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The prefrontal cortex is important for numerous cognitive 
functions1–3, partly because of its central role in task repre-
sentation4–7. Electrophysiological experiments using behav-

ing animals have found prefrontal neurons that are either selective 
for different aspects of a given task8,9 or functionally mixed10,11. 
Much less is known about functional specialization of task repre-
sentations at the neuronal level. Imagine a single-neuron record-
ing that could be carried out with animals switching between 
many different tasks. Is each task supported by a ‘private’ cluster 
of neurons, does each task involve every neuron in the network, or 
somewhere in between? If two tasks require a common underlying 
cognitive process, such as working memory or decision-making 
(DM), what would be the relationship between their neural rep-
resentations? In other words, what would be the ‘neural relation-
ship’ between this pair of tasks? Would the two tasks use a shared 
cluster of neurons?

Humans readily learn to perform many cognitive tasks in a short 
time. By following verbal instructions such as ‘release the lever only 
if the second item is not the same as the first’, humans can perform 
a novel task without any training at all6. A cognitive task is typically 
composed of elementary sensory, cognitive, and motor processes5. 
At the computational level, correctly performing a new task without 
training requires composing elementary processes that are already 
learned. This property, called ‘compositionality’, has been proposed 
as a fundamental principle underlying flexible cognitive control12. 
In a neuronal circuit equipped with a compositional code, a new 
task might be represented as the algebraic sum of representations of 
the underlying elementary processes. Indeed, human studies have 
suggested that the representation of complex cognitive tasks in the 
lateral prefrontal cortex could be compositional6,13. However, these 
tasks involved verbal instructions; it is unknown whether non-ver-
bal tasks commonly used in animal physiological experiments also 
display compositionality and whether compositional task structures 
can emerge in relatively simple neural network models.

For a network capable of performing many tasks, should it be 
clustered? Should its representation be compositional? Conceptually, 
the answer to either question can be yes or no, independently  
(Fig. 1a). A randomly connected network can potentially solve 
multiple tasks by mixing sensory stimuli and rule inputs in a high-
dimensional space. Such a network will have no clustering and show 
no compositionality across tasks. A network where different tasks 
are represented by completely non-overlapping populations will 
show clustering but no compositionality. A network can be both 
clustered and compositional if common cognitive processes across 
tasks are represented by distinct clusters of neurons. Finally, imag-
ine linearly mixing neuronal activity of a clustered, compositional 
network. The resulting neural activity would still be compositional, 
but no longer clustered at the single-unit level.

Verifying these hypotheses remains difficult with conventional 
experimental and modeling approaches. Experiments with labora-
tory animals have so far been largely limited to a single task at a 
time; on the other hand, human imaging studies lack the spatial res-
olution to address questions at the single-neuron level. Therefore, 
the lack of neural recordings from animals performing many dif-
ferent tasks leaves unanswered important questions regarding how 
a single network represents and supports distinct tasks. In principle, 
these questions could be addressed in neural circuit models, but 
designing a single neural circuit model capable of multiple tasks is 
challenging and virtually nonexistent.

To explore potential solutions to these problems, we took the 
approach of training RNNs11,14–19. In this work, we trained single 
RNNs to perform 20 cognitive tasks. We found that after training 
all tasks simultaneously, the emerging task representations were 
organized in the form of clustering of recurrent units. Through a 
systematic examination, we identified the conditions under which 
clusters emerge. We found that a simple form of compositional task 
representation emerges from training in our network models. These 
networks can be instructed to perform certain tasks by combining 
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instructions for other tasks. To mimic the process of adult animals 
learning laboratory tasks, we also trained networks to learn mul-
tiple tasks sequentially with the help of a continual-learning tech-
nique. The resulting neural representation in such networks can 
be markedly different from networks trained on all tasks simulta-
neously. Neural recordings from the prefrontal cortex of monkeys 
performing context-dependent DM tasks are consistent with the 
continual-learning networks. Our work provides a framework for 
investigating neural representations of task structures.

Results
Training neural networks for many cognitive tasks. To study 
how various cognitive tasks might be implemented in a single neu-
ral circuit, we first trained a RNN model (Fig. 1b) to perform 20 
inter-related tasks. Most of these tasks are commonly used in neu-
rophysiological studies of non-human animals and crucial to our 
understanding of the neural mechanisms of cognition. The cho-
sen set of tasks includes variants of memory-guided response20, 
simple perceptual DM21, context-dependent DM11,22, multi-sensory 
integration23, parametric working memory24, inhibitory control 
(for example, in anti-saccade)25, delayed match-to-sample26, and 
delayed match-to-category27 tasks (Supplementary Table 1 and 
Supplementary Fig. 1).

We designed our network architecture to be general enough for 
all the tasks mentioned above, but otherwise as simple as possible to 
facilitate analysis. For every task, the network receives noisy inputs 
of three types: fixation, stimulus, and rule (Fig. 1b). The fixation 
input indicates whether the network should ‘fixate’ or respond  
(for example, ‘saccade’). Thus, the decrease in the fixation input 

provides a ‘go signal’ to the network. The stimulus inputs consist 
of two modalities, each represented by a ring of input units that 
encodes a one-dimensional circular variable such as motion direc-
tion or color on a color wheel18. A single rule input unit is activated 
in each trial, instructing the network on which task it is currently 
supposed to perform. The network projects to a fixation output unit 
and a group of motor units encoding the response direction as a 
one-dimensional variable on a ring of outputs (for example, saccade 
direction, reach direction). All network units receive private noise. 
In the ‘reference’ setting of our networks, all units have non-nega-
tive and non-saturating activities to mimic biological neurons28,29.

Before training, a network is incapable of performing any task. 
It is trained with supervised learning11,15, which modifies all con-
nection weights (input, recurrent and output) to minimize the dif-
ference between the network output and a desired (target) output. 
Notably, for the networks analyzed throughout most of the paper, 
all tasks were randomly interleaved during training. At the end, 
we will present results from sequential training of tasks. Below we 
show results obtained from networks of 256 recurrent units, and 
our results were robust with respect to the exact network size. After 
training, single network models achieved high behavioral per-
formance across all tasks (Fig. 1c). Furthermore, by conducting a 
battery of psychometric tests, we demonstrated that the networks 
display behavioral features consistent with animal studies. In per-
ceptual DM tasks, an example network achieved better perfor-
mance with higher coherence and longer duration of the stimulus21  
(Fig. 1d and Supplementary Fig. 2a–f), and it combined informa-
tion from different sources to form decisions23 (Fig. 1e). In working 
memory tasks, the same network was able to maintain information 
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Fig. 1 | a recurrent neural network model is trained to perform a large number of cognitive tasks. a, Schematic showing how the same network can 
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c, The network successfully learned to perform 20 tasks. d,e, Psychometric curves in two DM tasks. d, Perceptual DM relies on temporal integration 
of information, as the network performance improves when the noisy stimulus is presented for a longer time. a.u., arbitrary unit. e, In a multi-sensory 
integration task, the trained network combines information from two modalities to improve performance (compared with performance when information 
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throughout a delay period of up to 5 s1,20,24 (50 times the single-unit 
time constant) (Supplementary Fig. 2g).

Functional clusters encode subsets of tasks in reference networks. 
The focus of our analysis was to examine the neural representation 
of tasks. After training, it is conceivable that each unit of the recur-
rent network is only selective in one or a few tasks, forming highly 
specialized task representations. On the other hand, task represen-
tations may be completely mixed, where all units are engaged in 
every task (Fig. 1a). We sought to assess where our reference net-
works lie on the continuum between these two extreme scenarios. 
In this section, we will focus our analyses on one example network.

