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Abstract Humans can run without falling down, usually despite uneven terrain or occasional

pushes. Even without such external perturbations, intrinsic sources like sensorimotor noise perturb

the running motion incessantly, making each step variable. Here, using simple and generalizable

models, we show that even such small step-to-step variability contains considerable information

about strategies used to run stably. Deviations in the center of mass motion predict the corrective

strategies during the next stance, well in advance of foot touchdown. Horizontal motion is

stabilized by total leg impulse modulations, whereas the vertical motion is stabilized by

differentially modulating the impulse within stance. We implement these human-derived control

strategies on a simple computational biped, showing that it runs stably for hundreds of steps

despite incessant noise-like perturbations or larger discrete perturbations. This running controller

derived from natural variability echoes behaviors observed in previous animal and robot studies.

DOI: https://doi.org/10.7554/eLife.38371.001

Introduction
Human running is often modeled as being periodic (Blickhan and Full, 1993; Seyfarth et al., 2002;

Srinivasan and Holmes, 2008). But running is not exactly periodic, even on a treadmill at constant

speed. Body motion during running varies from step to step (Cavanagh et al., 1977; Belli et al.,

1995; Jordan et al., 2007; Jordan and Newell, 2008). This step-to-step variability could be due to

internal perturbative sources like muscle force noise and sensory noise (Warren et al., 1986;

Harris and Wolpert, 1998; Osborne et al., 2005) or small external perturbations (e.g. visual field

inhomogeneity, small ground imperfections). To run without falling, the body’s ‘running controller’

must prevent the effects of these small perturbations from growing too large. Here, we provide an

experimentally derived low-dimensional characterization of this control that reveals how humans run

without falling down.

One classic modeling paradigm for running control assumes that the human leg behaves like a lin-

ear spring (Blickhan, 1989; McMahon and Cheng, 1990; Blickhan and Full, 1993). This paradigm

has been used to argue how passive-elastic properties may reduce muscle work needed for locomo-

tion (Alexander and Vernon, 1975; Alexander, 1990) and has been useful in examining locomotion

in a simplified setting. Variants of these spring-mass running models have demonstrated stable run-

ning (Seyfarth et al., 2002; Seipel and Holmes, 2005; Ghigliazza et al., 2005; Geyer et al., 2006;

Srinivasan and Holmes, 2008; Englsberger et al., 2016). These models have been successful in fit-

ting the average center of mass motion during running (Blickhan and Full, 1993; Geyer et al.,

2006; Srinivasan and Holmes, 2008). However, understanding running stability requires under-

standing how deviations from the average motion are controlled. It has been previously recognized

that spring-like leg mechanics cannot explain how deviations from the average motion are controlled

and eventually attenuated (e.g. Ghigliazza et al., 2005; Biewener and Daley, 2007; Maus et al.,
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2015). Here, we examine the role of active muscle control in running stability, using more general

models of human locomotion rooted in Newtonian mechanics (Srinivasan, 2011).

One way of characterizing the running controller is to apply perturbations (for instance, pushes or

pulls or sudden changes in terrain) and examine how the body recovers from the perturbations

(Van Woensel and Cavanagh, 1992; Daley and Biewener, 2006; Qiao and Jindrich, 2014;

Riddick and Kuo, 2016). Instead of such external perturbations, here, we use the naturally occurring

step-to-step variability (Hurmuzlu and Basdogan, 1994; Maus et al., 2015) to characterize the con-

troller. Previous attempts at examining such variability for controller information focused only on

walking (Hurmuzlu and Basdogan, 1994; Wang and Srinivasan, 2012; Wang, 2013; Wang and Sri-

nivasan, 2014) or considered variants of the spring-mass model (Maus et al., 2015). Here, we

directly characterize the control in terms of how humans modulate their leg force magnitude and

direction during running. The only way to control the center of mass motion is for the leg to system-

atically change the forces and the impulses it applies on the ground. We uncover how such center of

mass control is achieved. We then implement this human-derived controller on a simple mathemati-

cal model of a biped (Srinivasan, 2011), showing that this biped model runs without falling down,

despite incessant noise-like perturbations, large external perturbations, and on uneven terrain.

A human-derived controller such as the one proposed here could inform monitoring devices to

quantify running stability or fall likelihood (O’Loughlin et al., 1993), or could help understand run-

ning movement disorders. Further, implementing such controllers into robotic prostheses and exo-

skeletons (Dollar and Herr, 2008; Shultz et al., 2015) will allow the human body to interact more

‘naturally’ with the device, rather than having to compensate for an unnatural controller. Some run-

ning robots have demonstrated stable running, using a variety of control schemes (Raibert, 1986;

Chevallereau et al., 2005; Tajima et al., 2009; Nelson et al., 2019). But these robots fall short of

human performance and versatility. Understanding human running may lead to better running

robots.

eLife digest Running at a constant speed seems like a series of repetitive, identical strides, but

it is not. There are small variations in each stride. Self-inflicted errors in the forces generated by the

muscles, or misperceptions from the senses, may cause these tiny imperfections. Uneven terrain or

other outside forces, like a push, can also cause changes in a running stride. People must correct for

these small changes as they run to avoid falling down. The only way to correct errors in a stride is by

changing the force exerted on the ground by the leg.

Now, Seethapathi and Srinivasan document step-by-step how people correct for small

imperfections in their running stride to avoid falling. In the experiments, eight people ran on a

treadmill at three different speeds while the motion of their torso and each foot was measured

along with the forces of each foot on the treadmill. Seethapathi and Srinivasan found that these

runners corrected for minor deviations by changing where each foot lands and how much force each

leg applies to the treadmill. The runners placed their foot at a different position on each step and

these varying foot positions could be predicted by the errors in the body movement between steps.

These errors in body movement could also be used to predict how the runners would change the

forces applied by their legs on each step. Imperfections in the stride were mostly corrected within

the next step. Errors that would cause the runner to fall to the side were corrected more quickly

than errors in forward or backward motion. Seethapathi and Srinivasan incorporated these corrective

strategies into a computer simulation of a runner, resulting in a simulated runner that did not fall

even when pushed.

These findings may inform the design of robots that run more like humans. They may also help

create robotic exoskeletons, prosthetic legs and other assistive devices that help people with

disabilities move more fluidly and avoid falling.

DOI: https://doi.org/10.7554/eLife.38371.002
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Results
The step-to-step variability during running appears superficially random. We show that this variability

contains low-dimensional structure, specifically containing information about control strategies

involved in running stably. We implement these strategies into a feedback controller, thereby stabi-

lizing a simple mathematical model of a biped, and make further predictions.

We measured body motion and ground reaction forces (GRFs) of humans running for hundreds of

steps on a treadmill at three speeds: 2.5, 2.7 and 2.9 m/s (see Materials and methods). Each running

step consists of a ‘flight phase’ with neither foot on the ground, and a ‘stance phase’ with one foot

on the ground. Figure 1 shows the coordinate system and sign convention: x is sideways, y is fore-

aft, and z is vertical. The results we present are for the highest running speed and we discuss speed-

dependence of our results separately. Unless otherwise specified, all quantities and results in equa-

tions and figures are non-dimensionalized using body mass m, acceleration due to gravity g, and leg

length ‘max. Forces are normalized by mg, distances by ‘max, speeds by
ffiffiffiffiffiffiffiffiffiffiffi

g‘max

p
, time by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘max=g
p

,

impulses by m
ffiffiffiffiffiffiffiffiffiffiffi

g‘max

p
, etc.

