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Abstract

Mammals localize sounds using information from their two ears. Localization in real-world 

conditions is challenging, as echoes provide erroneous information, and noises mask parts of 

target sounds. To better understand real-world localization we equipped a deep neural network 

with human ears and trained it to localize sounds in a virtual environment. The resulting model 

localized accurately in realistic conditions with noise and reverberation. In simulated experiments, 

the model exhibited many features of human spatial hearing: sensitivity to monaural spectral cues 

and interaural time and level differences, integration across frequency, biases for sound onsets, 

and limits on localization of concurrent sources. But when trained in unnatural environments 

without either reverberation, noise, or natural sounds, these performance characteristics deviated 

from those of humans. The results show how biological hearing is adapted to the challenges of 

real-world environments and illustrate how artificial neural networks can reveal the real-world 

constraints that shape perception.

Introduction

Why do we see or hear the way we do? Perception is believed to be adapted to the 

world – shaped over evolution and development to help us survive in our ecological 

niche. Yet adaptedness is often difficult to test. Many phenomena are not obviously a 

consequence of adaptation to the environment, and perceptual traits are often proposed to 

reflect implementation constraints rather than the consequences of performing a task well. 

Well-known phenomena attributed to implementation constraints include aftereffects1,2, 

masking3,4, poor visual motion and form perception for equiluminant color stimuli5, and 

limits on the information that can be extracted from high-frequency sound6–8.
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Evolution and development can be viewed as an optimization process that produces a system 

that functions well in its environment. The consequences of such optimization for perceptual 

systems have traditionally been revealed by ideal observer models – systems that perform a 

task optimally under environmental constraints9,10, and whose behavioral characteristics can 

be compared to actual behavior. Ideal observers are typically derived analytically, but as a 

result are often limited to simple psychophysical tasks11–16. Despite recent advances, such 

models remain intractable for many real-world behaviors. Rigorously evaluating adaptedness 

has thus remained out of reach for many domains. Here we extend ideas from ideal observer 

theory to investigate the environmental constraints under which human behavior emerges, 

using contemporary machine learning to optimize models for behaviorally relevant tasks in 

simulated environments. Human behaviors that emerge from machine learning under a set 

of naturalistic environmental constraints, but not under alternative constraints, are plausibly 

a consequence of optimization for those natural constraints (i.e., adapted to the natural 

environment) (Fig. 1A).

Sound localization is one domain of perception where the relationship of behavior to 

environmental constraints has not been straightforward to evaluate. The basic outlines 

of spatial hearing have been understood for decades17–20. Time and level differences 

in the sound that enters the two ears provide cues to a sound’s location, and location-

specific filtering by the ears, head, and torso provide monaural cues that help resolve 

ambiguities in binaural cues (Fig. 1B). However, in real-world conditions, background 

noise masks or corrupts cues from sources to be localized, and reflections provide 

erroneous cues to direction21. Classical models based on these cues thus cannot 

replicate real-world localization behavior22–24. Instead, modeling efforts have focused 

on accounting for observed neuronal tuning in early stages of the auditory system 

rather than behavior25–31, or have modeled behavior in simplified experimental conditions 

using particular cues24,30,32–36. Engineering systems must solve localization in real-world 

conditions, but typically adopt approaches that diverge from biology, using more than two 

microphones and/or not leveraging cues from ear/head filtering37–44. As a result we lack 

quantitative models of how biological organisms localize sounds in realistic conditions. In 

the absence of such models, the science of sound localization has largely relied on intuitions 

about optimality. Those intuitions were invaluable in stimulating research, but on their own 

are insufficient for quantitative predictions.

Here we exploit the power of contemporary artificial neural networks to develop a model 

optimized to localize sounds in realistic conditions. Unlike much other contemporary work 

using neural networks to investigate perceptual systems45–50, our primary interest is not 

in potential correspondence between internal representations of the network and the brain. 