To quantify single-unit task representation, we need a measure of 
task selectivity that is general enough that it applies to a broad range 
of tasks, and at the same time simple enough that it can be easily 
computed. We propose a measure that we call task variance (see 
Methods). For each task and each unit, the task variance computes 
the variance of that unit’s noise-free response across conditions in 
that task (Fig. 2a). This measure quantifies the amount of stimulus 
information a unit conveyed during a task, without asking how that 

stimulus information is encoded. Units with different stimulus tun-
ing can have the same task variance in a task. Task variance is agnos-
tic about the task setup and can be easily computed in models and is 
also applicable to the analysis of experimental data.

By computing the task variance for all trained tasks, we were able 
to study how individual units are differentially selective in all of the 
tasks (Fig. 2b). For better comparison across units, we normalized the 
task variance of each unit such that the maximum normalized vari-
ance over all tasks was 1. By analyzing the patterns of normalized task 
variance for all active units, we found that units were self-organized 
into distinct clusters through learning (Fig. 2c,d and Supplementary 
Fig. 3a) (see Methods). We identified about 15 clusters in the net-
work. The ideal number of clusters was chosen to maximize the ratio 
of intercluster to intracluster distances (Supplementary Fig. 4). Units 
belonging to the same cluster are mainly selective in the same subset 
of tasks. Units in the same cluster can have different incoming and 
outgoing connection weights however, simply as a result of different 
stimulus tuning (Supplementary Fig. 5).

To understand the causal role of these clusters, we lesioned each 
of them while monitoring the change in performance across all  
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20 tasks (Fig. 2e). We found one cluster (cluster number 3) that was 
specialized for the Anti-family tasks. Another two clusters (cluster 
numbers 5 and 6) were specialized for DM tasks involving modality 
1 and 2, respectively. Furthermore, one cluster (cluster number 8)  
selective in the parametric working memory tasks (the delayed DM 
or Dly DM task family) was also selective in the perceptual DM 
tasks (the DM task family), indicating a common neural substrate 
for these two cognitive functions in our reference networks30. We 
can also study how units are clustered on the basis of epoch vari-
ance, a measure that quantifies how selective units are in each task 
epoch (Supplementary Fig. 3). One cluster of units presumably sup-
ports response generation, as it was highly selective in the response 
epoch, but not the stimulus epoch. These findings are robust across 
independently trained network with the same setting. Our results 
indicate that the reference networks successfully identified common 
sensory, cognitive, and motor processes underlying subsets of tasks, 
and, through training, developed units dedicated to the shared pro-
cesses rather than to the individual tasks.

Assessing clustering across a wide range of models. We showed 
that networks trained to perform many cognitive tasks can develop 
clusters of units. Although connection weights in the network are 
adjusted with supervised learning, we specified the hyperparam-
eters, such as the neuronal activation function (the input-output 
transfer function), the overall network architecture, and further 
training objectives. To understand how the emergence of cluster-
ing may depend on the hyperparameters used, we trained networks 
with four different activation functions (Softplus, rectified linear 
unit or rectified linear function (ReLU), hyperbolic tan function 
(Tanh), and rectified Tanh or ReTanh), two different architectures 
(leaky RNN and leaky gated recurrent unit (GRU) network), two 
weight initializations (diagonal and random orthogonal), four levels 
of L1 regularization on weights, and four levels of L1 regularization 

on activity (see Methods). We tested all combinations of these dif-
ferent hyperparameters, for a total of 256 networks (Fig. 3a).

We found that the number of clusters differed widely across net-
works that successfully learned all 20 tasks, ranging from the lowest 
(2) to the highest number (30) allowed by the clustering algorithm 
used (Fig. 3b). Surprisingly, the most prominent factor determining 
the number of clusters was the neuronal activation function used 
(Fig. 3c). Most networks (> 80%) with Softplus and ReLU activa-
tion functions gave rise to more than five clusters. In contrast, about 
80% of the networks with ReTanh and Tanh activation functions 
resulted in the minimum number of clusters. The network archi-
tecture, initialization and L1 weight and rate regularizations did 
not affect the number of clusters as substantially (Fig. 3d–g). These 
findings show that neural networks trained for many tasks do not 
necessarily develop clusters of units, but tend to do so when realistic 
non-saturating activation functions28,29 are used. The reason for this 
discrepancy remains to be elucidated.

Relationships between neural representations of pairs of tasks. 
In the following sections, we will focus our analyses on the refer-
ence networks. The map of normalized task variance in Fig. 2c 
allowed us to visualize the whole network across many tasks all at 
once. However, it is of limited use when we try to compare with 
experimental data or to analyze the (dis)similarity of the neural task 
representation between any pair of tasks. To quantify how each unit 
is selective in one task in comparison to another task, we introduce 
a simple measure based on task variance: the fractional task vari-
ance (FTV). For unit i, the FTV with respect to task A and task B is 
defined as
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where TVi(A) and TVi(B) are the task variances for tasks A and B, 
respectively. FTV ranges between − 1 and + 1. Having a FTVi(A,B) 
close to + 1 (or − 1) means that unit i is primarily selective in task 
A (or B).

For every pair of tasks, we were able to compute the FTV for all 
units that were active in at least one of the two tasks. Each distri-
bution of FTVs contained rich information about the single-unit 
level neural relationship between the pair of tasks. Having 20 tasks  
provided us with 190 distinct FTV distributions (Supplementary 
Fig. 6), from the shape of which we informally summarized five 
typical neural relationships (Fig. 4).

1. Disjoint (Fig. 4a). When two tasks have a disjoint relationship 
such as the Anti task and the DM1 task, the FTV distribution was 
characterized by two peaks at the two ends and few units in between. 
There was little overlap between units selective in the two tasks. The 
shape of the FTV distribution was rather robust across indepen-
dently trained networks: the FTV distribution from one sample net-
work closely matches the averaged distribution from 20 networks.

2. Inclusive (Fig. 4b). This relationship was embodied by a 
strongly skewed FTV distribution, suggesting that one task is neu-
rally a subset of another task. In this case, there were no units that 
were selective in the DM1 task but not in the Dly DM 1 task.

3. Mixed (Fig. 4c). A mixed relationship was characterized by 
a broad unimodal FTV distribution centered around zero with no 
clear peak at the two ends. This distribution suggests that the two 
tasks use overlapping neural circuits.

4. Disjoint-equal (Fig. 4d). For Ctx DM 1 and 2, the FTV distri-
bution was trimodal, with two peaks at the two ends and another 
peak around zero. This relationship can be considered to be a com-
bination of the disjoint relationship and the equal relationship. The 
equal relationship is represented by a single, narrow peak around 
zero. In this scenario, the two tasks each get a private neural popula-
tion and share the third population.

5. Disjoint-mixed (Fig. 4e). This relationship is a combina-
tion of the disjoint and the mixed relationships. Many units only  

participated in one of the two tasks, whereas the rest of the units 
were mixed in both tasks.

Consistent with the findings above (Fig. 3), networks with the 
Tanh activation function showed very different FTV distributions. 
In such networks, the FTV distribution for a pair of tasks typically 
involved a single narrow peak, indicating that units were involved 
with similar strengths in both tasks (Fig. 4f–j).

In summary, we introduced a simple yet informative measure 
to study the potentially diverse neural relationships between pairs 
of tasks. We found that, in the reference networks, these relation-
ships could be categorized into several typical classes. FTV dis-
tributions could be easily computed using neural data, facilitating 
comparisons with experiments on pairwise neural relationships 
between tasks.