A hypothesized controller structure for stable running
During flight phase, the body center of mass moves in a nearly parabolic trajectory and the runner

has no control over this parabolic motion (as the aerodynamic forces generated by the person are

negligible, unlike birds). From Newton’s second law, it follows that the only way to control the center

of mass motion is to modulate the total ground reaction force components during stance phase,

when the leg is in contact with the ground. However, there are infinitely many ways to modulate the

ground reaction forces to control the center of mass motion. Here, we examine how the ground

reaction forces are modulated in response to center of mass state deviations during the previous

flight apex (Figure 1). A flight apex is defined as when the center of mass height z is maximum. The

center of mass position and velocity at flight apex are denoted by ðxa; ya; zaÞ and ð _xa; _ya; _zaÞ, respec-
tively. Because the vertical velocity at flight apex _za ¼ 0 by definition, _za is not considered as an

explanatory variable. The absolute horizontal position ðxa; yaÞ on the treadmill changes with a much

x (sideways)y (forward)

Direction of travel

z 
(v

e
rt

ic
a

l)

!ight apex

some relevant states

at !ight apex

foot position change

ground reaction 

forces change

perturbed trajectory

unperturbed average 

trajectory

Flight phase (parabolic trajectory under gravity)

A conceptual model of running control

Stance phase (when leg pushes on ground)

Figure 1. Idealized running control. A schematic of a running trajectory, perturbed sideways during flight. The

runner can recover back to steady state by changing the ground reaction force — say, by altering the foot

placement and the leg force magnitude. This conceptual model is supported by our analysis of running data.
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slower time-scale than other variables. Therefore, our default set of explanatory variables is

ð _xa; _ya; zaÞ. We will include the horizontal position ðxa; yaÞ when we comment later on ‘station

keeping’.

Fore-aft and sideways impulses independently control center of mass
motion
The step-to-step variability in the center of mass state at flight apex over hundreds of steps is shown

in Figure 2a. To be stable, the runner needs to prevent this motion variability from growing without

bound. As noted, the only way to control this motion is by using the ground reaction forces (GRFs).

Consequently, the ground reaction force components over the stance phase are also variable

(Figure 2b).

The net effect of the ground reaction forces on the center of mass velocity over a stance phase is

captured by the force impulse, namely, the integral of the force. The variability in the sideways and

fore-aft ground reaction impulses over a step (Figure 2c) are well-predicted by the variability in the

center of mass state ð _xa; _ya; zaÞ at the previous flight apex (Figure 3). Moreover, the sideways impulse

depends primarily on the sideways velocity _xa and the fore-aft impulse depends primarily on the

fore-aft velocity _ya. Thus, it appears that the control in the fore-aft and sideways directions are inde-

pendent or decoupled. Pooled over all subjects, the best-fit linear model for the sideways impulse

Px is:

Left stance: DPx ¼�1:03D _xa; with R2 ¼ 0:55; and

Right stance: DPx ¼�1:07D _xa; with R2 ¼ 0:53;
(1)

and that for the fore-aft GRF impulse Py is:
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Figure 2. Step-to-step variability during running. (a) Variability in the center of mass velocity at flight apex. (b)

Mean GRFs in three directions (black line) and one standard deviation around the mean (yellow band) for a right

stance phase; left stance phase GRF is similar in fore-aft and vertical directions, but the sideways GRF is negative

of that for the right stance. Green text indicates standard deviation values in all panels. GRFs are in fraction of

body weight. (c) Variability in the fore-aft and sideways impulses due to the GRFs. (d) Variability in foot position

relative to torso at the beginning of stance phase. In panels a, c and d each dot corresponds to a separate step

and the scatter plot is for all subjects with each subject’s mean value subtracted, so that only variability about the

mean is shown for 500 randomly chosen steps. Red dots denote right steps and blue dots denote left steps.
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Left stance: DPy ¼�0:72D _ya; with R2 ¼ 0:32; and

Right stance: DPy ¼�0:72D _ya; with R2 ¼ 0:33;
(2)

as in Figure 3. All coefficients in Equations (1) and (2) are significant at p<10
�4. Both sideways and

fore-aft impulses depend negligibly on vertical position deviations, so that including za in the regres-

sion increases the R2 values by less than 0:02.

Almost deadbeat: impulses correct horizontal velocity mostly within a
step
The linear models for the fore-aft and sideways impulses in Equations (1) and (2) have a simple

interpretation. The D _xa coefficient of about �1 in Equation (1) (that is, DPx » � D _xa) implies that side-

ways velocity deviations are completely corrected in one step, on average (over all steps and all sub-

jects). This correction could have been done over many steps, as would be the case if the coefficient

were �0:5, say. But humans seem to exhibit a ‘one-step dead-beat controller’ on average for side-

ways velocity deviations (the term deadbeat control refers to when state deviations decay to zero in

a finite amount of time). Of course, this single-step correction is not perfect. An R2 value of about

0:55 suggests that the system over-corrects or under-corrects deviations for any given step.

Analogously, the coefficient of �0:72 in Equation (2) suggests that about 72% of a forward veloc-

ity deviation is corrected in a single step, on average. While this is not strictly ‘deadbeat control’, it

results in only ð1� 0:72Þ2 ¼ 0:08 of a perturbation remaining after two steps, and ð1� 0:72Þ3 ¼ 0:02

of a perturbation after three steps, indicating rapid control.

Apex-to-apex maps also show fast decay of center of mass deviations
We corroborate the above findings regarding perturbation decay with the ‘apex-to-apex maps’: that

is, linear models that describe the relation between deviations in the state at one flight apex and

those at the next flight apex. The right-to-left map from the state Sright ¼ _xa; _ya; za½ �right at an apex

preceding a right stance to the state at the next flight apex (preceding a left stance) is,

approximately:

_xa

_ya

za

2

6

4

3

7

5

left

¼KR!L �
_xa

_ya

za

2

6

4

3

7

5

right

whereKR!L ¼
�0:05� �0:02� þ0:31�

�0:08� þ0:27 �0:15�

þ0:02� þ0:06 þ0:46

2

6

4

3

7

5
; (3)

where the superscript � indicates that the coefficient is not significantly different from zero (p>0:05).

a) Sideways impulse control b) Fore-aft impulse control
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Figure 3. Center of mass velocity deviations predict stance impulse. A linear model based on center of mass

velocity deviations at flight apex explains a considerable fraction of the impulse on the next step. The impulses are

mass-normalized. The scatter plot shows 500 randomly selected steps for left (blue dots) and right stances (red

dots). The best-fit line (yellow) and the corresponding slope are shown for the left stance impulse. The slopes of

the best fit line suggest that the sideways impulse corrects about 100% of the sideways velocity deviation on

average and the fore-aft impulse corrects about 70% of the fore-aft velocity deviation.
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The left-to-right matrix KL!R is similar to KR!L, except for the sign changes due to mirror-symmetry.

