40)

0.0 0.5

Dly Anti Ctx Dly DM 1

Ctx Dly DM 2

R
ul

e
in

pu
t

R
ul

e
in

pu
t

Ctx Dly DM 2
+Ctx DM 1

Ctx DM 1

Ctx Dly DM 2
+Ctx DM 1
–Ctx DM 2

Anti

Anti
+Dly Go

Anti
+Dly Go

–Go

1.0

Performance on
Ctx Dly DM 1 (n = 40)

0.0 0.5 1.0

0

1

0

0 500 1,000

Total trials (1,000)

0 500 1,000

Total trials (1,000)

0 10 20

Total trials (1,000)

0 25 50

Total trials (1,000)

P
er

fo
rm

an
ce

 o
f

D
ly

 A
nt

i
P

er
fo

rm
an

ce
 o

f
D

ly
 A

nt
i

1

0

P
er

fo
rm

an
ce

 o
f

C
tx

 D
ly

 D
M

 1

1

0

P
er

fo
rm

an
ce

 o
f

C
tx

 D
ly

 D
M

 1

Fig. 7 | Performing tasks with algebraically composite rule inputs. a, During training, a task is always instructed by activation of the corresponding rule
input unit (left). After training, the network can potentially perform a task by activation or deactivation of a set of rule input units meant for other tasks
(right). b, The network can perform the Dly Anti task well if given the Dly Anti rule input or the Anti +  (Dly Go −  Go) rule input. The network fails to
perform the Dly Anti task when provided other combinations of rule inputs. c, Similarly, the network can perform the Ctx Dly DM 1 task well when provided
with the Ctx Dly DM 2 +  (Ctx DM 1 −  Ctx DM 2) rule input. Circles represent the results of individual networks and bars represent median performances
of 40 networks. The boxplot convention in b,c is the same as the one in Fig. 5f. d, Left, network performance during training of the Dly Anti task when the
network is pre-trained on Go, Dly Go, and Anti tasks (red), or the Ctx DM 1, Ctx DM 2, and Ctx Dly DM 2 tasks (blue). Right, network performance during
training of the Ctx Dly DM 1 task under the same pre-training conditions. Individual networks (light); mean across 40 networks (bold). All connections are
adjusted during training. e, Similar to d, but only training the rule input connections in the second training phase.

NaTuRe NeuRoScieNce | VOL 22 | FEBRUARY 2019 | 297–306 | www.nature.com/natureneuroscience304

http://www.nature.com/natureneuroscience

ArticlesNaTure NeuroscieNce

The FTV distributions in continual-learning networks were sub-
stantially more mixed, and are consistent with those computed from
prefrontal data in monkeys performing similar tasks.

Functional specialization is one of the most fundamental design
principle of the brain36, dating back to Broca’s area. The brain is
partitioned into specialized areas, and each brain area consists of
genetically and functionally distinct cell types. In contrast, theoreti-
cal studies argued that for maximum cognitive flexibility, prefrontal
neurons should be selective to mixtures of multiple task variables37.
Mixed selectivity neurons are indeed ubiquitous inside the prefron-
tal cortex10,23. These findings pose a challenging conceptual ques-
tion: when is functional specialization desired, and when is it not?
Our results suggest a tentative unifying answer to this question. For
a computation that is repeatedly performed and shared in various
behaviors, it is computationally beneficial to develop a function-
ally specialized circuit for it. In neural networks, functional spe-
cialization can be achieved by training multiple inter-related tasks
simultaneously. In biological brains, specialization is potentially
achieved through evolution and development, instead of learning
in adulthood. Mixed selectivity, on the other hand, can be beneficial
to a neural system that needs to maintain both flexibility for future
learning and memories from the past. The process of learning new
cognitive tasks in adult brains is probably better modeled in neural
networks using a continual-learning paradigm.

The neural mechanism behind multiple cognitive tasks has been
investigated in human imaging studies. In a series of experiments,
Cole and colleagues trained humans to perform 64 cognitive tasks

following compositional rule instructions6,38. They trained linear clas-
sifiers to decode rules from prefrontal neural activity patterns. These
classifiers can substantially generalize to novel tasks6, consistent with
a compositional neural representation of rules. Although trained
with discrete rule instructions, our reference network develops a clear
compositional structure in its representations for two sets of tasks, as
shown using the population activity. However, it is unlikely that our
network possesses a more general form of compositionality, which
requires that task components can be arbitrarily and recursively com-
bined to perform complex new tasks. Indeed, our network is not able
to perform the DMS task using composite rule inputs; more broadly,
it remains unclear whether standard modern recurrent network
architectures can accomplish challenging compositional tasks39,40.

Similar to other works on trained neural networks11,14–19,41, the
machine learning protocol we used is not validated biologically.
Furthermore, in our network, a rule input is explicitly provided
throughout the trial, therefore there is no need for the network to
hold the ‘task set’ internally using persistent activity4,5. This, however,
can be remedied by providing the rule cue only at the beginning of
each trial, which would encourage the network to internally sustain
the task set. We can even ask the network to figure out a task rule
by trial-and-error42. In spite of these concerns, our approach offers
an efficient computational platform to test hypotheses about neu-
ral representations and mechanisms that could guide experiments
and data analysis. Future progress in this direction, at the interface
between neuroscience and artificial intelligence, will advance our
understanding of flexible behavior in many cognitive tasks.

b

a c

d e

Traditional learning

Task 1
1

Go MultSen DM

Dly Go Ctx DM 1

DM 1

DM 2

Total trials (1,000)

Ctx DM 2

0

1

0

1

0

0 2,800

1

0

1

0

1

0

1

0

0.2
20

10

0

0.1

0.0
–1 0 1 –1 0 1

P
er

fo
rm

an
ce

P
er

fo
rm

an
ce

P
ro

po
rt

io
n

U
ni

ts

Task 2
Task 1 + 2

Parameter θ

1.0

0.5

0.0

Go

Dly
Go

DM
 1

DM
 2

M
ult

Sen
 D

M

Ctx
DM

 1

Ctx
DM

 2

Continual learning

Traditional learning

Continual learning

Lo
ss

 L

PFC data (Mante et al. 2013)