Dissecting the circuit for the context-dependent DM tasks. 
Here we ‘open the black box’31 and demonstrate how an example 
network could be dissected and analyzed based on its clusters in 
two sample cognitive tasks. Context-dependent DM tasks11 require 
selective processing, integration and memory of sensory inputs. 
Our set of tasks includes two such tasks, Ctx DM 1 and Ctx DM 2 
(Supplementary Table 1). Three subgroups of units emerged in the 
network (Fig. 5a). Group 1 (2) units were primarily engaged in con-
text 1 (2), whereas group 12 (one-two) units were engaged equally 
in both contexts. Inactivating or ‘lesioning’ all group 1 (2) units at 
once resulted in a failure in performing the Ctx DM 1 (2) tasks, 
respectively (Fig. 5b and Supplementary Fig. 7). In contrast, lesion-
ing group 12 units impaired performance across all DM tasks. These 
results suggest that, in this network, groups 1 and 2 are responsible 
for selective processing of sensory inputs, whereas group 12 is criti-
cal for DM.

We next studied the connection weights of groups 1, 2, and 12 
units to understand their roles. Sensory inputs from modality 1 
sent strongly tuned projections to group 1 units, but not to group 
2 units (Fig. 5c). Group 12 units also received direct, tuned sensory 
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inputs from both modalities. All groups projected to the output 
units (Fig. 5d), although group 12 units were more critical for DM  
(Fig. 5b). Group 1 and group 2 units excited themselves while inhib-
iting each other. Both projected to group 12 units (Fig. 5e). Group 
1 units received negative connection weights from the rule input 
units representing the Ctx DM 2 task (Fig. 5f), which explained why 
group 1 units are silent during context 2. In summary, from train-
ing emerged two groups of units that were specialized for selective 
input processing. Along with the sensory inputs from both modali-
ties, both groups fed into the third group that was specialized for 
DM (Fig. 5g). Our dissection of a reference network here relies on 
the existence of clusters. Analyzing networks with no cluster, state-
space, and dynamical-system approaches may be more appropriate11.

Compositional representations of tasks. A cognitive task can, in 
general, be expressed abstractly as a sequence of sensory, cognitive 
and motor processes, and cognitive processes may involve a com-
bination of basic functions (such as working memory) required 
to perform the task (Supplementary Table 1). The compositional-
ity of cognitive tasks is natural for human subjects because tasks 
are instructed with natural languages, which are compositional in 
nature12. For example, the Go task can be instructed as ‘saccade to 
the direction of the stimulus after the fixation cue goes off ’, whereas 

the Dly Go task can be instructed as ‘remember the direction of the 
stimulus, then saccade to that direction after the fixation cue goes 
off ’. Therefore, the Dly Go task can be expressed as a composition 
of the Go task with a particular working memory process. Similarly, 
the Anti task can be combined with the same working memory pro-
cess to form the Dly Anti task.

Here, we tested whether the reference network developed a 
simple algebraic form of compositional representations for tasks, 
even when it was never explicitly provided with the relationships 
between tasks. We studied the representation of each task as a single 
high-dimensional vector. To compute this ‘task vector’, we averaged 
neural activities across all possible stimulus conditions in each task 
and focused on the steady-state response during the stimulus epoch 
(Fig. 6a). Thus, the neural population state near the end of stimulus 
presentation was able to represent how the network processed the 
stimulus in a particular task to meet the computational need of sub-
sequent behavioral epochs. Indeed, this idea was confirmed using 
principal component analysis, which revealed that task vectors in 
the state space spanned by the top two principal components were 
distinct for all 20 tasks (Supplementary Fig. 8).

We found that the vector pointing from the Go task vector toward 
the Dly Go task vector was very similar to the vector pointing from 
the Anti vector to the Dly Anti vector (Fig. 6b). This finding was 
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robust across many independently trained networks (Fig. 6c). The 
Go-to-Dly Go vector and the Anti-to-Dly Anti vector presumably 
reflect the cognitive process of working memory. Similar findings 
were made with another set of tasks. The vector pointing from the 
Ctx DM 1 task to the Ctx DM 2 task was similar to the vector point-
ing from the Ctx Dly DM 1 task to the Ctx Dly DM 2 task (Fig. 6d,e). 
The Ctx DM 1 to Ctx DM 2 vector reflects the difference between 
the gating modality 1 and the gating modality 2 processes. These 
results suggest that the representation of a task can potentially be 
expressed as the algebraic sum of vectors representing the underly-
ing sensory, cognitive, and motor processes. This finding is reminis-
cent of previous work showing that neural networks can represent 
words and phrases compositionally32.

Performing tasks with composition of rule inputs. We showed 
that the representation of tasks could be compositional in principle.  

However, it is unclear whether in our reference network this prin-
ciple of compositionality can be extended from representing to per-
forming tasks. The network is normally instructed which task to 
perform by activation of the corresponding rule input unit. What 
would the network do in response to a compositional rule signal 
as a combination of several activated and deactivated rule units?  
We tested whether the network can perform tasks by receiving com-
posite rule inputs (Fig. 7a).

Consider the same two sets of tasks as in Fig. 6. The network 
was able to perform the Dly Anti task well when provided with 
the particular combination of rule inputs: Anti +  (Dly Go −  Go) 
(Fig. 7b). In contrast, the network failed to perform the Dly Anti 
task when provided with several other combinations of rule inputs 
(Fig. 7b). Similarly, the network can perform the Ctx Dly DM 
1 task best when provided the composite rule inputs of Ctx Dly  
DM 2 +  (Ctx DM 1 −  Ctx DM 2) (Fig. 7c). In accordance with 
these results, we found that connection weights from individual 
rule input units to recurrent units also displayed an algebraic com-
positional structure (Supplementary Fig. 9). Similar results were 
found when each rule activates and inactivates a distributed set 
of rule units (Supplementary Fig. 10). However, similar success 
was not obtained for the family of matching tasks (DMS, DNMS, 
DMC, DNMC) (Supplementary Table 1). The network cannot per-
form the DMS task when provided with the composite rule inputs 
DMC +  DNMS −  DNMC (Supplementary Fig. 11). These results 
indicated that the reference networks learned several, but not all, 
implicit compositional relationships between tasks.

In a network with this simple form of compositionality, acquir-
ing a new task may need no modification to the recurrent con-
nections because all components for this task have already been 
learned. Instead, a new task may be acquired by learning the appro-
priate rule input that controls the information flow in the network2. 
To test these hypotheses, we studied how well networks can learn 
new tasks when pre-trained on a set of tasks. Networks were able to 
learn a new task substantially faster when pre-trained on tasks with 
similar components (Fig. 7d). A network pre-trained on related 
tasks was even able to learn a new task by modifying only the con-
nection weights from rule input units to the recurrent network 
(Fig. 7e). Preliminary analysis showed that Ctx DM-pre-trained 
networks slowly learned the Dly Anti task (Fig. 7e) by engaging 
recurrent units that have different preferences for stimulus and 
response directions.

Continual task training alters the neural representation. In most 
of the networks presented so far, all tasks were randomly interleaved 
during training, and the networks adjusted all of the connection 
weights to perform the 20 tasks optimally. However, adult animals 
typically learn tasks sequentially. When an adult animal is learn-
ing some new tasks, its brain needs to implicitly balance the need 
of learning with the need of retaining past memories. Otherwise, 
the brain could suffer from a common problem in artificial neural 
networks known as ‘catastrophic forgetting’. Learning new tasks will 
happen at the expense of forgetting previous memories. The net-
work learns to perform a task by modifying parameters to minimize 
the loss function for this task. During sequential training of two 
tasks, if the network uses traditional learning techniques, training 
for the second task can easily result in the failure of performing the 
first task, as the minima of the loss functions of tasks 1 and 2 are far 
apart (Fig. 8a, gray line).