Instead, we aim to use the neural network as a way to find an optimized solution to a 

difficult real-world task that is not easily specified analytically, for the purpose of comparing 

its behavioral characteristics to those of humans. Our approach is thus analogous to the 

classic ideal observer approach, but harnesses modern machine learning in place of an ideal 

observer for a problem where one is not analytically tractable.

To obtain sufficient labeled data with which to train the model, and to enable the 

manipulation of training conditions, we used a virtual acoustic world51. The virtual world 
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simulated sounds at different locations with realistic patterns of surface reflections and 

background noise that could be eliminated to yield unnatural training environments. To 

give the model access to the same cues available to biological organisms, we trained it on 

a high-fidelity cochlear representation of sound, leveraging recent technical advances52 to 

train the large models that are required for such high-dimensional input. Unlike previous 

generations of neural network models24,37,40,42,44, which were reliant on hand-specified 

sound features, we learn all subsequent stages of a sound localization system to obtain good 

performance in real-world conditions.

When tested on stimuli from classic laboratory experiments, the resulting model replicated 

a large and diverse array of human behavioral characteristics. We then trained models in 

unnatural conditions to simulate evolution and development in alternative worlds. These 

alternative models deviated notably from human-like hearing. The results suggest that 

the characteristics of human hearing are indeed adapted to the constraints of real-world 

localization, and that the rich panoply of sound localization phenemona can be explained 

as consequences of this adaptation. The approach we employ is broadly applicable to other 

sensory modalities, providing a way to test the adaptedness of aspects of human perception 

to the environment and to understand the conditions in which human-like perception arises.

Results

Model construction

We began by building a system that could localize sounds using the information available to 

human listeners. The system thus had outer ears (pinnae), and a simulated head and torso, 

along with a simulated cochlea. The outer ears and head/torso were simulated using head-

related impulse responses recorded from a standard physical model of the human53. The 

cochlea was simulated with a bank of bandpass filters modeled on the frequency selectivity 

of the human ear54,55, whose output was rectified and low-pass filtered to simulate the 

presumed upper limit of phase locking in the auditory nerve56. The inclusion of a fixed 

cochear front-end (in lieu of trainable filters) reflected the assumption that the cochlea 

evolved to serve many different auditory tasks rather than being primarily driven by sound 

localization. As such, the cochlea seemed a plausible biological constraint on localization.

The output of the two cochlea formed the input to a standard convolutional neural network 

(Fig. 1C). This network instantiated a cascade of simple operations – filtering, pooling, 

and normalization – culminating in a softmax output layer with 504 units corresponding 

to different spatial locations (spaced 5° in azimuth and 10° in elevation). The parameters 

of the model were tuned to maximize localization performance on the training data. The 

optimization procedure had two phases: an architecture search in which we searched over 

architectural parameters to find a network architecture that performed well (Fig. 1D), and 

a training phase in which the filter weights of the selected architectures were trained to 

asymptotic performance levels using gradient descent.

The architecture search consisted of training each of a large set of possible architectures 

for 15000 training steps with 16 1s stimulus examples per step (240k total examples; see 

Extended Data Fig. 1 for distribution of localization performance across architectures, and 
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Extended Data Fig. 2 for the distributions from which architectures were chosen). We then 

chose the 10 networks that perfomed best on a validation set of data not used during 

training (Extended Data Fig. 3). The parameters of these 10 networks were then reinitialized 

and each trained for 100k training steps (1.6M examples). Given evidence that internal 

representations can vary somewhat across different networks trained on the same task57, we 

present results aggregated across the top 10 best-performing architectures, treated akin to 

different participants in an experiment58. Most results graphs present the average results for 

these 10 networks, which we collectively refer to as “the model”.