FTV(Ctx DM 1, Ctx DM 2)FTV(Ctx DM 1, Ctx DM 2)

Fig. 8 | Sequential training of cognitive tasks. a, Schematics of continual learning compared with traditional learning. Network parameters (such as
connection weights) optimal for a new task can be destructive for old tasks. Arrows show changes of an example parameter θ when task 2 is trained after
task 1 is already learned. b, Final performance across all trained tasks with traditional (gray) or continual (red) learning techniques. Lines represent the
results of individual networks. Only networks that achieved more than 80% accuracy on Ctx DM 1 and 2 are shown. c, Performance of all tasks during
sequential training. Example networks used traditional (gray) or continual (red) learning techniques, respectively. For each task, the black box indicates the
period in which this task was trained. DM 1 and 2 tasks were trained in the same block to prevent bias, as were Ctx DM 1 and 2 tasks. d, FTV distributions
for networks with traditional (gray) or continual (red) learning techniques. Solid lines are median over 20 networks. Shaded areas indicate the 95%
confidence interval of the median estimated from bootstrapping. e, The FTV computed using single-units data from the prefrontal cortex of a monkey
performing Ctx DM 1 and 2 (ref. 11).

NaTuRe NeuRoScieNce | VOL 22 | FEBRUARY 2019 | 297–306 | www.nature.com/natureneuroscience 305

http://www.nature.com/natureneuroscience

Articles NaTure NeuroscieNce

online content
Any methods, additional references, Nature Research reporting
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41593-018-0310-2.

Received: 16 July 2018; Accepted: 30 November 2018;
Published online: 14 January 2019

References
 1. Fuster, J. The Prefrontal Cortex (Academic Press, Cambridge, 2015).
 2. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex

function. Annu. Rev. Neurosci. 24, 167–202 (2001).
 3. Wang, X.-J. in Principles of Frontal Lobe Function (Stuss, D. T. & Knight, R. T.

eds.) (Cambridge Univ. Press, New York, 2013).
 4. Wallis, J. D., Anderson, K. C. & Miller, E. K. Single neurons in prefrontal

cortex encode abstract rules. Nature 411, 953–956 (2001).
 5. Sakai, K. Task set and prefrontal cortex. Annu. Rev. Neurosci. 31, 219–245

(2008).
 6. Cole, M. W., Etzel, J. A., Zacks, J. M., Schneider, W. & Braver, T. S. Rapid

transfer of abstract rules to novel contexts in human lateral prefrontal cortex.
Front. Hum. Neurosci. 5, 142 (2011).

 7. Tschentscher, N., Mitchell, D. & Duncan, J. Fluid intelligence predicts novel
rule implementation in a distributed frontoparietal control network.
J. Neurosci. 37, 4841–4847 (2017).

 8. Hanes, D. P., Patterson, W. F. II & Schall, J. D. Role of frontal eye
fields in countermanding saccades: visual, movement, and fixation activity.
J. Neurophysiol. 79, 817–834 (1998).

 9. Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode
economic value. Nature 441, 223–226 (2006).

 10. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive
tasks. Nature 497, 585–590 (2013).

 11. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature 503,
78–84 (2013).

 12. Cole, M. W., Laurent, P. & Stocco, A. Rapid instructed task learning: a new
window into the human brain’s unique capacity for flexible cognitive control.
Cogn. Affect. Behav. Neurosci. 13, 1–22 (2013).

 13. Reverberi, C., Görgen, K. & Haynes, J.-D. Compositionality of rule
representations in human prefrontal cortex. Cereb. Cortex 22,
1237–1246 (2012).

 14. Zipser, D. & Andersen, R. A. A back-propagation programmed network that
simulates response properties of a subset of posterior parietal neurons. Nature
331, 679–684 (1988).

 15. Song, H. F., Yang, G. R. & Wang, X.-J. Training excitatory-inhibitory
recurrent neural networks for cognitive tasks: a simple and flexible
framework. PLoS Comput. Biol. 12, e1004792 (2016).

 16. Carnevale, F., de Lafuente, V., Romo, R., Barak, O. & Parga, N. Dynamic
control of response criterion in premotor cortex during perceptual detection
under temporal uncertainty. Neuron 86, 1067–1077 (2015).

 17. Rajan, K., Harvey, C. D. & Tank, D. W. Recurrent network models of
sequence generation and memory. Neuron 90, 128–142 (2016).

 18. Chaisangmongkon, W., Swaminathan, S. K., Freedman, D. J. & Wang, X.-J.
Computing by robust transience: how the fronto-parietal network performs
sequential, category-based decisions. Neuron 93, 1504–1517 (2017).

 19. Eliasmith, C. et al. A large-scale model of the functioning brain. Science 338,
1202–1205 (2012).

 20. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Mnemonic coding of
visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol.
61, 331–349 (1989).

 21. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev.
Neurosci. 30, 535–574 (2007).

 22. Siegel, M., Buschman, T. J. & Miller, E. K. Cortical information flow during
flexible sensorimotor decisions. Science 348, 1352–1355 (2015).

 23. Raposo, D., Kaufman, M. T. & Churchland, A. K. A category-free neural
population supports evolving demands during decision-making. Nat.
Neurosci. 17, 1784–1792 (2014).

 24. Romo, R., Brody, C. D., Hernández, A. & Lemus, L. Neuronal correlates
of parametric working memory in the prefrontal cortex. Nature 399,
470–473 (1999).

 25. Munoz, D. P. & Everling, S. Look away: the anti-saccade task and the
voluntary control of eye movement. Nat. Rev. Neurosci. 5, 218–228 (2004).

 26. Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual
working memory in prefrontal cortex of the macaque. J. Neurosci. 16,
5154–5167 (1996).

 27. Freedman, D. J. & Assad, J. A. Neuronal mechanisms of visual categorization:
an abstract view on decision making. Annu. Rev. Neurosci. 39,
129–147 (2016).