Continual-learning techniques can protect previously learned 
tasks by preventing large changes of important network parameters 
(Fig. 8a, red line). Here we distinguish sequential training, which 
describes the task presentation, from continual learning, which 
refers to particular learning algorithms. Several continual-learning 
methods have recently been proposed to battle catastrophic forget-
ting33–35. These methods typically involve selective protection of  

b

d

c

e

Task 2

Task 3

Task 1

Neural activity
Task 1

Neural activity
Stimulus-free

State space

Unit 1

Unit 2

Unit 3
Unit 1

Unit 2

Unit 3

a

2

–2
–2

rPC 1
2 –2

–2

rPC1
2

rP
C

 2
Anti Anti

Go
Dly Anti

Dly GoDly Go

Dly Anti
Go

Ctx DM 2

Ctx Dly DM 1 Ctx Dly DM 1

Ctx Dly DM 2

Ctx DM 2

Ctx DM 1Ctx DM 1

rP
C

 2

rP
C

 2

Ctx Dly DM 2

–2 2 2–2

rPC 1 rPC 1

–1

1 1

–1

rP
C

 2

2

Fig. 6 | compositional representation of tasks in state space. a, The 
representation of each task is the population activity of the recurrent 
network at the end of the stimulus presentation, averaged across different 
stimulus conditions (black). Gray curves indicate the neural activities in 
individual task conditions. b, Representations of the Go, Dly Go, Anti, and 
Dly Anti tasks in the space spanned by the top two principal components 
(PCs) for a sample network. For better comparison across networks, the 
top two PCs are rotated and reflected (rPCs) to form the two axes (see 
Methods). c, The analysis described in b was performed for 20 networks, 
and the results are overlaid. d, Representations of the Ctx DM 1, Ctx 
DM 2, Ctx Dly DM 1, and Ctx Dly DM 2 tasks in the top two PC for a 
sample network. e, The analysis described in d was performed for n =  40 
independent networks.

NaTuRe NeuRoScieNce | VOL 22 | FEBRUARY 2019 | 297–306 | www.nature.com/natureneuroscience 303

http://www.nature.com/natureneuroscience


Articles NaTure NeuroscieNce

connection weights that are deemed important for previously 
learned tasks. By employing one such technique35, we were able 
to substantially improve the performance of networks that were 
sequentially trained on a set of cognitive tasks (Fig. 8b,c). Notably, 
all of the networks were initialized with random connection weights. 
The tasks were made easier to facilitate training (see Methods). The 
continual-learning technique was especially effective at helping the 
network retain performance of tasks learned earlier. For example, 
the continual-learning networks can retain high performance in a 
working memory task (Dly Go) after successfully learning five extra 
tasks (DM1, DM2, MultSen DM, Ctx DM 1, and Ctx DM 2) (Fig. 8b).  
An example network achieved high performance on the DM1, DM2, 
and MultSen DM tasks even before being trained on them, suggest-
ing that these tasks rely on structures that can be learned through 
other tasks. In addition, continual learning resulted in a much slower 
acquisition of difficult tasks (Ctx DM 1 and 2) (Fig. 8c).

To understand the impact of continual learning on neural rep-
resentation, we analyzed the FTV distributions for the Ctx DM 1  
and 2 tasks in the sequentially trained networks. The shapes of the 
FTV distributions were markedly different across networks trained 
with or without the continual-learning technique (Fig. 8d). Instead 
of a strongly trimodal distribution, the FTV distribution of a con-
tinual-learning network contained a strong peak at the middle, with 
only minor peaks at the two ends.

The continual-learning technique works by selective protec-
tion of connection weights, and we can directly mimic this effect 
by training networks that are partially plastic17. In contrast with 
the fully plastic networks, the FTV distributions for the Ctx DM 1  
and 2 tasks in the partially plastic networks were again mainly uni-
modal (Supplementary Fig. 12a).

Finally, we analyzed single- and multi-unit recordings from the 
frontal eye field of macaque monkeys performing similar context-
dependent DM tasks11 (Fig. 8e and Supplementary Fig. 12b–e). The 
FTV distribution derived from experimental data mainly consists of 
a broad, unimodal distribution, consistent with networks sequen-
tially trained using a continual-learning technique (Fig. 8d, red) and 
with partially plastic networks (Supplementary Fig. 12a, dark blue). 
These findings suggest that adult brains do not necessarily develop 
the ‘optimal’ circuit-level solution for newly learned tasks, even if 
they have been trained for months on the same tasks. Instead, the 
brain may balance the need between performing the tasks at hand 
and retaining past memories.

Discussion
Higher-order cortical areas, especially the lateral prefrontal cortex, 
are markedly versatile in their engagement in a wide range of cogni-
tive functions. Here we investigated how multiple cognitive tasks 
are represented in various RNN models. In the networks with non-
saturating activities, we identified clusters of units that were each 
specialized for a subset of tasks. Each cluster potentially represents 
a particular sequence of the sensori-motor events and a subset of 
cognitive processes that serve as these networks’ building blocks 
for flexible behavior. We showed that realistic neuronal activation 
functions28,29 robustly led to clustering across a wide range of net-
works. In addition, we found that the representation of tasks in our 
network showed a form of compositionality, a critical feature for 
cognitive flexibility. By virtue of the compositionality, a task can 
be correctly instructed by composing instructions for other tasks. 
Finally, using a recently proposed continual-learning technique,  
we were able to train networks to learn many tasks sequentially.  
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The FTV distributions in continual-learning networks were sub-
stantially more mixed, and are consistent with those computed from 
prefrontal data in monkeys performing similar tasks.

Functional specialization is one of the most fundamental design 
principle of the brain36, dating back to Broca’s area. The brain is 
partitioned into specialized areas, and each brain area consists of 
genetically and functionally distinct cell types. In contrast, theoreti-
cal studies argued that for maximum cognitive flexibility, prefrontal 
neurons should be selective to mixtures of multiple task variables37. 
Mixed selectivity neurons are indeed ubiquitous inside the prefron-
tal cortex10,23. These findings pose a challenging conceptual ques-
tion: when is functional specialization desired, and when is it not? 
Our results suggest a tentative unifying answer to this question. For 
a computation that is repeatedly performed and shared in various 
behaviors, it is computationally beneficial to develop a function-
ally specialized circuit for it. In neural networks, functional spe-
cialization can be achieved by training multiple inter-related tasks 
simultaneously. In biological brains, specialization is potentially 
achieved through evolution and development, instead of learning 
in adulthood. Mixed selectivity, on the other hand, can be beneficial 
to a neural system that needs to maintain both flexibility for future 
learning and memories from the past. The process of learning new 
cognitive tasks in adult brains is probably better modeled in neural 
networks using a continual-learning paradigm.

The neural mechanism behind multiple cognitive tasks has been 
investigated in human imaging studies. In a series of experiments, 
Cole and colleagues trained humans to perform 64 cognitive tasks 

following compositional rule instructions6,38. They trained linear clas-
sifiers to decode rules from prefrontal neural activity patterns. These 
classifiers can substantially generalize to novel tasks6, consistent with 
a compositional neural representation of rules. Although trained 
with discrete rule instructions, our reference network develops a clear 
compositional structure in its representations for two sets of tasks, as 
shown using the population activity. However, it is unlikely that our 
network possesses a more general form of compositionality, which 
requires that task components can be arbitrarily and recursively com-
bined to perform complex new tasks. Indeed, our network is not able 
to perform the DMS task using composite rule inputs; more broadly, 
it remains unclear whether standard modern recurrent network 
architectures can accomplish challenging compositional tasks39,40.