The training data was based on a set of ~500,000 stereo audio signals with associated 

3D locations relative to the head (on average 988 examples for each of the 504 location 

bins; see Methods). These signals were generated from 385 natural sound source recordings 

(Extended Data Fig. 4) rendered at a spatial location in a simulated room. The room 

simulator used a modified source-image method51,59 to simulate the reflections off the 

walls of the room. Each reflection was then filtered by the (binaural) head-related impulse 

response for the direction of the reflection53. Five different rooms were used, varying in their 

dimensions and in the material of the walls (Extended Data Fig. 5). To mimick the common 

presence of noise in real-world environments, each training signal also contained spatialized 

noise. Background noise was synthesized from the statistics of a natural sound texture60, and 

was rendered at between 3 and 8 randomly chosen locations using the same room simulator, 

in order to produce noise that was diffuse but non-uniform, intended to replicate common 

real-world sources of noise. At each training step the rendered natural sound sources were 

randomly paired with rendered background noises. The neural networks were trained to map 

the binaural audio to the location of the sound source (specified by its azimuth and elevation 

relative to the model’s “head”).

Model evaluation in real-world conditions

The trained networks were first evaluated on a held-out set of 70 sound sources rendered 

using the same pipeline used to generate the training data (yielding a total of ~47,000 

stereo audio signals). The best-performing networks produced accurate localization for this 

validation set (the mean error was 5.3 degrees in elevation and 4.4 degrees in azimuth, 

front-back folded, i.e. reflected about the coronal plane, to discount front-back confusions).

To assess whether the model would generalize to real-world stimuli outside the training 

distribution, we made binaural recordings in an actual conference room using a mannequin 

with in-ear microphones (Fig. 1E. Humans localize relatively well in such free-field 

conditions (Fig. 1F). The trained networks also localized real-world recordings relatively 

well (Fig. 1G), on par with human free-field localization, with errors limited to the front-

back confusions that are common to humans when they cannot move their heads (Fig. 

1H)61,62.

For comparison, we also assessed the performance of a standard set of two-microphone 

localization algorithms from the engineering literature63–68. In addition, we trained the 

same set of neural networks to localize sounds from a two-microphone array that lacked 

the filtering provided to biological organisms by the ears/head/torso but that included the 

simulated cochlea (Extended Data Fig. 6A). Our networks that had been trained with 
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biological pinnae/head/torso outperformed the set of standard two-microphone algorithms 

from the engineering community, as well as the neural networks trained with stereo 

microphone input without a head and ears (Extended Data Fig. 6B&C). This latter result 

confirms that the head and ears provide valuable cues for localization. Overall, performance 

on the real-world test set demonstrates that training a neural network in a virtual world 

produces a model that can accurately localize sounds in realistic conditions.

Model behavioral characteristics

To assess whether the trained model replicated the characteristics of human sound 

localization, we simulated a large set of behavioral experiments from the literature, intended 

to span many of the best-known and largest effects in spatial hearing. We replicated the 

conditions of the original experiments as closely as possible (e.g. when humans were tested 

in anechoic conditions, we rendered experimental stimuli in an anechoic environment). 

We emphasize that the networks were not fit to human data in any way. Despite this, the 

networks reproduced the characteristics of human spatial hearing across this broad set of 

experiments.

Sensitivity to interaural time and level differences

We began by assessing whether the networks learned to use the binaural cues known to 

be important for biological sound localization. We probed the effect of interaural time and 

level differences (ITDs and ILDs, respectively) on localization behavior using a paradigm 

in which additional time and level differences are added to high- and low-frequency 

sounds rendered in virtual acoustic space69 (Fig. 2A). This paradigm has the advantage 

of using realistically externalized sounds and an absolute localization judgment (rather than 

the left/right lateralization judgments of simpler stimuli that are common to many other 

experiments70–73).

In the original experiment69, the change to perceived location imparted by the additional 

ITD or ILD was expressed as the amount by which the ITD or ILD would change in natural 

conditions if the actual location were changed by the perceived amount (Fig. 2B). This 

yields a curve whose slope indicates the efficacy of the manipulated cue (ITD or ILD). 

We reproduced the stimuli from the original study, rendered them in our virtual acoustic 

world, added ITDs and ILDs as in the original study, and analyzed the model’s localization 

judgments in the same way.