 28. Priebe, N. J. & Ferster, D. Inhibition, spike threshold, and stimulus selectivity
in primary visual cortex. Neuron 57, 482–497 (2008).

 29. Abbott, L. F. & Chance, F. S. Drivers and modulators from push-pull and
balanced synaptic input. Prog. Brain. Res. 149, 147–155 (2005).

 30. Wang, X.-J. Probabilistic decision making by slow reverberation in cortical
circuits. Neuron 36, 955–968 (2002).

 31. Sussillo, D. & Barak, O. Opening the black box: low-dimensional dynamics in
high-dimensional recurrent neural networks. Neural Comput. 25,
626–649 (2013).

 32. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. Distributed
representations of words and phrases and their compositionality. Adv. Neural.
Inf. Process. Syst. 26, 3111–3119 (2013).

 33. Benna, M. K. & Fusi, S. Computational principles of synaptic memory
consolidation. Nat. Neurosci. 19, 1697–1706 (2016).

 34. Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks.
Proc. Natl Acad. Sci. USA 114, 3521–3526 (2017).

 35. Zenke, F., Poole, B. & Ganguli, S. Continual learning through synaptic
intelligence. ICML 70, 3987–3995 (2017).

 36. Kanwisher, N. Functional specificity in the human brain: a window into the
functional architecture of the mind. Proc. Natl Acad. Sci. USA 107,
11163–11170 (2010).

 37. Rigotti, M., Ben Dayan Rubin, D., Wang, X.-J. & Fusi, S. Internal
representation of task rules by recurrent dynamics: the importance of the
diversity of neural responses. Front. Comput. Neurosci. 4, 24 (2010).

 38. Cole, M. W. et al. Multi-task connectivity reveals flexible hubs for adaptive
task control. Nat. Neurosci. 16, 1348–1355 (2013).

 39. Yang, G. R., Ganichev, I., Wang, X.-J., Shlens, J. & Sussillo, D. A dataset
and architecture for visual reasoning with a working memory. ECCV
714–731 (2018)..

 40. Lake, B. M. & Baroni, M. Generalization without systematicity: On the
compositional skills of sequence-to-sequence recurrent networks. ICML 80,
2873–2882 (2017).

 41. Yamins, D. L. K. et al. Performance-optimized hierarchical models predict
neural responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111,
8619–8624 (2014).

 42. Song, H. F., Yang, G. R. & Wang, X.-J. Reward-based training of recurrent
neural networks for cognitive and value-based tasks. eLife 6, e21492 (2017).

acknowledgements
We thank current and former members of the Wang lab, especially S.Y. Li, O. Marschall,
and E. Ohran for fruitful discussions; J.A. Li, J.D. Murray, D. Ehrlich, and J. Jaramillo for
critical comments on the manuscript; and S. Wang for assistance with the NYU HPC
clusters. We are grateful to V. Mante for providing data and for discussion. This work
was supported by an Office of Naval Research grant no. N00014-13-1-0297, a National
Science Foundation grant no. 16-31586, a Google Computational Neuroscience Grant
(X.J.W.), a Samuel J. and Joan B. Williamson Fellowship, a National Science Foundation
Grant Number 1707398, and the Gatsby Charitable Foundation (G.R.Y.).

author contributions
G.R.Y. and X.J.W. designed the study. G.R.Y., M.R.J., H.F.S, W.T.N., and X.J.W. had
frequent discussions. G.R.Y. and M.R.J. performed the research. G.R.Y., H.F.S, W.T.N.,
and X.J.W. wrote the manuscript.

competing interests
The authors declare no competing interests.

additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41593-018-0310-2.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to X.-J.W.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

NaTuRe NeuRoScieNce | VOL 22 | FEBRUARY 2019 | 297–306 | www.nature.com/natureneuroscience306

https://doi.org/10.1038/s41593-018-0310-2
https://doi.org/10.1038/s41593-018-0310-2
https://doi.org/10.1038/s41593-018-0310-2
https://doi.org/10.1038/s41593-018-0310-2
http://www.nature.com/reprints
http://www.nature.com/natureneuroscience

ArticlesNaTure NeuroscieNce

Methods
Network structure. The RNNs shown in the main text all contain Nrec = 256
units. The results are largely insensitive to the network size. Similar results were
obtained in networks of sizes between 128 and 512 units (the range we tested).
Every network is a time-discretized RNN with positive activity15. Before time
discretization, the network activity r follows a continuous dynamical equation

τ τσ ξ= − + + + +
t

f W Wr r r u bd
d

(2)rec in
rec
2

In this equation, τ = 100 ms is the neuronal time constant. Real neurons
typically have shorter time constants around 20 ms, here the 100 ms time constant
mimics the slower synaptic dynamics on the basis of NMDA receptors30. u is
the input to the network, b is the bias or background input, f(⋅) is the neuronal
nonlinearity, ξ are Nrec independent Gaussian white noise processes with zero
mean and unit variance and σrec = 0.05 is the strength of the noise. In the reference
setting, we use a standard Softplus function

= +f x x() log(1 exp())

which after re-parameterization is very similar to a neuronal nonlinearity, that is,
the frequency-current curve, commonly used in previous neural circuit models29.
A set of output units z read out nonlinearly from the network,

= g Wz r()out

where g(x) = 1/(1 + exp(− x)) is the logistic function, bounding output activities
between 0 and 1. Win, Wrec, Wout are the input, recurrent and output connection
matrices, respectively.

After using the first-order Euler approximation with a time-discretization step
Δ t, we have

α α α σ= − + + + +− −
−f W Wr r r u b N(1) (2 (0, 1))t t

rec
t t rec1 1

in 1 2

Here α ≡ Δ t/τ, and N(0,1) stands for the standard normal distribution. We
use a discretization step Δ t = 20 ms. We imposed no constraint on the sign or the
structure of the weight matrices Win, Wrec, Wout. The network and the training are
implemented in TensorFlow.