The matrix product of KL!R and KR!L — Jacobians of the Poincare map (Hurmuzlu and Basdogan,

1994; Guckenheimer and Holmes, 2013; Maus et al., 2015) — quantify how apex state deviations

grow or decay over one stride (two steps). The eigenvalues of this matrix product were all less than

one in absolute value, indicating a stable periodic motion. The largest eigenvalue was 0:14, indicat-

ing that at most 14% of a perturbation remains after a stride on average in any direction.

The low value of KR!Lð1; 1Þ, not significantly different from zero, suggests that a purely sideways

velocity perturbation gets corrected essentially over one step on average, consistent with the side-

ways impulse control (Equation 1). Similarly, the value KR!Lð2; 2Þ ¼ 0:27 suggests that 73% of a for-

ward velocity deviation is corrected in one step, consistent with the fore-aft impulse control

(Equation 2). Finally, the ð3; 3Þ element of the step map (Equation 3) suggests that less than 50% of

a deviation in vertical position za remains after a step. See (Maus et al., 2015) for a detailed Floquet

analysis of human running including more state variables, complementing the simplified version

here.

Within-step vertical impulse modulations control vertical position
The control of vertical position is qualitatively different from that of control in the fore-aft and side-

ways directions, as we cannot use net vertical impulse for vertical position control due to the

impulse-momentum considerations below. A flight apex occurs when the center of mass vertical

velocity is zero. So, the net vertical impulse between two consecutive flight apexes is also zero (as it

equals the change in vertical momentum, according to the impulse-momentum equation). Therefore,

changing the net vertical impulse over a stance phase will not accomplish any meaningful control in

the vertical direction. However, we will show that by differentially modulating the vertical impulse

within one stance phase, we can change the vertical position (za) from one flight apex to the next,

without changing the net impulse.

To show this most simply, consider infinitesimal

flight phases and a stance phase from t ¼ 0 to

t ¼ Tstep. The total impulse Pz due to the vertical

ground reaction force FzðtÞ equals that due to

gravity, which is given by,

Pz ¼
R Tstep
0

FzðtÞ dt ¼
R Tstep
0

mg dt ¼ mgTstep. For a tri-

angular stance force (Figure 4) with peak force

Fpeak at tpeak, we get Fpeak ¼ 2mg. Then, by inte-

grating the vertical acceleration ðFz=m� gÞ twice,

the change in vertical position zðTstepÞ � zð0Þ over

a step is given by:

zðTstepÞ� zð0Þ ¼ g

6
ðTstep� tpeakÞ2� t2peak

� �

: (4)

If the step was symmetric about mid-stance

(tpeak ¼ Tstep=2), there is no vertical position change

over a step (zðTstepÞ ¼ zð0Þ). The flight apex vertical

position on the next step zðTstepÞ can be changed

by changing tpeak relative to Tstep=2 (Figure 4). For

example, if zð0Þ at one flight phase was greater

than its nominal value and the runner wishes to

reduce it, this simple model predicts that the run-

ner will decrease the first-half impulse and

increase the second-half impulse; doing this is

equivalent to delaying tpeak relative to Tstep=2 (as in

Figure 4). This prediction is in agreement with the

following experimentally-derived linear relations

for the first half vertical impulse from t¼ 0 to

Tstep=2, namely DPzjTstep=20
, and the second half

0

F
peak

F
z
(t)

z(t)

t
peak

0

Shift peak later

to decrease 

vertical position

z(T
step

)

vertical position

z(T
step

) decreases

CoM trajectory

Vertical position control: a simple model

T
step

T
step
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Figure 4. Vertical position control by differential

impulse control. Using a unimodal vertical GRF, we

find that the way to lower vertical position over a step

is to move the peak force to the right. This is

equivalent to increasing the vertical impulse on the

second half of the step and decreasing the vertical

impulse over the first half. Conversely, to increase the

vertical position over a step, we find that the peak

force needs to be moved to the left.
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vertical impulse from t¼ Tstep=2 to Tstep, namely DPzjTstepTstep=2
:

Left stance: DPzjTstep=20
¼�2:5Dza and DPzjTstepTstep=2

¼þ2:5Dza with R2 ¼ 0:35; and (5)

Right stance: DPzjTstep=20
¼�2:3Dza and DPzjTstepTstep=2

¼þ2:3Dza with R2 ¼ 0:30: (6)

We see that a positive Dza corresponds to a decrease in the first-half vertical impulse and an

increase in the second half vertical impulse. In addition to the vertical impulse, the landing leg length

is also modulated in response to vertical flight apex deviations. Regressing the leg length ‘ at the

beginning of stance with the flight apex state, we found that this landing leg length is mostly a func-

tion of the vertical position at flight apex:

D‘landing ¼ 0:3Dza; with p<10
�4 and R2 ¼ 0:25: (7)

Thus, a downward position deviation at flight apex would result in landing with a shorter leg

length than nominal (e.g. via flexed knee or ankle). A downward position deviation is analogous to a

sudden step-up perturbation, so reducing the landing leg length reduces trip likelihood.
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(rightward) sideways velocity perturbation. (b) Fore-aft GRF response to a forward velocity perturbation. In both

cases, the change in GRF from nominal (shown by the arrow) is obtained as a product of the perturbation size and

the sensitivity of the GRF to the perturbation. To produce these plots, we computed a sequence of linear models,

predicting the ground reaction forces at a sequence of gait phases through the stance phase, all using the same

input variables, namely the flight apex center of mass state. The sensitivities or partial derivatives

(J1ðfstanceÞ and J5ðfstanceÞ) shown are the corresponding coefficients in these linear models, plotted as a function of

the stance fraction fstance at which the GRF is being predicted by the linear model. In the axis labels, the nominal

or average ground reaction forces are denoted with an overbar (�Fx and �Fy) and the modulated ground reaction

forces are denoted without the overbar (Fx and Fy).
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Impulse control is achieved by phase-dependent force modulations
The linear models above tell us how deviations from nominal motion at flight apex are corrected

grossly over the next stance. But they do not tell us how the forces are modified continuously

throughout a stance phase. The variability of the GRF components ðFx;Fy;FzÞ depend on the ‘phase’

of the stride cycle, specifically, the time fraction fstance of stance (Figure 2b). To explain this phase-

dependent force variability within a single step, we compute the phase dependent sensitivity of

ðFx;Fy;FzÞ to the center of mass state as follows. For each output, say Fx, we divide the stance dura-

tion into 20 phases and compute a linear model for Fx at each of those phases, all with ð _xa; _ya; zaÞ as
inputs. We refer to the coefficients in these linear models as a function of the phase fstance as the

phase-dependent sensitivities of the GRFs (Figure 5) to the corresponding predictor variable in

ð _xa; _ya; zaÞ.
The phase-dependent sensitivity of sideways GRF to _xa shows that Fx is decreased over the whole

step to correct a positive sideways velocity deviation at flight and that a majority of this correction

occurs during the middle of stance (Figure 5a). Similarly, in response to a positive fore-aft velocity

perturbation, the fore-aft GRF is modulated so that there is a net negative force on the body over

the next step (Figure 5b). The sensitivity of the fore-aft force Fy is more in the first half of stance

than during the second half of stance, being modulated more during the deceleration phase

(roughly fstance < 0:5) than during the acceleration phase (roughly fstance > 0:5).