Similar to other works on trained neural networks11,14–19,41, the 
machine learning protocol we used is not validated biologically. 
Furthermore, in our network, a rule input is explicitly provided 
throughout the trial, therefore there is no need for the network to 
hold the ‘task set’ internally using persistent activity4,5. This, however, 
can be remedied by providing the rule cue only at the beginning of 
each trial, which would encourage the network to internally sustain 
the task set. We can even ask the network to figure out a task rule 
by trial-and-error42. In spite of these concerns, our approach offers 
an efficient computational platform to test hypotheses about neu-
ral representations and mechanisms that could guide experiments 
and data analysis. Future progress in this direction, at the interface 
between neuroscience and artificial intelligence, will advance our 
understanding of flexible behavior in many cognitive tasks.
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Methods
Network structure. The RNNs shown in the main text all contain Nrec =  256 
units. The results are largely insensitive to the network size. Similar results were 
obtained in networks of sizes between 128 and 512 units (the range we tested). 
Every network is a time-discretized RNN with positive activity15. Before time 
discretization, the network activity r follows a continuous dynamical equation

τ τσ ξ= − + + + +
t

f W Wr r r u bd
d

( 2 )rec in
rec
2

In this equation, τ =  100 ms is the neuronal time constant. Real neurons 
typically have shorter time constants around 20 ms, here the 100 ms time constant 
mimics the slower synaptic dynamics on the basis of NMDA receptors30. u is 
the input to the network, b is the bias or background input, f(⋅ ) is the neuronal 
nonlinearity, ξ are Nrec independent Gaussian white noise processes with zero 
mean and unit variance and σrec =  0.05 is the strength of the noise. In the reference 
setting, we use a standard Softplus function

= +f x x( ) log(1 exp( ))

which after re-parameterization is very similar to a neuronal nonlinearity, that is, 
the frequency-current curve, commonly used in previous neural circuit models29.  
A set of output units z read out nonlinearly from the network,

= g Wz r( )out

where g(x) =  1/(1 +  exp(− x)) is the logistic function, bounding output activities 
between 0 and 1. Win, Wrec, Wout are the input, recurrent and output connection 
matrices, respectively.

After using the first-order Euler approximation with a time-discretization step 
Δ t, we have

α α α σ= − + + + +− −
−f W Wr r r u b N(1 ) ( 2 (0, 1))t t

rec
t t rec1 1

in 1 2

Here α ≡  Δ t/τ, and N(0,1) stands for the standard normal distribution. We 
use a discretization step Δ t =  20 ms. We imposed no constraint on the sign or the 
structure of the weight matrices Win, Wrec, Wout. The network and the training are 
implemented in TensorFlow.

The network receives four types of noisy input,

α σ
= +

= ∕
u u u u u
u

u
N

( , , , )
2 (0, 1)

fix mod1 mod2 rule noise

noise in

Here the input noise strength σin =  0.01. The fixation input ufix is typically at 
the high value of 1 when the network should fixate. The fixation input goes to 
0 when the network is required to respond. The stimulus inputs umod1 and umod2 
comprise two ‘rings’ of units, each representing a one-dimensional circular variable 
described by the degree around a circle. Each ring contains 32 units, whose 
preferred directions are uniformly spaced from 0 to 2π. For unit i with a preferred 
direction θi, its activity for a stimulus presented at direction ψ is
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where γ is the strength of the stimulus. For multiple stimuli, input activities are 
added together. The network also receives a set of rule inputs urule that encode 
which task the network is supposed to perform on each trial. Normally, urule is a 
one-hot vector. That means the rule input unit corresponding to the current task 
is activated at 1, while other rule input units remain at 0. Therefore, the number 
of rule input units equals to the number of tasks trained. For compositional rule 
inputs (Fig. 7), the activation of rule input units can be an arbitrary pattern. For 
example, for the combined rule input Anti +  (Dly Go −  Go), the activities of the 
rule input units corresponding to the Go, Dly Go and Anti tasks are − 1, + 1 and + 1, 
respectively. For Supplementary Fig. 10, each rule activates/inactivates a distributed 
set of 20 rule input units. The rule unit activation patterns for different rules are 
orthogonal to each other. They are chosen from rows of a random orthogonal 
matrix, generated using the Python package scipy.stats.ortho_group. In total, there 
are Nin =  1 +  32 ×  2 +  20 =  85 input units.

The network projects to an output ring zout, which also contains 32 units. The 
output ring units encode the response directions using similar tuning curves to the 
ones used for the input rings. In addition, the network projects to a fixation output 
unit zfix, which should be at the high activity value of 1 before the response and at 0 
once a response is generated. In total, there are Nout =  1 +  32 =  33 output units.

We lesion a network unit by setting to 0 its projection weights to all recurrent 
and output units.

Tasks and performances. Here we first describe the common setup for the 20 tasks 
trained. Deviations from the common setup will be described below individually. 

The rule input unit corresponding to the current task will be activated throughout 
the whole trial. The network receives a fixation input, which is activated from the 
beginning of the trial. When the fixation input is on, the network should fixate 
by having the fixation output unit at a high activity ̂ = .z 0 85fix . The offset of the 
fixation input usually indicates the onset of the response or go epoch, when the 
network needs to report the response direction through activities of the output 
ring. During the response epoch, the fixation output unit has a target output of 
̂ = .z 0 05fix . For a target response direction ψ, the target output activity of an  

output unit i is
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where ψi is the preferred response direction of unit i. When no response is required, 
the target output activity is fixed at ̂ = .z 0 05i . The network also receives one or two 
stimuli. Each stimulus contains information from modality 1, 2 or both. When 
there is only one stimulus, the direction of the stimulus is drawn from a uniform 
distribution between 0 and 360°.

A trial is considered correct only if the network correctly maintained fixation 
and responded to the correct direction. The response direction of the network is 
read out using a population vector method. The decoded response direction is 
considered correct if it is within 36° of the target direction. If the activity of the 
fixation output falls below 0.5, the network is considered to have broken fixation.

The discrimination thresholds a in Supplementary Fig. 2 are obtained by 
fitting Weibull functions to performances p as a function of coherences c at a fixed 
stimulus duration,

= − . − ∕p c a1 0 5 exp( ( ) )b

Each task can be separated into distinct epochs. Fixation (fix) epoch is the 
period before any stimulus is shown. It is followed by the stimulus epoch 1 
(stim1). If there are two stimuli separated in time, then the period between the 
two stimuli is the delay epoch and the second stimulus is shown in the stimulus 
epoch 2 (stim2). The period when the network should respond is the go epoch. 
The duration of the fixation, stim1, delay1, stim2 and go epochs are Tfix, Tstim1, Tdelay1, 
Tstim2, Tgo, respectively. For convenience, we grouped the 20 tasks into five task 
families: the Go, Anti, DM, Delayed Decision Making (Dly DM), and  
Matching families.

Go task family. This family of tasks includes the Go, RT Go and Dly Go tasks. In all 
three tasks, a single stimulus is randomly shown in either modality 1 or 2, and the 
response should be made in the direction of the stimulus. These three tasks differ 
in their stimulus onset and offset times. In the Go task, the stimulus appears before 
the fixation cue goes off. In the RT Go task, the fixation input never goes off, and 
the network should respond as soon as the stimulus appears. In the Dly Go task, 
a stimulus appears briefly and is followed by a delay period until the fixation cue 
goes off. The Dly Go task is similar to the memory-guided saccade task20.

For the Go task,

~T U(500, 1500)stim1

U(t1,t2) is a uniform distribution between t1 and t2. The unit for time is milliseconds 
and is omitted for brevity. For the RT Go task,

~T U(500, 2500)stim1

For the Dly Go tasks,

~T U({200, 400, 800, 1600})delay1

Here …a aU({ , , })n1  denotes a discrete uniform distribution over the set …a a{ , , }n1 .

Anti task family. This family includes the Anti, RT Anti and Dly Anti tasks. These 
three tasks are the same as their counterpart Go-family tasks, except that the 
response should be made to the opposite direction of the stimulus.