The network receives four types of noisy input,

α σ
= +

= ∕
u u u u u
u

u
N

(, , ,)
2 (0, 1)

fix mod1 mod2 rule noise

noise in

Here the input noise strength σin = 0.01. The fixation input ufix is typically at
the high value of 1 when the network should fixate. The fixation input goes to
0 when the network is required to respond. The stimulus inputs umod1 and umod2
comprise two ‘rings’ of units, each representing a one-dimensional circular variable
described by the degree around a circle. Each ring contains 32 units, whose
preferred directions are uniformly spaced from 0 to 2π. For unit i with a preferred
direction θi, its activity for a stimulus presented at direction ψ is



























γ
ψ ψ
π

= ⋅ . −
∣ − ∣

u 0 8 exp 1
2

8
i

i
2

where γ is the strength of the stimulus. For multiple stimuli, input activities are
added together. The network also receives a set of rule inputs urule that encode
which task the network is supposed to perform on each trial. Normally, urule is a
one-hot vector. That means the rule input unit corresponding to the current task
is activated at 1, while other rule input units remain at 0. Therefore, the number
of rule input units equals to the number of tasks trained. For compositional rule
inputs (Fig. 7), the activation of rule input units can be an arbitrary pattern. For
example, for the combined rule input Anti + (Dly Go − Go), the activities of the
rule input units corresponding to the Go, Dly Go and Anti tasks are − 1, + 1 and + 1,
respectively. For Supplementary Fig. 10, each rule activates/inactivates a distributed
set of 20 rule input units. The rule unit activation patterns for different rules are
orthogonal to each other. They are chosen from rows of a random orthogonal
matrix, generated using the Python package scipy.stats.ortho_group. In total, there
are Nin = 1 + 32 × 2 + 20 = 85 input units.

The network projects to an output ring zout, which also contains 32 units. The
output ring units encode the response directions using similar tuning curves to the
ones used for the input rings. In addition, the network projects to a fixation output
unit zfix, which should be at the high activity value of 1 before the response and at 0
once a response is generated. In total, there are Nout = 1 + 32 = 33 output units.

We lesion a network unit by setting to 0 its projection weights to all recurrent
and output units.

Tasks and performances. Here we first describe the common setup for the 20 tasks
trained. Deviations from the common setup will be described below individually.

The rule input unit corresponding to the current task will be activated throughout
the whole trial. The network receives a fixation input, which is activated from the
beginning of the trial. When the fixation input is on, the network should fixate
by having the fixation output unit at a high activity ̂ = .z 0 85fix . The offset of the
fixation input usually indicates the onset of the response or go epoch, when the
network needs to report the response direction through activities of the output
ring. During the response epoch, the fixation output unit has a target output of
̂ = .z 0 05fix . For a target response direction ψ, the target output activity of an

output unit i is



























ψ ψ
π

̂ = . −
∣ − ∣

+ .z 0 8 exp 1
2

8
0 05i

i
2

where ψi is the preferred response direction of unit i. When no response is required,
the target output activity is fixed at ̂ = .z 0 05i . The network also receives one or two
stimuli. Each stimulus contains information from modality 1, 2 or both. When
there is only one stimulus, the direction of the stimulus is drawn from a uniform
distribution between 0 and 360°.

A trial is considered correct only if the network correctly maintained fixation
and responded to the correct direction. The response direction of the network is
read out using a population vector method. The decoded response direction is
considered correct if it is within 36° of the target direction. If the activity of the
fixation output falls below 0.5, the network is considered to have broken fixation.

The discrimination thresholds a in Supplementary Fig. 2 are obtained by
fitting Weibull functions to performances p as a function of coherences c at a fixed
stimulus duration,

= − . − ∕p c a1 0 5 exp(())b

Each task can be separated into distinct epochs. Fixation (fix) epoch is the
period before any stimulus is shown. It is followed by the stimulus epoch 1
(stim1). If there are two stimuli separated in time, then the period between the
two stimuli is the delay epoch and the second stimulus is shown in the stimulus
epoch 2 (stim2). The period when the network should respond is the go epoch.
The duration of the fixation, stim1, delay1, stim2 and go epochs are Tfix, Tstim1, Tdelay1,
Tstim2, Tgo, respectively. For convenience, we grouped the 20 tasks into five task
families: the Go, Anti, DM, Delayed Decision Making (Dly DM), and
Matching families.

Go task family. This family of tasks includes the Go, RT Go and Dly Go tasks. In all
three tasks, a single stimulus is randomly shown in either modality 1 or 2, and the
response should be made in the direction of the stimulus. These three tasks differ
in their stimulus onset and offset times. In the Go task, the stimulus appears before
the fixation cue goes off. In the RT Go task, the fixation input never goes off, and
the network should respond as soon as the stimulus appears. In the Dly Go task,
a stimulus appears briefly and is followed by a delay period until the fixation cue
goes off. The Dly Go task is similar to the memory-guided saccade task20.

For the Go task,

~T U(500, 1500)stim1

U(t1,t2) is a uniform distribution between t1 and t2. The unit for time is milliseconds
and is omitted for brevity. For the RT Go task,

~T U(500, 2500)stim1

For the Dly Go tasks,

~T U({200, 400, 800, 1600})delay1

Here …a aU({ , , })n1 denotes a discrete uniform distribution over the set …a a{ , , }n1 .

Anti task family. This family includes the Anti, RT Anti and Dly Anti tasks. These
three tasks are the same as their counterpart Go-family tasks, except that the
response should be made to the opposite direction of the stimulus.

DM family. This family includes five perceptual DM tasks: the DM 1, DM 2, Ctx
DM 1, Ctx DM 2 and MultSen DM tasks. In each trial, two stimuli are shown
simultaneously and are presented till the end of the trial. Stimulus 1 is drawn
randomly between 0 and 360°, while stimulus 2 is drawn uniformly between 90
and 270° away from stimulus 1. In DM 1, the two stimuli only appear in modality 1,
while in DM 2 the two stimuli only appear in modality 2. In DM 1 and DM 2, the
correct response should be made to the direction of the stronger stimulus (the
stimulus with higher γ). In Ctx DM 1, Ctx DM 2 and MultSen DM tasks, each
stimulus appears in both modality 1 and 2. In the Ctx DM 1 task, information
from modality 2 should be ignored, and the correct response should be made
to the stronger stimulus in modality 1. In the Ctx DM 2 task, information from
modality 1 should be ignored. In the MultSen DM task, the correct response
should be made to the stimulus that has a stronger combined strength in
modalities 1 and 2.