Foot placement control: step in the direction of the fall
Placing the foot relative to the body allows a runner to modulate the leg force direction and thus

the GRF components. The foot position ðxf ; yf Þ relative to center of mass position at the beginning

of stance phase ðxs; ysÞ is predicted by the previous flight apex state as described by the following

equations. Specifically, sideways foot placement is described by the following equations:

Left stance: Dðxf � xsÞ ¼ 0:95D _xa with R2 ¼ 0:64 and

Right stance: Dðxf � xsÞ ¼ 1:00D _xa with R2 ¼ 0:62:
(8)

The fore-aft foot placement is described by the following equations:

Left stance: D yf � ys
� �

¼ 0:42D _ya� 0:76Dza with R2 ¼ 0:45 and

Right stance: D yf � ys
� �

¼ 0:39D _ya � 0:83Dza with R2 ¼ 0:46:
(9)

That is, a sideways velocity perturbation to the body results in the foot being placed further along

the direction of the perturbation. So, a rightward perturbation results in a more rightward step.

Analogously, a forward velocity perturbation results in the foot being placed further forward relative

to the body. As with the impulses, again, there is no significant coupling between sideways and

fore-aft directions. Fore-aft foot placement modulation also depends on vertical position deviations,

in a manner that the runner lands with a steeper leg when landing from a higher flight apex za. Such

dependence of landing leg angle on vertical position is analogous to behavior in terrain-change

experiments (Daley and Biewener, 2006; Müller et al., 2012; Qiao and Jindrich, 2012; Birn-

Jeffery and Daley, 2012), as discussed in detail later. We speculate that using foot placement

based on center of mass state may be an efficient way to affect the center of mass motion, com-

pared to, say, changing the leg force magnitudes and leg joint torques after the foot touches down

(Clark, 2018).

Swing foot re-positioning happens during flight, just before foot
touchdown
One possibility is that the foot placement deviations are achieved early on during the swing phase

and this deviation is preserved during swing until the foot touchdown. However, this does not

appear to be the case. Figure 6 shows the fraction of foot placement variance predicted by the

swing foot state over the previous step. Less than 10% of the eventual foot placement is predicted

by the swing foot at the beginning of flight phase (Figure 6). The explanatory power of the swing

foot rises rapidly during the flight phase from less than 10% to a 100% when it becomes the next

stance foot, suggesting that most swing foot re-positioning may happen during this flight phase.

Seethapathi and Srinivasan. eLife 2019;8:e38371. DOI: https://doi.org/10.7554/eLife.38371 8 of 24

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.38371


Center of mass state predicts future foot placement before the foot
state does
At the beginning of flight phase (and earlier), the center of mass state is a vastly better predictor of

the next foot placement than the swing foot itself (Figure 6). We can predict the foot placement

using the center of mass state better than just the relative swing foot state until about 100 ms before

foot touchdown. The explanatory power of the center of mass remains flat during flight. This flatness

is likely because center of mass state follows a parabolic path during flight and thus accumulates no

new variation. This lag between the explanatory power of the center of mass and the foot suggests

that the error information in the center of mass state is yet to be fully incorporated into the swing

foot re-positioning until the flight phase. During the brief flight phase, when the swing foot’s explan-

atory power increases, information from center of mass state is transferred to the foot, presumably

via some mixture of feedback control and feedforward dynamics.

Continuous stance state feedback, station-keeping, and running speed
do not significantly affect stance control
As an alternative to control based on discrete monitoring of deviations at the previous flight apex

state, we considered a ‘continuous control’ model. Specifically, we obtained linear models for the

GRFs based on the current center of mass state during stance ð _x; _y; zÞ. These linear models did not

differ significantly in the fraction of GRF variance explained, compared to the apex-based control

model (p ¼ 0:94). In the linear models above, adding the sideways and fore-aft apex body position

ðxa; yaÞ to the explanatory variables improves the R2 values by less than 1:5%. Thus, the runners did

not prioritize controlling their position relative to the treadmill (station-keeping). Further, the regres-

sion coefficients for ð _xa; _ya; zaÞ did not vary significantly across the three running speeds (p> 0:05,

paired t-test).
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Figure 6. Swing foot control before foot placement. The fraction of sideways foot placement (panel a) and fore-aft

foot placement (panel b) variance at beginning of stance predicted by the center of mass (CoM) state or swing

foot state during the previous one step (flight and stance). To produce this figure, a sequence of linear models

were built for predicting the foot placement based on the center of mass state or swing foot state during different

phases through the previous step. We plot the R2 value corresponding to these linear models (that is, fraction of

variance explained) as a function of the gait phase used for the prediction; the gait phase is represented as the

fraction of a step starting from beginning of previous stance phase. The solid and dashed lines represent right and

left foot placements, respectively.
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Approximate left-right symmetry in the control
The running control gains have approximate bilateral (left-right) symmetry. The gains that couple

sideways direction variables and either fore-aft or vertical direction variables have mirror-symmetry

(see Equations 1,2,8,9). That is, these gains for the left leg’s stance are the negatives of correspond-

ing gains for the right leg’s stance. On the other hand, gains that couple one sideways

variable with another sideways variable, or one fore-aft variable with another fore-aft variable, are

the same for the left and right legs without any such sign changes. This mirror symmetry in running

control likely follows from the approximate mirror symmetry in body physiology about the sagittal

plane and was also found in walking (Wang and Srinivasan, 2014; Ankaralı et al., 2015). This sym-

metry suggests the lack of a substantially dominant limb for running control, in contrast to the asym-

metry and limb role differentiation that occurs in some other tasks (Peters, 1988).

Simple models of running capture GRFs and phase-dependent GRF
modulations
We now show that the experimentally derived control strategies described above are sufficient to

control the running dynamics of a simple mathematical model of a biped. We consider a biped with

point-mass upper body and massless telescoping legs capable of generating arbitrary force profiles

(unlike a spring). We considered two versions of this biped model (Figure 7a), one with direct con-

trol of the leg force and another that produces leg forces via Hill-type muscles (Figure 7b). See

Materials and methods for how the nominal running motion and the feedback controllers are speci-

fied for the models.
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Figure 7. Minimal mathematical biped models. (a) Two simple biped models were simulated: a telescoping leg

model with direct force control and a kneed biped with activation control of the muscle at the knee. (b) The

muscle in the second model is a classic Hill-type muscle (Zajac, 1989), composed of an active contractile element,

a series elastic element (tendon), and a parallel elastic element. The force FCE in the active contractile element for

the muscle model depends on the muscle length ‘m through a force-length relationship  ‘, on the muscle length

rate _‘m through a force-velocity relation  v, and the activation a, so that FCE ¼ aFiso v ‘, where Fiso is the

maximum isometric force in the muscle (Zajac, 1989). (c) The control input for both models is represented as a

Fourier sum of two sine waves of frequencies T�1

stance and 2T�1

stance. For the first model, the force is represented by

this Fourier sum and for the second model, the muscle activation. This two-term function is able to allow leg force

profiles without a time-reversal symmetry as shown (force peak not occurring at mid-stance).
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We find that the models’ ground reaction forces are similar to experimental data despite not

explicitly matching the curves (Figure 8a). Further, we find that the phase-dependent ground reac-

tion force feedback gains for the models are qualitatively similar to the phase-dependent gains

inferred from experiment (Figure 8b), again, despite not explicitly fitting the shape of these phase-

dependent gains. This shows that these simple models can not only capture the average motion dur-

ing running, but also how the runner responds to deviations from the average motion.