For human listeners, ITD and ILD have opposite efficacies at high and low frequencies (Fig. 

2C), as predicted by classical “duplex” theory17. An ITD bias imposed on low-frequency 

sounds shifts the perceived location of the sound substantially (bottom left), whereas an 

ITD imposed on high-frequency sound does not (top left). The opposite effect occurs for 

ILDs (right panels), although there is a weak effect of ILDs on low-frequency sound. This 

latter effect is inconsistent with the classical duplex story but consistent with more modern 

measurements indicating small but reliable ILDs at low frequencies74 that are used by the 

human auditory system75–77.

As shown in Fig. 2D, the model qualitatively replicated the effects seen in humans. Added 

ITDs and ILDs had the largest effect at low and high frequencies, respectively, but ILDs had 
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a modest effect at low frequencies as well. This produced an interaction between the type of 

cue (ITD/ILD) and frequency range (difference of differences between slopes significantly 

greater than 0; p<.001, evaluated by bootstrapping across the 10 networks). However, the 

effect of ILD at low frequencies was also significant (slope significantly greater than 0; 

p<.001, via bootstrap). Thus, a model optimized for accurate localization both exhibits the 

dissociation classically associated with duplex theory, but also its refinements in the modern 

era.

Azimuthal localization of broadband sounds

We next measured localization accuracy of broadband noise rendered at different azimuthal 

locations (Fig. 3A). In humans, localization is most accurate near the midline (Fig. 3B), 

and becomes progressively less accurate as sound sources move to the left or right of the 

listener78–80. One explanation is that the first derivatives of ITD and ILD with respect to 

azimuthal location decrease as the source moves away from the midline21, providing less 

information about location28. The model qualitatively reproduced this result (Fig. 3C).

Integration across frequency

Because biological hearing begins with a decomposition of sound into frequency channels, 

binaural cues are thought to be initially extracted within these channels20,25. However, 

organisms are believed to integrate information across frequency to achieve more accurate 

localization than could be mediated by any single frequency channel. One signature of this 

integration is improvement in localization accuracy as the bandwidth of a broadband noise 

source is increased (Fig. 3D&E)81,82. We replicated one such experiment on the networks 

and they exhibited a similar effect, with accuracy increasing with noise bandwidth (Fig. 3F).

Use of ear-specific cues to elevation

In addition to the binaural cues that provide information about azimuth, organisms are 

known to make use of the direction-specific filtering imposed on sound by the ears, head and 

torso18,83. Each individual’s ears have resonances that “color” a sound differently depending 

on where it comes from in space. Individuals are believed to learn the specific cues provided 

by their ears. In particular, if forced to listen with altered ears, either via molds inserted 

into the ears84 or via recordings made in a different person’s ears85, localization in elevation 

degrades even though azimuthal localization is largely unaffected (Fig. 4A–C).

To test whether the trained networks similarly learned to use ear-specific elevation cues, we 

measured localization accuracy in two conditions: one where sounds were rendered using 

the head-related impulse response set used for training the networks, and another where 

the impulse responses were different (having been recorded in a different person’s ears). 

Because we have unlimited ability to run experiments on the networks, in the latter condition 

we evaluated localization with 45 different sets of impulse responses, each recorded from a 

different human. As expected, localization of sounds rendered with the ears used for training 

was good in both azimuth and elevation (Fig. 4D). But when tested with different ears, 

localization in elevation generally collapsed (Fig. 4E), much like what happens to human 

listeners when molds are inserted in their ears (Fig. 4C), even though azimuthal localization 

was nearly indistinguishable from that with the trained ears. Results for individual sets of 
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alternative ears revealed that elevation performance transferred better across some ears than 

others (Fig. 4F&G), consistent with anecdotal evidence that sounds rendered with HRTFs 

other than one’s own can sometimes be convincingly localized in three dimensions.