DM family. This family includes five perceptual DM tasks: the DM 1, DM 2, Ctx 
DM 1, Ctx DM 2 and MultSen DM tasks. In each trial, two stimuli are shown 
simultaneously and are presented till the end of the trial. Stimulus 1 is drawn 
randomly between 0 and 360°, while stimulus 2 is drawn uniformly between 90 
and 270° away from stimulus 1. In DM 1, the two stimuli only appear in modality 1,  
while in DM 2 the two stimuli only appear in modality 2. In DM 1 and DM 2, the 
correct response should be made to the direction of the stronger stimulus (the 
stimulus with higher γ). In Ctx DM 1, Ctx DM 2 and MultSen DM tasks, each 
stimulus appears in both modality 1 and 2. In the Ctx DM 1 task, information 
from modality 2 should be ignored, and the correct response should be made 
to the stronger stimulus in modality 1. In the Ctx DM 2 task, information from 
modality 1 should be ignored. In the MultSen DM task, the correct response 
should be made to the stimulus that has a stronger combined strength in 
modalities 1 and 2.
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The DM 1 and DM 2 tasks are inspired from classical perceptual DM tasks 
based on random-dot motion stimuli21. In random-dot motion tasks, there is only 
one stimulus, the coherence of which is varied across trials. Following the tradition 
of Wang30, we use two input stimuli to model momentary motion evidence toward 
the two target directions. When the two stimuli have the same strengths (γ1 =  γ2), 
there is no net evidence toward any target direction, mimicking the condition 
of 0 motion coherence in the random-dot motion task. A stronger difference in 
the stimulus strengths emulates a stronger motion coherence. For a coherence c 
representing net evidence for the direction of stimulus 1, the strengths of stimulus 
1 and 2 (γ1,γ2) are set as

γ γ γ γ= + = −c c,i i1,mod 2,mod

respectively, where i∈ {1,2} is the modality. Here, γ  is the average strength of the 
two stimuli. For each trial, we draw γ  from a uniform distribution around 1, 
γ ~ . .U(0 8, 1 2) . Indeed, in all DM-family tasks and Dly DM-family tasks, there is a 
single coherence c in each trial that determines the overall strength of net evidence 
toward the direction represented by stimulus 1. For all DM-family tasks,

~ − . − . − . − . . . . .c U({ 0 08, 0 04, 0 02, 0 01, 0 01, 0 02, 0 04, 0 08})

The duration of stimulus 1, which is fixed in each trial, is drawn from the 
following distribution,

~T U({400, 800, 1600})stim1

Indeed, all tasks from the DM family use the same distribution for Tstim1. And 
since the two stimuli are shown simultaneously, Tstim1 =  Tstim2.

The Ctx DM 1 and Ctx DM 2 tasks are inspired from context-dependent DM 
tasks performed by macaque monkeys11. Now each stimulus is presented in both 
modalities at the same direction, with strengths γ1,mod1,γ1,mod2 for stimulus 1, and 
γ2,mod1,γ2,mod2 for stimulus 2. The stimulus strengths are determined by the coherence 
for modality 1 and 2 (cmod1,cmod2), so we have

γ γ γ γ= + = −c c,1,mod1 mod1 mod1 2,mod1 mod1 mod1

A similar equation holds for modality 2 as well. cmod1 and cmod2 are drawn 
independently from the same distribution. In Ctx DM 1, c =  cmod1, while in Ctx DM 2,  
c =  cmod2. γmod1

 and γmod2
 are also drawn from U(0.8,1.2). In the original Mante task11, 

there is another delay period between the stimuli and the response period, which is 
not included here.

The MultSen DM task mimics a multi-sensory integration task23. The setup 
of stimulus is similar to those in the Ctx DM 1 and Ctx DM 2 tasks, except that 
the network should integrate information from both modalities and the stronger 
stimulus is the one with higher averaged strength from modality 1 and 2. The 
overall coherence c =  (cmod1 +  cmod2)/2. We determine all four strengths with the 
following procedure. First, we determine the average strength of stimulus 1 across 
both modalities, γ1, and the average strength of stimulus 2, γ2:

γ γ γ γ= + = −c c,1 2

Here, γ  and c both follow the same distributions as other DM-family tasks. 
Then we set

γ γ γ γ= + Δ = −Δ(1 ), (1 ) ,1,mod1 1 1 1,mod2 1 1  where ∪Δ ~ . . − . − .U(0 1, 0 4) U( 0 4, 0 1)1 .  
This is similar for stimulus 2.

Dly DM family. This family includes Dly DM 1, Dly DM 2, Ctx Dly DM 1 and Ctx 
Dly DM 2. These tasks are similar to the corresponding tasks in the DM family, 
except that in the Dly DM family tasks, the two stimuli are separated in time. The 
Dly DM 1 and Dly DM 2 tasks are inspired by the classical parametric working 
memory task developed by Romo and colleagues24. The two stimuli are both shown 
briefly and are separated by a delay period. Another short delay period follows the 
offset of the second stimulus.

For all Dly DM family tasks,

~
~ − . − . − . . . .

T
c

U({200, 400, 800, 1600})
U({ 0 32, 0 16, 0 08, 0 08, 0 16, 0 32})

delay1

and = =T T 300stim1 stim2 .

Matching family. This family of tasks includes the DMS, DNMS, DMC, DNMC 
tasks. In these tasks, two stimuli are presented consecutively and separated by a 
delay period. Each stimulus can appear in either modality 1 or 2. The network 
response depends on whether or not the two stimuli are ‘matched’. In the DMS 
and DNMS tasks, two stimuli are matched if they point toward the same direction, 
regardless of their modalities. In DMC and DNMC tasks, two stimuli are matched 
if their directions belong to the same category. The first category ranges from 0 to 
180°, while the rest from 180 to 360° belong to the second category. In the DMS 
and DMC tasks, the network should respond toward the direction of the second 

stimulus if the two stimuli are matched and maintain fixation otherwise. In the 
DNMS and DNMC tasks, the network should respond only if the two stimuli are 
not matched, that is, a non-match, and fixate when it is a match.

During training of these tasks, half of the trials are matching and the other half 
are non-matching. In DMS and DNMS tasks, stimulus 1 is always drawn randomly. 
In half of the trials, stimulus 2 appears at the same direction as stimulus 1. In the 
other half, stimulus 2 is drawn randomly between 10 and 350° away from stimulus 
1. In DMC and DNMC tasks, both stimulus 1 and 2 are drawn randomly and 
independently from the uniform distribution

U({18, 54, 90, 126, 162, 198, 234, 270, 306, 342})

In all Matching family tasks,

~T U({200, 400, 800, 1600})delay1

Also, match trials and non-match trials always appear with equal probability.

Training procedure. The loss L to be minimized is computed by time-averaging 
the squared errors between the network output z(t) and the target output ̂z t( ).

= ≡ 〈 −^ 〉 .L L m z z( )i t i t i t i tmse , , ,
2

,  Here, i is the index of the output units. The 
squared errors at different time points and of different output units are potentially 
weighted differently according to the non-negative mask matrix mi,t. For the output 
ring units, before the response epoch, we have mi,t =  1. The first 100 ms of the 
response epoch is a grace period with mi,t =  0, while for the rest of the response 
epoch, mi,t =  5. For the fixation output unit, mi,t is two times stronger than the mask 
for the output ring units.

The training is performed with Adam, a powerful variant of stochastic gradient 
descent43. We used the default set of parameters. The learning rate is 0.001, the 
decay rate for the first and second moment estimates are 0.9 and 0.999, respectively.