Human-derived controller stabilizes a minimal model of bipedal running
The simple models’ running motions are not stable without the controller: an arbitrarily small pertur-

bation makes it diverge from the original running motion. With the foot placement and leg force

controller turned on, the running motion is asymptotically stable. Figure 9a–d shows the model

recovering from fore-aft, sideways, and vertical perturbations at flight apex. It is a mathematical the-

orem that a stable periodic motion that can reject perturbations at one phase (say, flight apex) can

reject perturbations at any phase (Guckenheimer and Holmes, 2013). So, it follows that our model

rejects perturbations at any phase.

The inputs to the feedback controller (_xa; _ya; za) do not include the absolute sideways and fore-aft

position ðxa; yaÞ of the runner. Therefore, the controller does not correct position perturbations (sta-

tion-keeping). A sideways or fore-aft push to the model results in convergence to the nominal run-

ning motion, except for a sideways or fore-aft position offset (Figure 9c).
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describing the sensitivity of the sideways GRF to sideways velocity perturbation, fore-aft GRF to a fore-aft velocity
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deviations of the experimentally derived curves are shown as yellow bands.
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Non-zero leg work for energy-changing perturbations
Figure 10 illustrates the leg work-loop for the unperturbed run (net zero work) and when positive

perturbations are applied to sideways and fore-aft velocities, and vertical positions. All such positive

perturbations result in net negative work on the first step after the perturbation, reflected in the

work-loops with net negative area within them. Such net positive or negative leg work is clearly nec-

essary to recover from perturbations that change the total mechanical energy of the runner, as was

recognized in prior discussions of the energy-neutral spring-mass model of running

(Ghigliazza et al., 2005; Biewener and Daley, 2007; Srinivasan and Holmes, 2008).
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Figure 9. Stability of running in the simple biped model using the human-derived controller. We illustrate the

stability of the running model by showing how large perturbations at flight apex decay. (a) Decay of a forward

velocity perturbation. (b) Decay of a sideways velocity perturbation. (c) Top view center of mass trajectory, showing

the unperturbed running motion and a running motion that recovers from a rightward velocity perturbation. The

rightward perturbation elicits a rightward foot placement, compared to the nominal foot placement during

unperturbed running. (d) Sagittal view of running, recovering from an upward position perturbation. On the first

step, the leg touch-down angle is steeper than the touch-down angle during unperturbed running and the contact

time is shorter. All quantities are non-dimensional. See Videos 1,2 and 3 for illustrative animations of the biped

model recovering from forward, sideways, and vertical perturbations, respectively.
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Explaining variability: muscle-driven
running model does not fall despite
noise
To simulate the step-to-step variability in real

human running, we added ‘noise’ to our foot

placement and leg forces (for the direct force con-

trol model) or muscle activations (for the muscle-

driven model) and simulated the biped models for

a few hundred steps. This noise is meant to model

the phenomenon that intended muscle forces

tend to deviate from actual muscle forces due to

motor noise (Harris and Wolpert, 1998). We find

that while the direct leg force control model falls

down, the runner with muscles does not fall down

for hundreds of steps despite the noise. The sta-

ble motion of the center of mass in the presence

of noise-like perturbations is shown in Figure 11a. The variability in the center of mass state at flight

apex for the model (Figure 11b) as a result of the simulated noisy control is qualitatively similar to

the variability found in experiment (Figure 2a). The model is also able to run without falling despite

vertical position perturbations at flight apex, which are equivalent to uneven terrain. Thus, even

though the model was derived using data on horizontal ground, it is capable of running robustly on

uneven terrain. The muscle-driven model is robust to motor noise presumably because of the intrin-

sic stabilizing properties of force-length and force-velocity relations (Hogan, 1984; Jindrich and

Full, 2002).

Discussion
We have mined the step-to-step variability in human running to show how humans modulate leg

forces and foot placement to run stably. We then used these data-derived control strategies on a

biped model, demonstrating robustness to discrete perturbations and persistent motor noise.

We have shown that humans use foot placement or leg angle control in a manner that they step

in the direction of the perturbation, thereby directing the leg force so as to oppose the perturbation.

This result provides an empirical basis for ad hoc

assumptions about leg angle control made in pre-

vious running models (Seyfarth, 2003;

Ghigliazza et al., 2005; Peuker et al., 2012). The

foot placement controller derived from running

data is qualitatively similar to the classic Raibert-

like controller used in early running robots (Rai-

bert, 1986) in that the foot placement opposes

velocity deviations with no sideways-fore-aft

Video 1. Animation of point-mass biped model with

the human-derived controller recovering from a

forward velocity perturbation.

DOI: https://doi.org/10.7554/eLife.38371.012

Video 2. Animation of point-mass biped model with

the human-derived controller recovering from a

sideways velocity perturbation.

DOI: https://doi.org/10.7554/eLife.38371.013

Video 3. Animation of point-mass biped model with

the human-derived controller recovering from a vertical

position perturbation.
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coupling, but differs in that it has a dependence on vertical position perturbations. This makes such

robotic controllers inadvertently biomimetic. Humans use similar foot placement control in walking,

stepping in the direction of the perturbation (Hof et al., 2010; Wang and Srinivasan, 2014). Previ-

ous work had shown that appropriate foot placement is used in running ostriches while turning

(Jindrich et al., 2007), running humans in cutting maneuvers (Besier et al., 2003), and turning while

walking (Patla et al., 1999).

Some past work on inferring stability from variability focused on kinematic measures of variability

such as Floquet multipliers, finite-time Lyapunov exponents (Dingwell et al., 2001) and long term

correlations in walking and running variability (Hausdorff et al., 1995; Jordan et al., 2006;

Kaipust et al., 2012). Such measures can provide discriminative diagnostic measures (Kaipust et al.,

2012), but do not attempt to provide a causal narrative about how locomotion is controlled. Our

approach here, rooted in Newton-Euler mechanics, is able to discover potential causal strategies

underlying locomotion stability, and by extension, could inform treatment of pathological unstable

movements in addition to diagnosis. Other past studies have used variants of the principal compo-

nent analysis (Cappellini et al., 2006; Maus et al., 2015) to demonstrate that the intrinsic variability

in human locomotion may reside in a lower dimensional manifold (Cappellini et al., 2006;

Chang et al., 2009; Yen et al., 2009; Dingwell et al., 2010; Maus et al., 2015). Here, by focusing

on how the center of mass is controlled through forces, we have implicitly used a physics-based

dimensionality reduction to examine the dominant control strategies.