NaTuRe NeuRoScieNce | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience

Articles NaTure NeuroscieNce

The DM 1 and DM 2 tasks are inspired from classical perceptual DM tasks
based on random-dot motion stimuli21. In random-dot motion tasks, there is only
one stimulus, the coherence of which is varied across trials. Following the tradition
of Wang30, we use two input stimuli to model momentary motion evidence toward
the two target directions. When the two stimuli have the same strengths (γ1 = γ2),
there is no net evidence toward any target direction, mimicking the condition
of 0 motion coherence in the random-dot motion task. A stronger difference in
the stimulus strengths emulates a stronger motion coherence. For a coherence c
representing net evidence for the direction of stimulus 1, the strengths of stimulus
1 and 2 (γ1,γ2) are set as

γ γ γ γ= + = −c c,i i1,mod 2,mod

respectively, where i∈ {1,2} is the modality. Here, γ is the average strength of the
two stimuli. For each trial, we draw γ from a uniform distribution around 1,
γ ~ . .U(0 8, 1 2) . Indeed, in all DM-family tasks and Dly DM-family tasks, there is a
single coherence c in each trial that determines the overall strength of net evidence
toward the direction represented by stimulus 1. For all DM-family tasks,

~ − . − . − . −c U({ 0 08, 0 04, 0 02, 0 01, 0 01, 0 02, 0 04, 0 08})

The duration of stimulus 1, which is fixed in each trial, is drawn from the
following distribution,

~T U({400, 800, 1600})stim1

Indeed, all tasks from the DM family use the same distribution for Tstim1. And
since the two stimuli are shown simultaneously, Tstim1 = Tstim2.

The Ctx DM 1 and Ctx DM 2 tasks are inspired from context-dependent DM
tasks performed by macaque monkeys11. Now each stimulus is presented in both
modalities at the same direction, with strengths γ1,mod1,γ1,mod2 for stimulus 1, and
γ2,mod1,γ2,mod2 for stimulus 2. The stimulus strengths are determined by the coherence
for modality 1 and 2 (cmod1,cmod2), so we have

γ γ γ γ= + = −c c,1,mod1 mod1 mod1 2,mod1 mod1 mod1

A similar equation holds for modality 2 as well. cmod1 and cmod2 are drawn
independently from the same distribution. In Ctx DM 1, c = cmod1, while in Ctx DM 2,
c = cmod2. γmod1

 and γmod2
 are also drawn from U(0.8,1.2). In the original Mante task11,

there is another delay period between the stimuli and the response period, which is
not included here.

The MultSen DM task mimics a multi-sensory integration task23. The setup
of stimulus is similar to those in the Ctx DM 1 and Ctx DM 2 tasks, except that
the network should integrate information from both modalities and the stronger
stimulus is the one with higher averaged strength from modality 1 and 2. The
overall coherence c = (cmod1 + cmod2)/2. We determine all four strengths with the
following procedure. First, we determine the average strength of stimulus 1 across
both modalities, γ1, and the average strength of stimulus 2, γ2:

γ γ γ γ= + = −c c,1 2

Here, γ and c both follow the same distributions as other DM-family tasks.
Then we set

γ γ γ γ= + Δ = −Δ(1), (1) ,1,mod1 1 1 1,mod2 1 1 where ∪Δ ~ . . − . − .U(0 1, 0 4) U(0 4, 0 1)1 .
This is similar for stimulus 2.

Dly DM family. This family includes Dly DM 1, Dly DM 2, Ctx Dly DM 1 and Ctx
Dly DM 2. These tasks are similar to the corresponding tasks in the DM family,
except that in the Dly DM family tasks, the two stimuli are separated in time. The
Dly DM 1 and Dly DM 2 tasks are inspired by the classical parametric working
memory task developed by Romo and colleagues24. The two stimuli are both shown
briefly and are separated by a delay period. Another short delay period follows the
offset of the second stimulus.

For all Dly DM family tasks,

~
~ − . − . −

T
c

U({200, 400, 800, 1600})
U({ 0 32, 0 16, 0 08, 0 08, 0 16, 0 32})

delay1

and = =T T 300stim1 stim2 .

Matching family. This family of tasks includes the DMS, DNMS, DMC, DNMC
tasks. In these tasks, two stimuli are presented consecutively and separated by a
delay period. Each stimulus can appear in either modality 1 or 2. The network
response depends on whether or not the two stimuli are ‘matched’. In the DMS
and DNMS tasks, two stimuli are matched if they point toward the same direction,
regardless of their modalities. In DMC and DNMC tasks, two stimuli are matched
if their directions belong to the same category. The first category ranges from 0 to
180°, while the rest from 180 to 360° belong to the second category. In the DMS
and DMC tasks, the network should respond toward the direction of the second

stimulus if the two stimuli are matched and maintain fixation otherwise. In the
DNMS and DNMC tasks, the network should respond only if the two stimuli are
not matched, that is, a non-match, and fixate when it is a match.

During training of these tasks, half of the trials are matching and the other half
are non-matching. In DMS and DNMS tasks, stimulus 1 is always drawn randomly.
In half of the trials, stimulus 2 appears at the same direction as stimulus 1. In the
other half, stimulus 2 is drawn randomly between 10 and 350° away from stimulus
1. In DMC and DNMC tasks, both stimulus 1 and 2 are drawn randomly and
independently from the uniform distribution

U({18, 54, 90, 126, 162, 198, 234, 270, 306, 342})

In all Matching family tasks,

~T U({200, 400, 800, 1600})delay1

Also, match trials and non-match trials always appear with equal probability.

Training procedure. The loss L to be minimized is computed by time-averaging
the squared errors between the network output z(t) and the target output ̂z t().