The recurrent connection matrix is initialized with a scaled identity matrix 
q⋅ 144, where 1 is the identity matrix. We chose q =  0.5 such that the gradient is 
roughly preserved during backpropagation when the network is initialized. The 
input and output connection weights are initialized as independent Gaussian 
random variables with mean 0, and standard deviations ∕ N1 in  and . ∕ N0 4 rec ,  
respectively. The standard deviation value for the output weights is chosen to 
prevent saturation of output units after initialization.

During training, we randomly interleaved all the tasks with equal probabilities, 
except for the Ctx DM 1 and Ctx DM 2 tasks that appear five times more 
frequently, because without sufficient training, the network gets stuck at an 
alternative strategy. Instead of correctly ignoring modality 1 or 2, the network 
can choose to ignore the context and integrate information from both modalities 
equally. This strategy gives the network an accuracy close to 75%. During training, 
we used mini-batches of 64 trials, in which all trials are generated from the same 
task for computational efficiency.

Task variance analysis. A central goal of our analysis was to determine whether 
individual units in the network are selective to different tasks, or whether units 
tended to be similarly selective to all tasks. To quantify how selective a unit is in 
one task, we defined a task variance metric. To compute the task variance TVi(A) 
for task A and unit i, we ran the network for many stimulus conditions that span 
the space of possible stimuli. For example, in the DM family tasks, we ran the 
network for stimuli with directions ranging from 0 to 360° and with coherences 
ranging from almost 0 to 0.2. After running the network for many stimulus 
conditions, we computed the variance across stimulus conditions (trials) at each 
time point for a specific unit then averaged the variance across all time points 
to get the final task variance for this unit. The fixation epoch is excluded from 
this analysis. To eliminate the effect of recurrent noise, private noise to recurrent 
units is set to zero in this analysis. This process was repeated for each unit in the 
network. Therefore,

= 〈 − 〈 ′ 〉 ′ 〉A r j t r j tTV( ) [ ( , ) ( , ) ]i i i j j t
2

,

where ri(j,t) is the activity of unit i on time t of trial j. In Figs. 2 and 4, we only 
analyzed active units, defined as those that have summed task variance across tasks 
higher than a threshold, 10−3. The results do not depend strongly on the choice of 
the threshold. This procedure prevents units with extremely low task variance from 
being included in the analysis.

By computing each unit’s selectivity across different stimulus conditions, we 
naturally include the selectivity to motor outputs, because motor outputs depend 
ultimately on the stimuli. A unit that is only selective to motor outputs or other 
cognitive variables in a task will still have a non-zero task variance. Units that are 
purely selective to rules and/or time will, however, have zero task variance and 
therefore be excluded from our analysis.

The clustering of units based on their task variance patterns in Fig. 2 uses 
k-means clustering from the Python package scikit-learn. To assess how well 
a clustering configuration is, we computed its silhouette score on the basis 
of intracluster and intercluster distances. The silhouette score of an unit i is 
1 −  di,intra/di,inter (assuming di,intra <  di,inter), where di,intra is the average distance of this 
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unit with other units in the same cluster, and di,inter is average distance between this 
unit and units in the nearest cluster. The silhouette score of a clustering scheme is 
the average silhouette score of all units. A higher silhouette score means a better 
clustering. We computed the silhouette for the number of clusters ranging from 2 
to 30. The optimal number of clusters 

∼
k is determined by choosing the k with the 

highest silhouette score.
In Fig. 2d, we visualize the clustering using tSNE. For each unit, the normalized 

task variances across all tasks form a 20-dimensional vector that is then embedded 
in a two-dimensional space. For the tSNE method, we used the exact method for 
gradient calculation, a learning rate of 100 and a perplexity of 30.

The FTV with respect to tasks A and B is

=
−
+

A B
A B
A B

FTV( , )
TV( ) TV( )
TV( ) TV( )i

i i

i i

To obtain a statistical baseline for the FTV distributions as in Supplementary 
Fig. 6, we transform the neural activities of the network with a random orthogonal 
matrix before computing the task variance. For each network, we generate a 
random orthogonal matrix M using the Python package Scipy. All network 
activities are multiplied by this matrix M to obtain a rotated version of the original 
neural representation.

=r rMt t
rot

Since multiplying neural activities by an orthogonal matrix is equivalent to 
rotating and reflecting the neural representation in state space, this procedure will 
preserve results from state-space analysis. We then compute task variances and 
FTV using the rotated neural activities. The FTV distributions using the rotated 
activities are clearly different from the original FTV distributions.

Varying hyperparameters of neural networks. In Fig. 3, we trained networks with 
the following possible hyperparameters. The activation functions f(⋅ ) can be the 
Softplus function

= +f x x( ) log(1 exp( ))

the ReLU

=f x x( ) max( , 0)

the Tanh function

= = −
+

−

−f x x( ) tanh( ) e e
e e

x x

x x

and the ReTanh

=f x x( ) max(tanh( ), 0)

The network architecture can be the leaky RNN architecture defined above, 
or the leaky GRU architecture42. The leaky GRU architecture is modified on the 
basis of the original GRU architecture such that the network can be considered as a 
discretized version of a time-continuous system.
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Here, α =  Δ t/τ and τ/λt are the effective time constants of each unit. γt are the gating 
variables, determining the extent of which the activity of an unit is used to update 
the activity of other units.

The recurrent connection matrix Wrec is initialized either with a diagonal 
matrix (a scaled identity matrix) or with a random orthogonal matrix. The 
Nrec ×  Nrec random orthogonal matrix is sampled from O(Nrec), the orthogonal 
group in dimension Nrec using the Python function scipy.stats.ortho_group.

We considered L1 regularizations on rates and weights, respectively. The L1 
regularization on rates is

∑β= ∣ ∣L
N

r1

i t
i tL1,rate L1,rate

rec ,
,

We used βL1,rate =  0,10−5,10−4,10−3. The L1 regularization on weights is

∑ ∑β= ∣ ∣
η η

ηL
N

W1

i j
i jL1,weight L1,weight

,
,

The sum over η is taken over all connection weights in the network, including 
input, recurrent and output weights. We used βL1,weight =  0,10−5,10−4,10−3.

In total, 256(= 2 ×  2 ×  2 ×  4 ×  4) networks are trained. None of the leaky RNN 
networks with Tanh and ReTanh activation functions learned to perform  
all 20 tasks.

Analysis of the Ctx DM 1 and 2 tasks. Group 1, 2 and 12 units in Fig. 5 are 
defined as those units that have FTV(Ctx DM 1, Ctx DM 2) larger than 0.9, smaller 
than 0.1, and in between 0.4 and 0.6. In Fig. 5e, we did not directly plot the average 
connection weights between groups, because that would include many connections 
from units with different input preferences. So we only analyzed connections 
between units with similar input preferences. The input preference of an unit 
is defined as the direction of inputs that sends the strongest modality 1 and 2 
summed projection. Two units are defined to have similar input preferences if the 
distance between their preferred directions is less than π/6. The notched box-and-
whisker plots in Fig. 5f and elsewhere showed the medians (line), the confidence 
interval of the median (notch) estimated through bootstrapping, the lower and 
upper quartile of the distribution (box) and the range of the data (whisker). These 
plots are generated with the Python function matplotlib.pyplot.boxplot.

State-space analysis. To compute the representation of a task in the state space, 
we first computed the neural activities across all possible stimulus conditions, then 
we averaged across all these conditions. For simplicity of the analysis, we chose to 
analyze only the steady-state responses during the stimulus epoch. We do so by 
focusing on the last time point of the stimulus epoch, tstim1,end. So the representation 
of task A is

∼ =r r j t( , )
jstim1,end

where r(j,t) is the vector of network activities at trial j and time t during task A.
For each set of tasks, we performed principal component analysis to get the 

lower dimensional representation. We repeated this process for different networks. 
The representations of each set of tasks are close to four vertices of a square. 
As a result, the top two principal components have similar eigenvalues and are 
therefore interchangeable. To better compare across networks in Fig. 6b–e, we 
allowed a rotation and a reflection in the space spanned by the top two PCs. For 
each network, the rPCs are chosen such that the Go/Ctx Dly DM 1/DMS task 
representation lies on the positive part of the x axis, and the Dly Go/Ctx DM  
1/DNMS task lies below the x axis. The rPCs are still principal components.