Limited spectral resolution of elevation cues

Elevation perception is believed to rely on the peaks and troughs introduced to a sound’s 

spectrum by the ears/head/torso18,21,83 (Fig. 1B, right). In humans, however, perception is 

dependent on relatively coarse spectral features – the transfer function can be smoothed 

substantially before human listeners notice abnormalities86 (Fig. 4 H&I), for reasons that 

are unclear. In the original demonstration of this phenomenon, human listeners discriminated 

sounds with and without smoothing, a judgment that was in practice made by noticing 

changes in the apparent location of the sound. To test whether the trained networks 

exhibited a similar effect, we presented sounds to the networks with similarly smoothed 

transfer functions and measured the extent to which the localization accuracy was affected. 

The effect of spectral smoothing on the networks’ accuracy was similar to the measured 

sensitivity of human listeners (Fig. 4J). The effect of the smoothing was most prominent 

for localization in elevation, as expected, but there was also some effect on localization in 

azimuth for the more extreme degrees of smoothing (Fig. 4K&L), consistent with evidence 

that spectral cues affect azimuthal space encoding87.

Dependence on high-frequency spectral cues to elevation

The cues used by humans for localization in elevation are primarily in the upper part of 

the spectrum88,89. To assess whether the trained networks exhibited a similar dependence, 

we replicated an experiment measuring the effect of high-pass and low-pass filtering on 

the localization of noise bursts90 (Fig. 4M). Model performance varied with the frequency 

content of the noise in much the same way as human performance (Fig. 4N&O).

The precedence effect

Another hallmark of biological sound localization is that judgments are biased towards 

information provided by sound onsets21,91. The classic example of this bias is known as 

the “precedence effect”92–94. If two clicks are played from speakers at different locations 

with a short delay (Fig. 5A), listeners perceive a single sound whose location is determined 

by the click that comes first. The effect is often hypothesized to be an adaptation to the 

common presence of reflections off of environmental surfaces (Fig. 1C) – reflections arrive 

from an erroneous direction but traverse longer paths and arrive later, such that basing 

location estimates on the earliest arriving sound might avoid errors21. To test whether our 

model would exhibit a similar effect, we simulated the classic precedence experiment, 

rendering two clicks at different locations. When clicks were presented simultaneously, the 

model reported the sound to be centered between the two click locations, but when a small 

inter-click delay was introduced, the reported location switched to that of the leading click 

(Fig. 5B). This effect broke down as the delay was increased, as in humans, though with the 

difference that the model cannot report hearing two sounds, and so instead reported a single 

location intermediate between those of the two clicks.
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To compare the model results to human data, we simulated an experiment in which 

participants reported the location of both the leading and lagging click as the inter-click 

delay was varied95. At short but non-zero delays, humans accurately localize the leading but 

not the lagging click (Fig. 5C; because a single sound is heard at the location of the leading 

click). At longer delays the lagging click is more accurately localized, and listeners start to 

mislocalize the leading click, presumably because they confuse which click is first95. The 

model qualitatively replicated both effects, in particular the large asymmetry in localization 

accuracy for the leading and lagging sound at short delays (Fig. 5D).

Multi-source localization

Humans are able to localize multiple concurrent sources, but only to a point96–98. The 

reasons for the limits on multi-source localization are unclear97. These limitations could 

reflect human-specific cognitive constraints. For instance, reporting a localized source might 

require attending to it, which could be limited by central factors not specific to localization. 

Alternatively, localization could be fundamentally limited by corruption of spatial cues by 

concurrent sources or other ambiguities intrinsic to the localization problem. To assess 

whether the model would exhibit limitations like those observed in humans, we replicated 

an experiment98 in which humans judged both the number and location of a set of speech 

signals played from a subset of an array of speakers (Fig. 6A). To enable the model to report 

multiple sources we fine-tuned the final fully-connected layer to indicate the probability of a 

source at each of the location bins, and set a probability criterion above which we considered 

the model to report a sound at the corresponding location (see Methods). The weights in 

all earlier layers were “frozen” during this fine-tuning, such that all other stages of the 

model were identical to those used in all other experiments. We then tested the model on the 

experimental stimuli.