= ≡ 〈 −^ 〉 .L L m z z()i t i t i t i tmse , , ,
2

, Here, i is the index of the output units. The
squared errors at different time points and of different output units are potentially
weighted differently according to the non-negative mask matrix mi,t. For the output
ring units, before the response epoch, we have mi,t = 1. The first 100 ms of the
response epoch is a grace period with mi,t = 0, while for the rest of the response
epoch, mi,t = 5. For the fixation output unit, mi,t is two times stronger than the mask
for the output ring units.

The training is performed with Adam, a powerful variant of stochastic gradient
descent43. We used the default set of parameters. The learning rate is 0.001, the
decay rate for the first and second moment estimates are 0.9 and 0.999, respectively.

The recurrent connection matrix is initialized with a scaled identity matrix
q⋅ 144, where 1 is the identity matrix. We chose q = 0.5 such that the gradient is
roughly preserved during backpropagation when the network is initialized. The
input and output connection weights are initialized as independent Gaussian
random variables with mean 0, and standard deviations ∕ N1 in and . ∕ N0 4 rec ,
respectively. The standard deviation value for the output weights is chosen to
prevent saturation of output units after initialization.

During training, we randomly interleaved all the tasks with equal probabilities,
except for the Ctx DM 1 and Ctx DM 2 tasks that appear five times more
frequently, because without sufficient training, the network gets stuck at an
alternative strategy. Instead of correctly ignoring modality 1 or 2, the network
can choose to ignore the context and integrate information from both modalities
equally. This strategy gives the network an accuracy close to 75%. During training,
we used mini-batches of 64 trials, in which all trials are generated from the same
task for computational efficiency.

Task variance analysis. A central goal of our analysis was to determine whether
individual units in the network are selective to different tasks, or whether units
tended to be similarly selective to all tasks. To quantify how selective a unit is in
one task, we defined a task variance metric. To compute the task variance TVi(A)
for task A and unit i, we ran the network for many stimulus conditions that span
the space of possible stimuli. For example, in the DM family tasks, we ran the
network for stimuli with directions ranging from 0 to 360° and with coherences
ranging from almost 0 to 0.2. After running the network for many stimulus
conditions, we computed the variance across stimulus conditions (trials) at each
time point for a specific unit then averaged the variance across all time points
to get the final task variance for this unit. The fixation epoch is excluded from
this analysis. To eliminate the effect of recurrent noise, private noise to recurrent
units is set to zero in this analysis. This process was repeated for each unit in the
network. Therefore,

= 〈 − 〈 ′ 〉 ′ 〉A r j t r j tTV() [(,) (,)]i i i j j t
2

,

where ri(j,t) is the activity of unit i on time t of trial j. In Figs. 2 and 4, we only
analyzed active units, defined as those that have summed task variance across tasks
higher than a threshold, 10−3. The results do not depend strongly on the choice of
the threshold. This procedure prevents units with extremely low task variance from
being included in the analysis.

By computing each unit’s selectivity across different stimulus conditions, we
naturally include the selectivity to motor outputs, because motor outputs depend
ultimately on the stimuli. A unit that is only selective to motor outputs or other
cognitive variables in a task will still have a non-zero task variance. Units that are
purely selective to rules and/or time will, however, have zero task variance and
therefore be excluded from our analysis.

The clustering of units based on their task variance patterns in Fig. 2 uses
k-means clustering from the Python package scikit-learn. To assess how well
a clustering configuration is, we computed its silhouette score on the basis
of intracluster and intercluster distances. The silhouette score of an unit i is
1 − di,intra/di,inter (assuming di,intra < di,inter), where di,intra is the average distance of this

NaTuRe NeuRoScieNce | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience

ArticlesNaTure NeuroscieNce

unit with other units in the same cluster, and di,inter is average distance between this
unit and units in the nearest cluster. The silhouette score of a clustering scheme is
the average silhouette score of all units. A higher silhouette score means a better
clustering. We computed the silhouette for the number of clusters ranging from 2
to 30. The optimal number of clusters

∼
k is determined by choosing the k with the

highest silhouette score.
In Fig. 2d, we visualize the clustering using tSNE. For each unit, the normalized

task variances across all tasks form a 20-dimensional vector that is then embedded
in a two-dimensional space. For the tSNE method, we used the exact method for
gradient calculation, a learning rate of 100 and a perplexity of 30.

The FTV with respect to tasks A and B is

=
−
+

A B
A B
A B

FTV(,)
TV() TV()
TV() TV()i

i i

i i

To obtain a statistical baseline for the FTV distributions as in Supplementary
Fig. 6, we transform the neural activities of the network with a random orthogonal
matrix before computing the task variance. For each network, we generate a
random orthogonal matrix M using the Python package Scipy. All network
activities are multiplied by this matrix M to obtain a rotated version of the original
neural representation.

=r rMt t
rot

Since multiplying neural activities by an orthogonal matrix is equivalent to
rotating and reflecting the neural representation in state space, this procedure will
preserve results from state-space analysis. We then compute task variances and
FTV using the rotated neural activities. The FTV distributions using the rotated
activities are clearly different from the original FTV distributions.

Varying hyperparameters of neural networks. In Fig. 3, we trained networks with
the following possible hyperparameters. The activation functions f(⋅) can be the
Softplus function

= +f x x() log(1 exp())

the ReLU

=f x x() max(, 0)

the Tanh function

= = −
+

−

−f x x() tanh() e e
e e

x x

x x

and the ReTanh

=f x x() max(tanh(), 0)

The network architecture can be the leaky RNN architecture defined above,
or the leaky GRU architecture42. The leaky GRU architecture is modified on the
basis of the original GRU architecture such that the network can be considered as a
discretized version of a time-continuous system.

α α

α σ

λ
γ

λ λ

γ

= + +
= + +

= − ⊙ +

⋅ ⊙ + + +

λ λ λ

γ γ γ
−

−

−

−
−

r

b

W W

W W

f W W

r u b

r u b

r

r u N

sigmoid()

sigmoid()

(1)

(() 2 (0, 1))

t t t

t t t

t t t t

t t t

rec,
1

in,

rec,
1

in,

1

rec
1

in 1
rec
2

Here, α = Δ t/τ and τ/λt are the effective time constants of each unit. γt are the gating
variables, determining the extent of which the activity of an unit is used to update
the activity of other units.