Training based on pre-trained networks. In Fig. 7d,e, we pre-trained networks on 
one of the following two sets of tasks. Set A includes Go, Dly Go and Anti, while 
set B includes Ctx DM 1, Ctx DM 2, Ctx Dly DM 2. We pre-trained 20 networks for 
each set. Each network contains 128 ReLU units. Other hyperparameters are the 
same as the reference setting. After pre-training, all networks reached at least 97% 
accuracy on the trained set of tasks.

Following pre-training, we trained these networks on either the Dly Anti  
task or the Ctx Dly DM 1 task. In Fig. 7d, all connection weights and biased are 
trained. In Fig. 7e, only the connection weights from rule input units to recurrent 
units are trained.

Sequential training and continual learning. For Fig. 8, tasks appear sequentially. 
Each task is trained for 400,000 trials. To eliminate bias toward one modality, DM 
1 and DM 2 are still trained together and interleaved, and so are Ctx DM 1 and Ctx 
DM 2.

Connection weights of networks are all initialized with the random orthogonal 
initialization described previously. We added a regularizer that protects old tasks 
by setting another penalty for deviations of important synaptic weights (or other 
parameters)35. When training the μth task, the regularizer is

∼∑ θ θ= Ω −μL c ( )
k

k k kcont cont
2

Here, ccont is the overall strength of the regularizer, θk denotes the kth parameter of 
the network. The value of the anchor parameter ∼θk is the value of θk at the end of the 
last task (the μth task). No regularizer is used when training the first task. Also Ωμ

k 
measures how important the parameter is. Notice that two recent proposals34,35 for 
continual learning both use regularizers of this form. The two proposals differ only 
in how the synaptic importances are computed. We chose the method of Zenke et 
al.35, because the method by Kirkpatrick et al.34 measures the synaptic importance 
locally in the parameter space, resulting in underestimated and inaccurate synaptic 
importance values for our settings. In Zenke et al., the importance of one parameter 
is determined using this parameter’s historic contribution to the change in the loss 
function. For the kth parameter, the contribution to the change in loss during task μ is

∑ω θ θ= Δμ

= μ

μ

−
g t t( ( )) ( )k

t t

t

k k
1
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where gk(θ(t)) is the gradient of loss with respect to θk evaluated at θk(t), that is, 
∣

θ θ
∂
∂

L
t( )k k , and Δ θk(t) is the parameter change taken at step t. Therefore, ω μ

k  tracks 
how parameter θk contributes to changes in the loss during the μth task (from tμ−1 
to tμ). The final synaptic importance is computed by first normalizing ω μ

k  with the 
total change in the synaptic weight θ θΔ = −μ μ μ−t t( ) ( )k k k

1  and summing ω ν
k  for all 

tasks ν <  μ.

∑ ω
ξ

Ω =
Δ +

μ

ν μ

ν

ν
< ( )k

k

k
2

The extra hyperparameter ξ prevents Ωμ
k from becoming too large. The 

hyperparameters c =  1.0 and ξ =  0.01 are determined by a coarse grid search. 
The final loss is the sum of the squared-error loss and the continual-learning 
regularizer.

= +L L Lmse cont

Even with the help of the continual-learning technique, we had difficulties 
training the network using our original task setups. So we made the DM tasks 
easier by increasing the coherences by 10 times. In addition, we used the rectified 
linear function as the neuronal nonlinearity, namely f(x) =  max(x,0). We found that 
networks using rectified linear units learned context-dependent tasks (Ctx DM 1, 
Ctx DM 2) more easily.

Experimental data analysis. We analyzed data from two monkeys performing 
context-dependent DM tasks11. We focused on neural activities from the stimulus 
presentation period. Before computing the task variance using the same method 
described above, we first computed the trial-averaged firing rate of each unit 
in each task condition. For each unit, the firing rate in each trial is obtained by 
convolving the spikes with a Gaussian kernel of 40 ms width. For each task, we 
define four task conditions based on the signs of the motion and color coherence: 
(positive motion, positive color), (positive motion, negative color), (negative 
motion, positive color), (negative motion, negative color). Then we averaged the 
firing rate across all trials in each condition. This leaves us with four firing rate 
traces for each unit in each task. Then we computed the task variance for each unit 
in each task by calculating the variance across task conditions at every time point, 
then averaging across time.

It was necessary to reduce the number of task conditions to 4 from the original 
36, otherwise the task variance estimates would be too noisy. We assessed how 

noisy the task variance estimates are by computing the task variance on the same 
data where the trial identities are shuffled. If there is little noise, then the task 
variance on the shuffled data should be close to zero.

Statistics and study design. In all boxplots, the confidence interval over the 
median is obtained with bootstrapping 10,000 times. No assumption was made 
about the data distribution.

No statistical methods were used to pre-determine sample sizes but our sample 
sizes are larger than those reported in previous publications17,18. Independently 
trained networks all have different random seeds for network initialization and 
training samples. Networks with different hyperparameters are trained using the 
same random seed. Data collection and analysis were not performed blind to the 
conditions of the experiments. As mentioned above, In Figs. 2 and 4, we exclude 
units with summed task variance across tasks lower than a threshold, 10−3. Units 
with low task variance are mainly driven by injected noise, and therefore are 
irrelevant for our study. In Fig. 8, we exclude networks that achieved less than 80% 
accuracy on Ctx DM 1 and 2, because we are interested in networks that are able 
to perform selective integration in Ctx DM 1 and 2. A network can reach 75% 
accuracy even if it completely ignores the context and integrates from the two 
modalities equally. See the Life Sciences Reporting Summary for more information 
on the study design.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

code availability
All training and analysis codes are available on GitHub (https://github.com/
gyyang/multitask).

Data availability
We provide data files in Python and MATLAB readable formats for all trained 
models for further analyses on Github (https://github.com/gyyang/multitask).
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Latest versions of Python, Numpy, Scipy, and Tensorflow. Code will be made publicly available on Github (https://github.com/gyyang/ 
multitask) upon acceptance.

Data analysis Latest versions of Python, Numpy, Scipy, and Tensorflow. Code will be made publicly available on Github (https://github.com/gyyang/ 
multitask) upon acceptance.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All training and analysis codes will be available at publication on GitHub (https://github.com/gyyang/multitask). We will also provide data files in Python and Matlab 
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readable formats for all trained models for further analyses. The pretrained model will be stored in a Google Drive folder with its link provided on the same Github 
repository.

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes but our sample sizes are larger than those reported in previous publications

Data exclusions In Figs. 2, 4, we exclude units with summed task variance across tasks lower than a threshold, 1e-3.  Units with low task variance are mainly 
driven by injected noise, therefore are irrelevant for our study. In Fig. 8, we exclude networks that achieved less than 80% accuracy on Ctx DM 
1 and 2, because we are interested in networks that are able to perform selective integration in Ctx DM 1 and 2. A network can reach 75% 
accuracy even if it completely ignores the context and integrates from the two modalities equally. Exclusion criteria are pre-established.

Replication We have retrained all of our networks several times, and we are able to reproduce our primary conclusions.

Randomization Independently trained networks all have different random seeds for network initialization and training samples. Networks with different 
hyperparameters are trained using the same random seed.

Blinding Data collection and analysis were not performed blind to the conditions of the experiments

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study
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