Humans accurately report the number of sources up to three, after which they undershoot, 

only reporting about four sources in total regardless of the actual number (Fig. 6B). The 

model reproduced this effect, also being limited to approximately four sources (Fig. 6C). 

Human localization accuracy also systematically drops with the number of sources (Fig. 

6D); the model again quantitatively reproduced this effect (Fig. 6E). The model-human 

similarity suggests that these limits on sound localization are intrinsic to the constraints of 

the localization problem, rather than reflecting human-specific central factors.

Effect of optimization for unnatural environments

Despite having no previous exposure to the stimuli used in the experiments, and despite 

not being fit to match human data in any way, the model qualitatively replicated a wide 

range of classic behavioral effects found in humans. These results raise the possibility that 

the characteristics of biological sound localization may be understood as a consequence of 

optimization for real-world localization. However, given these results alone, the role of the 

natural environment in determining these characteristics is left unclear.

To assess the extent to which the properties of biological hearing are adapted to the 

constraints of localization in natural environments, we took advantage of the ability 

to optimize models in virtual worlds altered in various ways, intended to simulate 
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the optimization that would occur over evolution and/or development in alternative 

environments (Fig. 1A). We altered the training environment in one of three ways (Fig. 7A): 

1) by eliminating reflections (simulating surfaces that absorb all sound that reaches them, 

unlike real-world surfaces), 2) by eliminating background noise, and 3) by replacing natural 

sound sources with artificial sounds (narrowband noise bursts). In each case we trained 

the networks to asymptotic performance, then froze their weights and ran them on the full 

suite of psychophysical experiments described above. The psychophysical experiments were 

identical for all training conditions; the only difference was the strategy learned by the 

model during training, as might be reflected in the experimental results. We then quantified 

the dissimilarity between the model psychophysical results and those of humans as the 

mean squared error between the model and human results, averaged across experiments 

(normalized to have uniform axis limits; see Methods).

Fig. 7B shows the average dissimilarity between the human and model results on the suite 

of psychophysical experiments, computed separatedly for each model training condition. 

The dissimilarity was lowest for the model trained in natural conditions, and significantly 

higher for each of the alternative conditions (p<.001 in each case, obtained by comparing the 

dissimilarity of the alternative conditions to a null distribution obtained via bootstrap across 

the 10 networks trained in the naturalistic condition; results were fairly consistent across 

networks, Extended Data Fig. 7). The effect size of the difference in dissimilarity between 

the naturalistic training condition results and each of the other training conditions was 

large in each case (d=3.06, Anechoic; d=3.05, Noiseless; d=3.01, Unnatural Sounds). This 

result provides additional evidence that the properties of spatial hearing are consequences 

of adaptation to the natural environment – human-like spatial hearing emerged from task 

optimization only for naturalistic training conditions.

To get insight into how the environment influences perception, we examined the human-

model dissimilarity for each experiment individually (Fig. 7C). Because the absolute 

dissimilarity is not meaningful (in that it is limited by the reliability of the human results, 

which is not perfect; see Extended Data Fig. 8), we assessed the differences in human-model 

dissimilarity between the natural training condition and each unnatural training condition. 

These differences were most pronounced for a subset of experiments in each case.