The recurrent connection matrix Wrec is initialized either with a diagonal
matrix (a scaled identity matrix) or with a random orthogonal matrix. The
Nrec × Nrec random orthogonal matrix is sampled from O(Nrec), the orthogonal
group in dimension Nrec using the Python function scipy.stats.ortho_group.

We considered L1 regularizations on rates and weights, respectively. The L1
regularization on rates is

∑β= ∣ ∣L
N

r1

i t
i tL1,rate L1,rate

rec ,
,

We used βL1,rate = 0,10−5,10−4,10−3. The L1 regularization on weights is

∑ ∑β= ∣ ∣
η η

ηL
N

W1

i j
i jL1,weight L1,weight

,
,

The sum over η is taken over all connection weights in the network, including
input, recurrent and output weights. We used βL1,weight = 0,10−5,10−4,10−3.

In total, 256(= 2 × 2 × 2 × 4 × 4) networks are trained. None of the leaky RNN
networks with Tanh and ReTanh activation functions learned to perform
all 20 tasks.

Analysis of the Ctx DM 1 and 2 tasks. Group 1, 2 and 12 units in Fig. 5 are
defined as those units that have FTV(Ctx DM 1, Ctx DM 2) larger than 0.9, smaller
than 0.1, and in between 0.4 and 0.6. In Fig. 5e, we did not directly plot the average
connection weights between groups, because that would include many connections
from units with different input preferences. So we only analyzed connections
between units with similar input preferences. The input preference of an unit
is defined as the direction of inputs that sends the strongest modality 1 and 2
summed projection. Two units are defined to have similar input preferences if the
distance between their preferred directions is less than π/6. The notched box-and-
whisker plots in Fig. 5f and elsewhere showed the medians (line), the confidence
interval of the median (notch) estimated through bootstrapping, the lower and
upper quartile of the distribution (box) and the range of the data (whisker). These
plots are generated with the Python function matplotlib.pyplot.boxplot.

State-space analysis. To compute the representation of a task in the state space,
we first computed the neural activities across all possible stimulus conditions, then
we averaged across all these conditions. For simplicity of the analysis, we chose to
analyze only the steady-state responses during the stimulus epoch. We do so by
focusing on the last time point of the stimulus epoch, tstim1,end. So the representation
of task A is

∼ =r r j t(,)
jstim1,end

where r(j,t) is the vector of network activities at trial j and time t during task A.
For each set of tasks, we performed principal component analysis to get the

lower dimensional representation. We repeated this process for different networks.
The representations of each set of tasks are close to four vertices of a square.
As a result, the top two principal components have similar eigenvalues and are
therefore interchangeable. To better compare across networks in Fig. 6b–e, we
allowed a rotation and a reflection in the space spanned by the top two PCs. For
each network, the rPCs are chosen such that the Go/Ctx Dly DM 1/DMS task
representation lies on the positive part of the x axis, and the Dly Go/Ctx DM
1/DNMS task lies below the x axis. The rPCs are still principal components.

Training based on pre-trained networks. In Fig. 7d,e, we pre-trained networks on
one of the following two sets of tasks. Set A includes Go, Dly Go and Anti, while
set B includes Ctx DM 1, Ctx DM 2, Ctx Dly DM 2. We pre-trained 20 networks for
each set. Each network contains 128 ReLU units. Other hyperparameters are the
same as the reference setting. After pre-training, all networks reached at least 97%
accuracy on the trained set of tasks.

Following pre-training, we trained these networks on either the Dly Anti
task or the Ctx Dly DM 1 task. In Fig. 7d, all connection weights and biased are
trained. In Fig. 7e, only the connection weights from rule input units to recurrent
units are trained.

Sequential training and continual learning. For Fig. 8, tasks appear sequentially.
Each task is trained for 400,000 trials. To eliminate bias toward one modality, DM
1 and DM 2 are still trained together and interleaved, and so are Ctx DM 1 and Ctx
DM 2.

Connection weights of networks are all initialized with the random orthogonal
initialization described previously. We added a regularizer that protects old tasks
by setting another penalty for deviations of important synaptic weights (or other
parameters)35. When training the μth task, the regularizer is

∼∑ θ θ= Ω −μL c ()
k

k k kcont cont
2

Here, ccont is the overall strength of the regularizer, θk denotes the kth parameter of
the network. The value of the anchor parameter ∼θk is the value of θk at the end of the
last task (the μth task). No regularizer is used when training the first task. Also Ωμ

k
measures how important the parameter is. Notice that two recent proposals34,35 for
continual learning both use regularizers of this form. The two proposals differ only
in how the synaptic importances are computed. We chose the method of Zenke et
al.35, because the method by Kirkpatrick et al.34 measures the synaptic importance
locally in the parameter space, resulting in underestimated and inaccurate synaptic
importance values for our settings. In Zenke et al., the importance of one parameter
is determined using this parameter’s historic contribution to the change in the loss
function. For the kth parameter, the contribution to the change in loss during task μ is

∑ω θ θ= Δμ

= μ

μ

−
g t t(()) ()k

t t

t

k k
1

NaTuRe NeuRoScieNce | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience

Articles NaTure NeuroscieNce

where gk(θ(t)) is the gradient of loss with respect to θk evaluated at θk(t), that is,
∣

θ θ
∂
∂

L
t()k k , and Δ θk(t) is the parameter change taken at step t. Therefore, ω μ

k tracks
how parameter θk contributes to changes in the loss during the μth task (from tμ−1
to tμ). The final synaptic importance is computed by first normalizing ω μ

k with the
total change in the synaptic weight θ θΔ = −μ μ μ−t t() ()k k k

1 and summing ω ν
k for all

tasks ν < μ.

∑ ω
ξ

Ω =
Δ +

μ

ν μ

ν

ν
< ()k

k

k
2

The extra hyperparameter ξ prevents Ωμ
k from becoming too large. The

hyperparameters c = 1.0 and ξ = 0.01 are determined by a coarse grid search.
The final loss is the sum of the squared-error loss and the continual-learning
regularizer.