While our work relies on linear regressions from data, the basic physics relating the inputs and

outputs in these models suggest a natural causal account. This causal account, based on simplifying

modeling assumptions, ignores the effect of variables not considered here. Our goal here was to

delineate the explanatory power of controller descriptions based on center of mass state. To identify

the effect of perturbations of other possibly relevant state variables (such as trunk attitude and angu-

lar velocity), we may need to either independently perturb these state variables or show that the nat-

ural variability in such variables is not significantly correlated with the center of mass state.

The gain relating sideways foot placement and sideways velocity deviation was about 2.5 times

greater than the gain relating fore-aft foot placement and fore-aft velocity deviation; a similar factor

of 3 was found in walking (Wang and Srinivasan, 2014), perhaps reflecting the greater sideways

instability of a biped without foot placement control (Ghigliazza et al., 2005). Also consistent with

lower control authority and a greater fall propensity in the sideways direction, we find that the recov-

ery from a sideways perturbation is faster than from a fore-aft perturbation. While station-keeping

was not prioritized over a single step, it may occur on a slower time-scale with a multi-step control-

ler, not considered here.

The results we have presented have been for data pooled over all subjects. Performing the

regressions for data from individual subjects indicates that the dominant terms in the inferred con-

trollers are similar for all subjects; the subject-to-subject variability in the estimated control gains are

shown in Figure 12. Figure 12 illustrates how the accuracy of an estimated control gain depends on
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the number of strides used for regression. For such linear regressions, the error estimate (standard

deviation) is expected to decrease with Nstride like 1=N2

stride, so that a factor of 10 decrease in error

requires a 100-fold increase in sample size (Wang and Srinivasan, 2012; Hamilton, 1994). This

dependence on Nstride may guide selection of sample sizes for future experimental designs.

Our model predicts that when a runner starts at a higher-than-normal height at flight apex, or

equivalently, encounters a step-down, the runner lands with a steeper leg angle (Figure 9d). Such

behavior has been observed in humans and bipedal running birds running with large unforeseen or

visible step-downs (Daley and Biewener, 2006; Grimmer et al., 2008; Müller et al., 2012;

Qiao and Jindrich, 2012). Conversely, step-ups decrease touch-down angle, as predicted (Birn-

Jeffery and Daley, 2012). This behavior has been attributed to swing leg retraction just before foot

contact (Seyfarth, 2003), but our foot placement controller captures this phenomenon despite not

having explicit leg swing dynamics. While the terrain perturbations in the aforementioned experi-

ments were large (5–20 cm), our model is based on data with tiny step-to-step deviations (vertical

position za s.d. 5 mm). This agreement indicates that humans may use qualitatively similar control

strategies for large external perturbations and small intrinsic perturbations. Such foot placement

control has also been used to control robots running on uneven terrain (Hodgins and Raibert,

1991).

It is expected that any running controller that achieves asymptotic stability will need to perform

net mechanical work in response to perturbations that decrease or increase the body’s mechanical

energy (Ghigliazza et al., 2005; Srinivasan and Holmes, 2008; Maus et al., 2015). Our results are

consistent with such expectation, as illustrated by the work-loops with net mechanical work in
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Running despite noisy muscles

Figure 11. Running with noise. (a) Multiple steps of the biped model running in the presence of noisy foot

placement and muscle activations (blue for stance phases and pink for flight phases). Periodic nominal motion in

the absence of noise (black, solid lines for stance, dashed for flight). (b) Deviations in flight apex state, GRF

impulse, and foot placement from nominal for a 1000 steps (500 left steps as blue dots, 500 right steps as red

dots), showing behavior analogous to Figure 2. This variability is not explicitly specified, but instead emerges from

the interaction between the motor noise and the controlled dynamics.

DOI: https://doi.org/10.7554/eLife.38371.015

Seethapathi and Srinivasan. eLife 2019;8:e38371. DOI: https://doi.org/10.7554/eLife.38371 15 of 24

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.38371.015
https://doi.org/10.7554/eLife.38371


Figure 10. Energy-conservative spring-like leg behavior does not allow such net mechanical work

and can achieve only partial asymptotic stability, not being able to handle energy-changing pertur-

bations (as noted by (Ghigliazza et al., 2005)). Indeed, it is generally thought that even the spring-

mass-like steady state center of mass motion in running is due to considerable muscle action and

has been termed pseudo-elastic (Ruina et al., 2005) or pseudo-compliant (McN. Alexander, 1997).

Remarkably, energy-optimal running movements in models with no leg springs produce similar

spring-mass-like center of mass trajectories (Srinivasan, 2011), with leg muscles performing equal

amounts of positive and negative work.

A previous article (Maus et al., 2015) fit running data to variants of the spring-mass model, allow-

ing the spring stiffness and spring length to change during stance, and showing that constant values

for these parameters cannot fit running data. Here, we have used a simpler model to directly

describe the control of stance leg force or activation (Figure 8). Such direct control of leg force or

activation is perhaps more parsimonious than the simultaneous control of two variables, namely,

spring stiffness and length. We have shown that humans modulate GRF continuously over the whole

stance phase for control (Figure 5); Maus and colleagues (Maus et al., 2015) assumed, for simplicity,

an instantaneous finite energy input at mid-stance.

The stabilizing responses we have characterized in this study are likely due to a mixture of feed-

forward dynamics and active neurally mediated feedback control. When we use the term "control"

here, we implicitly refer to this mixture. It is hard to rigorously separate the roles of feedforward and

feedback control without recording motor neuronal outputs and how these outputs interact with the

properties of muscles. Nevertheless, we can determine the feasibility of feedback control by check-

ing whether there is enough time for feedback control, given typical neuromuscular latencies. Our

typical flight phase durations are greater than or about roughly equal to the typical short- or middle-

latencies in reflex or feedback loops involving vestibular (Fitzpatrick et al., 1994; Iles et al., 2007)

or proprioceptive mechanisms (Pearson and Collins, 1993; Sinkjær et al., 1999). This suggests
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Figure 12. Variability in control gains due to subjects and sample sizes. (a) The coefficients in the impulse control

equations (Equations 1-2) and foot placement equations (Equations 8-9). The box plots indicate distributions of

coefficients over all subjects; coefficients for each subject are also shown (red circles). (b) The dependence of

coefficient estimate on the sample size, namely the number of strides Nstride used. The box plot indicates variability

in control gain estimates. This plot was generated using bootstrap statistics (Efron and Tibshirani, 1994) by

resampling from the pooled data from all subjects, and plotting the distribution of control gains obtained for each

Nstride over multiple samples. This graph corresponds to the left stance impulses, but the corresponding graph for

the right stances is nearly identical. Other coefficients exhibit similar trends with sample size. The boxes in the box

plots show the median and the 25th to 75th percentile and the whiskers indicate all data within 2.7 standard

deviations from the median.
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feasibility of feedback based on flight phase or late stance phase information regarding center of

mass state. While we have focused on the control of stance based on the previous flight apex, we

have found that equivalent controllers based on the center of mass state at the end of previous

stance have similar predictive ability (Figure 6), thus allowing more time for neural feedback.

Specifically, the lag between the information in the center of mass state and the swing foot state

regarding future foot placement is about 0.1 s for sideways placement and about twice that for fore-

aft foot placement, suggesting sufficient time for neurally mediated feedback control of foot place-

ment (Figure 6).