The anechoic training condition produced most abnormal results for the precedence effect, 

but also produced substantially different results for ITD cue strength. The effect size for the 

difference in human-model dissimilarity between anechoic and natural training conditions 

was significantly greater in both these experiments (precedence effect: d=4.16; ITD cue 

strength: d=3.41) than in the other experiments (p<0.001, by comparing the effect sizes of 

one experiment to the distribution of the effect size for another experiment obtained via 

bootstrap across networks). The noiseless training condition produced most abnormal results 

for the effect of bandwidth (d=4.71; significantly greater than that for other experiments, 

p<0.001, via bootstrap across networks). We confirmed that this result was not somehow 

specific to the absence of internal neural noise in our cochlear model, by training an 

additional model in which noise was added to each frequency channel (see Methods). We 

found that the results of training in noiseless environments remained very similar. The 

training condition with unnatural sounds produced most abnormal results for the experiment 
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measuring elevation perception (d=4.4 for the ear alteration experiment; d=4.28 for the high-

frequency elevation cue experiment; p<0.001 in both cases, via bootstrap across networks), 

presumably because without the pressure to localize broadband sounds, the model did not 

acquire sensitivity to spectral cues to elevation. These results indicate that different worlds 

would lead to different perceptual systems with distinct localization strategies.

The most interpretable example of environment-driven localization strategies is the 

precedence effect. This effect is often proposed to render localization robust to reflections, 

but others have argued that its primary function might instead be to eliminate interaural 

phase ambiguities, independent of reflections99. This effect is shown in Fig. 7D for models 

trained in each of the four virtual environments. Anechoic training completely eliminated the 

effect, even though it was largely unaffected by the other two unnatural training conditions. 

This result substantiates the hypothesis that the precedence effect is an adaptation to 

reflections in real-world listening conditions. See Extended Data Figs. 9 and 10 for full 

psychophysical results for models trained in alternative conditions.

In addition to diverging from the perceptual strategies found in human listeners, the models 

trained in unnatural conditions performed more poorly at real-world localization. When 

we ran models trained in alternative conditions on our real-world test set of recordings 

from mannequin ears in a conference room, localization accuracy was substantially worse 

in all cases (Fig. 7E; p<.0.001 in all cases). This finding is consistent with the common 

knowledge in engineering that training systems in noisy and otherwise realistic conditions 

aids performance37,42,44,100. Coupled with the abnormal psychophysical results of these 

alternatively trained models, this result indicates that the classic perceptual characteristics 

of spatial hearing reflect strategies that are important for real-world localization, in that 

systems that deviate from these characteristics localize poorly.

Model predictions of sound localizability

One advantage of a model that can mediate actual localization behavior is that one can 

run large numbers of experiments on the model, searching for “interesting” predictions that 

might then be tested in human listeners. Here we used the model to estimate the accuracy 

with which different natural sounds would be localized in realistic conditions. We chose 

to examine musical instrument sounds as these are both diverse and available as clean 

recordings in large numbers. We took a large set of instrument sounds101 and rendered them 

at a large set of randomly selected locations. We then measured the average localization 

error for each instrument.

As shown in Fig. 8A, there was reliable variation in the accuracy with which instrument 

sounds were localized by the model. The median error was as low as 1.06 degrees for Reed 

Instrument #3 and as high as 40.02 degrees for Mallet #1 (folded to discount front-back 

confusions; without front-back folding the overall error was larger, but the ordinal relations 

among instruments was similar). The human voice was also among the most acurately 

localized sounds in the set we examined, with a mean error of 2.39 degrees (front-back 

folded).

Francl and McDermott Page 10

Nat Hum Behav. Author manuscript; available in PMC 2022 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8B displays spectrograms for example notes for the three best- and worst-localized 

instruments. The best-localized instruments are spectrally dense, and thus presumably take 

advantage of cross-frequency integration (which improve localization accuracy in both 

humans and the model; Fig. 3E&F). This result is consistent with the common idea that 

narrowband sounds are less well localized, but the model provides a quantitative metric of 

localizability that we would not otherwise have.

To assess whether the results could be predicted by simple measures of spectral sparsity, we 

measured the spectral flatness102 of each instrument sound (the ratio of the geometric mean 

of the power spectrum to the arithmetic mean of the power spectrum). The average spectral 

flatness of an instrument was significantly correlated with the model’s localization accuracy 

(rs = .77, p<.001), but this correlation was well below the split-half reliability of the model’s 

accuracy for an instrument (rs = .99). This difference suggests that there are sound features 

above and beyond spectral density that determine a sound’s localizability, and illustrates the 

value of an optimized system to make perceptual predictions.