= +L L Lmse cont

Even with the help of the continual-learning technique, we had difficulties
training the network using our original task setups. So we made the DM tasks
easier by increasing the coherences by 10 times. In addition, we used the rectified
linear function as the neuronal nonlinearity, namely f(x) = max(x,0). We found that
networks using rectified linear units learned context-dependent tasks (Ctx DM 1,
Ctx DM 2) more easily.

Experimental data analysis. We analyzed data from two monkeys performing
context-dependent DM tasks11. We focused on neural activities from the stimulus
presentation period. Before computing the task variance using the same method
described above, we first computed the trial-averaged firing rate of each unit
in each task condition. For each unit, the firing rate in each trial is obtained by
convolving the spikes with a Gaussian kernel of 40 ms width. For each task, we
define four task conditions based on the signs of the motion and color coherence:
(positive motion, positive color), (positive motion, negative color), (negative
motion, positive color), (negative motion, negative color). Then we averaged the
firing rate across all trials in each condition. This leaves us with four firing rate
traces for each unit in each task. Then we computed the task variance for each unit
in each task by calculating the variance across task conditions at every time point,
then averaging across time.

It was necessary to reduce the number of task conditions to 4 from the original
36, otherwise the task variance estimates would be too noisy. We assessed how

noisy the task variance estimates are by computing the task variance on the same
data where the trial identities are shuffled. If there is little noise, then the task
variance on the shuffled data should be close to zero.

Statistics and study design. In all boxplots, the confidence interval over the
median is obtained with bootstrapping 10,000 times. No assumption was made
about the data distribution.

No statistical methods were used to pre-determine sample sizes but our sample
sizes are larger than those reported in previous publications17,18. Independently
trained networks all have different random seeds for network initialization and
training samples. Networks with different hyperparameters are trained using the
same random seed. Data collection and analysis were not performed blind to the
conditions of the experiments. As mentioned above, In Figs. 2 and 4, we exclude
units with summed task variance across tasks lower than a threshold, 10−3. Units
with low task variance are mainly driven by injected noise, and therefore are
irrelevant for our study. In Fig. 8, we exclude networks that achieved less than 80%
accuracy on Ctx DM 1 and 2, because we are interested in networks that are able
to perform selective integration in Ctx DM 1 and 2. A network can reach 75%
accuracy even if it completely ignores the context and integrates from the two
modalities equally. See the Life Sciences Reporting Summary for more information
on the study design.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

code availability
All training and analysis codes are available on GitHub (https://github.com/
gyyang/multitask).

Data availability
We provide data files in Python and MATLAB readable formats for all trained
models for further analyses on Github (https://github.com/gyyang/multitask).

References
 43. Kingma, D. & Ba, J. Adam: A method for stochastic optimization. ICLR (2015)..
 44. Le, Q. V., Jaitly, N. & Hinton, G. E. A simple way to initialize recurrent

networks of rectified linear units. Preprint at arXiv https://arxiv.org/
abs/1504.00941 (2015).

NaTuRe NeuRoScieNce | www.nature.com/natureneuroscience

https://github.com/gyyang/multitask
https://github.com/gyyang/multitask
https://github.com/gyyang/multitask
https://arxiv.org/abs/1504.00941
https://arxiv.org/abs/1504.00941
http://www.nature.com/natureneuroscience

1

nature research | reporting sum
m

ary
April 2018

Corresponding author(s): Xiao-Jing Wang

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Latest versions of Python, Numpy, Scipy, and Tensorflow. Code will be made publicly available on Github (https://github.com/gyyang/
multitask) upon acceptance.

Data analysis Latest versions of Python, Numpy, Scipy, and Tensorflow. Code will be made publicly available on Github (https://github.com/gyyang/
multitask) upon acceptance.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All training and analysis codes will be available at publication on GitHub (https://github.com/gyyang/multitask). We will also provide data files in Python and Matlab

2

nature research | reporting sum
m

ary
April 2018

readable formats for all trained models for further analyses. The pretrained model will be stored in a Google Drive folder with its link provided on the same Github
repository.

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes but our sample sizes are larger than those reported in previous publications

Data exclusions In Figs. 2, 4, we exclude units with summed task variance across tasks lower than a threshold, 1e-3. Units with low task variance are mainly
driven by injected noise, therefore are irrelevant for our study. In Fig. 8, we exclude networks that achieved less than 80% accuracy on Ctx DM
1 and 2, because we are interested in networks that are able to perform selective integration in Ctx DM 1 and 2. A network can reach 75%
accuracy even if it completely ignores the context and integrates from the two modalities equally. Exclusion criteria are pre-established.

Replication We have retrained all of our networks several times, and we are able to reproduce our primary conclusions.

Randomization Independently trained networks all have different random seeds for network initialization and training samples. Networks with different
hyperparameters are trained using the same random seed.

Blinding Data collection and analysis were not performed blind to the conditions of the experiments

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

	Task representations in neural networks trained to perform many cognitive tasks

	Results

	Training neural networks for many cognitive tasks.
	Functional clusters encode subsets of tasks in reference networks.
	Assessing clustering across a wide range of models.
	Relationships between neural representations of pairs of tasks.
	Dissecting the circuit for the context-dependent DM tasks.
	Compositional representations of tasks.
	Performing tasks with composition of rule inputs.
	Continual task training alters the neural representation.

	Discussion

	Online content

	Acknowledgements

	Fig. 1 A recurrent neural network model is trained to perform a large number of cognitive tasks.
	Fig. 2 The emergence of functionally specialized clusters for task representation.
	Fig. 3 The activation function dictates whether clusters emerge in a network.
	Fig. 4 A diversity of neural relationships between pairs of tasks.
	Fig. 5 Dissecting a reference network for the context-dependent DM tasks.
	Fig. 6 Compositional representation of tasks in state space.
	Fig. 7 Performing tasks with algebraically composite rule inputs.
	Fig. 8 Sequential training of cognitive tasks.