Center of mass state or other body state information needed for feedback control could be esti-

mated by the nervous system by integrating sensory signals from vision (Patla, 1997), proprioceptive

sensors (especially when the foot is on the ground (Sainburg et al., 1995)), and vestibular sensors

(Angelaki and Cullen, 2008), potentially in combination with predictive internal models

(Wolpert et al., 1995; Cullen, 2004). In future work, repeating the calculations herein (for instance,

Figure 6) for experiments that systematically block or degrade (say, by adding sensory noise) one or

more of these sensors may tell us the relative contributions of these sensors to running control. We

speculate that most available relevant sensory information is used, perhaps analogous to an optimal

state estimator (Kuo, 2005; Srinivasan, 2009), and degrading one sensor may result in sensory re-

weighting on a slow time-scale (Carver et al., 2006; Assländer and Peterka, 2014). Such experi-

ments may also help explicitly distinguish the effects of sensory and motor noise, which we have

implicitly combined here into a single residual term in the linear regressions.

In this work, we have obtained a running controller with simplifying assumptions. Because humans

have extended feet, non-point-mass upper bodies and legs with masses, the simple point-mass

model may not capture all aspects of the running data (Bullimore and Burn, 2006; Srinivasan and

Holmes, 2008). Further, we have made simplifying assumptions about muscle architecture, muscle

properties (linear force-velocity relations), and muscle activation, which are meant to capture the

main qualitative dynamical features of muscles, rather than model them quantitatively precisely. For

instance, we used a linear force-velocity relation, which may be sufficient to produce damping-like

and stabilizing muscle behavior when activated, but this damping behavior may be accentuated by a

more realistic nonlinear force-velocity relation.

Future work will also involve obtaining controllers for more complex biped models and muscle

models with different control architectures, which, for instance, might include feedback control

based on not just the center of mass state, but the states of individual body segments. We have

focused on linear relations between state deviations and control, as this is naturally suited for small

deviations and perturbations that our data contains. In future work, we hope to examine the range

of perturbation sizes for which this linear description is accurate by comparing this linear control to

responses in experiments with larger perturbations, also inferring nonlinear descriptions should they

improve predictive capability. We will also examine other control architectures, for instance, more

explicitly incorporating state estimation and considering continuous control of motor outputs based

on an estimated state, partly correcting for neural latencies using internal models.

The methods used here are simple and non-invasive: they can be replicated to study running sta-

bility and control in other animals, or indeed, other approximately periodic tasks such as flapping

flight and swimming. These methods are suitable for analyzing differences in different populations

like athletes and non-athletes, the young and the elderly, and adults with and without movement dis-

orders. Once such differences are well-characterized, this information could be used, say, in a reha-

bilitation setting to track progress from a controller in the presence of a movement disorder to a

more healthy controller, and to design rehabilitation robots that assist in this progress.

Materials and methods
We collected running data by conducting human subject experiments, obtained linear models to

characterize the control strategies hidden in the step-to-step variability, and performed dynamic sim-

ulations using the inferred controller on a mathematical model of the runner.

Experimental methods
The protocols were approved by the Ohio State University Institution Review Board and subjects

participated with informed consent. Eight subjects, three female and five male (age 25.0 ±5 years,
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weight 66.8 ±7 kg, height 1.8 ±0.14 m, leg length 1.05 ±0.08 m, mean ± s.d.) ran on a split-belt

treadmill at three constant speeds: 2.5, 2.7 and 2.9 m/s, presented in random order. Each speed

had 2075 ± 67 strides across all subjects (one stride = two steps) with subjects running about 3.5

min on average. Subjects wore a loose safety harness that did not constrain their motion. Three-

dimensional ground reaction forces and moments on each belt of the treadmill were recorded by

separate six-axis load cells (Bertec Inc, 1000 Hz). Body segment motion was measured using marker-

based motion capture (Vicon T20, 100 Hz) with four reflective markers on each foot and on the

torso.

Calculating input state variables during flight apex
We define flight apex as when the center of mass velocity reaches its peak height (_z ¼ 0). The input

to the running controller is drawn from the center of mass state at flight apex, namely position

ðxa; ya; zaÞ and velocity ð _xa; _ya; _zaÞ. Unless otherwise specified, we use the flight apex state ð _xa; _ya; zaÞ as
inputs in our linear models. The vertical velocity _za at flight apex is zero by definition and hence not

included as an input. The center of mass velocities are obtained by integrating the center of mass

accelerations, that is, the mass-normalized net force on the body: €x ¼ Fx=m,

€y ¼ Fy=m, and €z ¼ Fz=m� g, where Fx;Fy and Fz are the measured ground reaction forces on the

body. To obtain the integration constants, we assume that the mean velocity and acceleration over

the whole trial are zero, because the person does not translate appreciably in the lab frame over a

trial. To remove the slow integration drift in the center of mass velocity, we used a high-pass filter

with a frequency cut-off equal to an eighth of mean step frequency (Luinge and Veltink, 2005;

Schepers et al., 2009). Changing this high-pass filter cut-off to a twentieth of the step frequency

instead, or using a piecewise-linear de-trending over 20 steps, do not affect any of this article’s con-

clusions. This is because the stability-critical time-scales are much shorter. We ignored air drag here,

because including it changed the velocities by less than 10-5 ms-1, which is much smaller than the

step-to-step variability. We use a weighted mean of four markers, roughly at the sacral level, as an

approximation of the center of mass position (Gard et al., 2004; Wang and Srinivasan, 2014;

Perry and Srinivasan, 2017).

Calculating the output control variables during stance
We assume that the following variables are used to control the runner: GRFs, foot placement, and

the landing leg length. Stance phases are identified as when the vertical GRF exceeds a threshold

value to account for measurement noise (Fz > 30 N). The corresponding stance duration is Tstance. The

GRF impulses ðPx;Py;PzÞ for each step are obtained by integrating the GRF components over the

stance phase (Px ¼
R Tstance
0

Fx dt, etc). In addition to considering how GRF control occurs grossly over

one step, we also consider GRF control throughout stance as a function of stance phase fraction

fstance. Each stance phase is divided into n bins of duration Tstance=n. To approximate how the GRFs

changes with the stance phase fraction fstance, we used the binned averages of the GRF in each of

n ¼ 20 bins.

Linear regressions between the outputs and the inputs
We compute the mean values of the inputs over all steps in each trial and obtain deviations from

these means ðD _xa;D _ya;DzaÞ. Similarly, we compute the deviations from the means of the output varia-

bles DFðfstanceÞ, DP, and Dðxf � xs; yf � ysÞ. We use ordinary least squares regression to obtain linear

models between the inputs and the outputs and report significant coefficients. Specifically, we have

DOutput ¼ J � DInput, where the Jacobian matrix J represents the matrix of coefficients in the linear

model. Each element of the matrix J quantifies the sensitivity of an output variable to small changes

in a corresponding input variable, as inferred from the data and subject to the simplifying model

assumptions. These sensitivity coefficients could be interpreted as partial derivatives, such as:

qTstance=q _xa, qFyðfstanceÞ=q _ya, and so on. Unless otherwise specified, the results presented are based

on deviations of all subjects pooled together as one dataset, but we find that the models of individ-

ual subjects’ data are qualitatively similar (as indicated in Figure 12). The coefficients for the right

leg and left leg are computed separately, to accommodate sign changes due to symmetry about the

sagittal plane.
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Regressions with phase-dependent inputs
In addition to the regressions described above using the flight apex state as the predictor, we used

the center of mass state ðD _xa;D _ya;DzaÞ at different phases over the previous step to predict each of

the stance phase outputs. Specifically, for each stance phase output, we performed

n ¼ 20 regressions, each using the center of mass state at one of the n ¼ 20 equally spaced gait

phases over the previous step, where one full step is defined as starting and ending at a touch-

down. This analysis allows us to investigate the predictive ability of the center of mass state at differ-

ent phases. For these phase-dependent regressions, in addition to using the center of mass state as

the predictor, we repeated the calculations using the swing foot state (position and velocity relative

to the center of mass), so as to compare the different predictive abilities as in Figure 6.

Implementing the data-derived control on a minimal mathematical
biped
We consider two simple models of running, similar in spirit to previous models in terms of simplicity

(Blickhan and Full, 1993; Geyer et al., 2006; Srinivasan and Holmes, 2008), but generalized such

that the leg forces are not constrained by ad hoc spring-like-leg assumptions (Srinivasan, 2011).

Instead, the biped controller details are inferred from our experimentally obtained linear models.

Both biped models have a point-mass upper body and massless legs (Srinivasan and Ruina, 2006;

Srinivasan, 2011), that can change effective leg length during stance by modulating the leg force

(Figure 7a). During flight phase, the point-mass body undergoes parabolic free flight. The legs can

apply forces on the upper body during stance phase. The two models, dubbed ‘direct force control

model’ and ‘muscle control model’ differ in how the leg force is produced and controlled. For the

muscle control model, we use a Hill muscle model with force-length and force-velocity relations

(Figure 7b, c and d). The 3D equations of motion of the point-mass biped are:

m€x ¼ Fleg � ðx� xfootÞ=‘, m€y ¼ Fleg � ðy� yfootÞ=‘, and m€z ¼ �mgþ Fleg � ðz� zfootÞ=‘, where Fleg is the sca-

lar leg force, ðxfoot; yfoot; zfootÞ is the foot position with zfoot ¼ 0 on flat terrain and

‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xfootÞ2 þ ðy� yfootÞ2 þ ðz� zfootÞ2
q

is the leg length from body to foot. In the ‘direct force

control model’, the object of control is the leg force Fleg during stance phase. In the ‘muscle control

model’, the object of control is the muscle activation amuscle, which is converted to muscle force via

the force-length and force-velocity equations of Hill-type muscles (Figure 7a–b). See (Zajac, 1989;

Srinivasan and Ruina, 2006; Srinivasan, 2011) for more detailed equations of motion and muscle

model equations.

Both models have two terms in their control: (1) a feedforward or ‘nominal’ term, that depends

only on the average or desired periodic motion and (2) feedback modification of the control in

response to state deviations at flight phase. The model’s leg force or muscle activation is modeled

as a two-term sine series of the form A1 sinð2pt=2TstanceÞ þ A2 sinð2pt=TstanceÞ, as shown in Figure 7e.

By changing the relative weights of A1 and A2, the shape of the leg force profile can be changed

from being symmetric about the peak force to being asymmetric, with the peak force preceding or

following mid-stance. We parameterize the running motion using stance duration Tstance, flight dura-

tion Tflight, 2D foot placement ðxfoot; yfootÞ, 3D initial conditions for stance ðxð0Þ; yð0Þ; zð0ÞÞ, and the

coefficients of the two-term sine series (A1 and A2). We solve for these variables to obtain a periodic

running motion that accurately match the forward speed, step period, step width, and peak leg

force from experimental data (Figure 8a) by using an optimization procedure (Srinivasan and

Holmes, 2008; Srinivasan, 2011) that enforces a constraint satisfaction tolerance of less than 10
�6.

The runner leaves the ground when it reaches the maximum leg length, but the nominal leg length

at landing is assumed to be shorter (95%) than the maximum leg length, as seen in running data

(Voloshina and Ferris, 2015). We enforce that left and right stances are mirror symmetric. Unlike

previous simple running models, our model’s nominal periodic motion has non-zero step width and

a stance phase that is asymmetric about mid-stance. This asymmetric stance is due to unequal land-

ing and take-off leg lengths, and the asymmetry of the leg force or muscle activation about mid-

stance.

The foot placement control for the models are based on the experimentally derived control and

given by the linear model in Equations 8 and 9. The leg force feedback control based on apex body

state, for the direct force control model, has gains as shown in Figure 8b. The muscle control mod-

el’s feedback control gains are also shown superimposed in Figure 8b. These control gains were
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derived for the two models by modifying the Fourier coefficients for the force and muscle activations

respectively, so that the linear map from one apex to the next is best matched to that from data

(Equation 3). While there are infinitely many controllers, even for this simple biped model, that can

approximate the apex-to-apex map, our simplifying assumptions constrains the space of controllers

to produce a unique fit. The leg forces and muscle activations are rectified, so that they never

become negative despite feedback control (Blum et al., 2017). The foot placement control and leg

force feedback control are activated only when the apex state deviates from nominal.

To obtain a running simulation over many steps, we break up each step into three phases: flight

from apex to beginning of stance, the stance phase, and flight from the end of stance to flight apex.

The control actions for the next stance are chosen at flight apex. As previously defined for the exper-

imental data, the flight apex is when _z becomes zero. In some cases, if the vertical velocity is down-

ward when a stance phase ends (_z< 0), there is no flight ‘apex’ and the controller uses the end of

stance state instead of flight apex state as input. The end of flight and thus, the beginning of stance,

are determined as the moment when the distance between the body and the target foot position is

exactly equal to the landing leg length. The leg length at landing is also controlled based on flight

apex state, based on the linear model in Equation 7. At flight apex, if the distance to the next foot

position is less than the target landing leg length, the runner immediately goes into stance.

Such a simulation, when started from initial conditions exactly on the nominal periodic motion,

results in a perfectly periodic motion when there are no further perturbations. We then re-simulated

the two point-mass running models for hundreds of steps, in the presence of noisy foot placements

and leg forces or muscle activations with step-to-step variability. To model the noise in foot place-

ment, we computed the ‘desired’ foot placement based on the center of mass state at flight apex

(Equations 8-9) and then added a deviation drawn from a normal distribution, whose variance

equals the foot placement variance not explained by Equation 8. Similarly, we incorporated impre-

cise control of leg forces or muscle activation in the following manner: for each stance phase, once

the leg force FðtÞ (for model-1) or muscle activation aðtÞ (for model-2) is determined based on the

center of mass state at the previous flight apex, we ‘corrupt’ these functions by a multiplicative noise

term, so that the actual leg force or muscle activation is FðtÞð1þ �Þ or aðtÞð1þ �Þ respectively, where
� is drawn from a normal distribution with variance equal to the unexplained step-to-step variability

in leg force magnitude. Thus, we use the unexplained variance in the foot placement and leg forces

from experimental regressions as a simple model of the intrinsic noise in active control.
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