We had intentions of running a free-field localization experiment in humans to test these 

predictions, but had to halt experiments due to COVID-19. We have hopes of running 

the experiment in the future. However, we note that informal observation by the authors 

listening in free-field conditions suggest that the sounds that are poorly localized by the 

model are also difficult for humans to localize.

Discussion

We trained artificial neural networks to localize sounds from binaural audio rendered 

in a virtual world and heard through simulated ears. When the virtual world mimicked 

natural auditory environments, with surface reflections, background noise, and natural 

sound sources, the trained networks replicated many attributes of spatial hearing found 

in biological organisms. These included the frequency-dependent use of interaural time 

and level differences, the integration of spatial information across frequency, the use of 

ear-specific high-frequency spectral cues to elevation and robustness to spectral smoothing 

of these cues, localization dominance of sound onsets, and limitations on the ability to 

localize multiple concurrent sources. The model successfully localized sounds in an actual 

real-world environment better than alternative algorithms that lacked ears. The model also 

made predictions about the accuracy with which different types of real-world sounds 

could be localized. But when the training conditions were altered to deviate from the 

natural environment by eliminating surface reflections, background noise, or natural sound 

source structure, the behavioral characteristics of the model deviated notably from human-

like behavior. The results suggest that most of the key properties of mammalian spatial 

hearing can be understood as consequences of optimization for the task of localizing 

sounds in natural environments. Our approach extends classical ideal observer analysis 

to new domains, where provably optimal analytic solutions are difficult to attain but 

where supervised machine learning can nonetheless provide optimized solutions in different 

conditions.
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The general method involves two nested levels of computational experiments: optimization 

of a model under particular conditions, followed by a suite of psychophysical experiments 

to characterize the resulting behavioral phenotype. This approach provides an additional 

tool with which to examine the constraints that yield biological solutions103,104, and thus to 

understand evolution105. It also provides a way to link experimental results with function. In 

some cases these links had been hypothesized but not definitively established. For example, 

the precedence effect was often proposed to be an adaptation to reverberation21,92, though 

other functional explanations were also put forth99. Our results suggest it is indeed an 

adaptation to reverberation (Fig. 7D). We similarly provide evidence that sensitivity to 

spectral cues to elevation emerges only with the demands of localizing somewhat broadband 

sounds106. In other cases the model provided explanations for behavioral characteristics 

that previously had none. One such example is the relatively coarse spectral resolution 

of elevation perception (Fig. 4H–J), which evidently reflects the absence of reliable 

information at finer resolutions. Another is the number of sources that can be concurrently 

localized (Fig. 6B–C), and the dependence of localization accuracy on the number of 

sources (Fig. 6D–E). Without an optimized model there would be no way to ascertain 

whether these effects reflect intrinsic limitations of localization cues in auditory scenes or 

some other human-specific cognitive limit.

Prior models of sound localization required cues to be hand-coded and provided to the 

model by the experimenter22–24,36. In some cases previous models were able to derive 

optimal encoding strategies for such cues28, which could be usefully compared to neural 

data107. In other cases models were able to make predictions of behavior in simplified 

conditions using idealized cues36. However, the idealized cues that such models work with 

are not well-defined for arbitrary real-world stimuli108, preventing the modeling of general 

localization behavior. In addition, ear-specific spectral cues to elevation (Fig. 1B, right) are 

not readily hand-coded, and as a result have remained largely absent from previous models. 

It has thus not previously been possible to derive optimal behavioral characteristics for 

real-world behavior.

Our results highlight the power of contemporary machine learning coupled with virtual 

training environments to achieve realistic behavioral competence in computational models. 

Supervised learning has traditionally been limited by the need for large amounts of labeled 

data, typically acquired via painstaking human annotation. Virtual environments allow the 

scientist to generate the data, with the labels coming for free (as the parameters used to 

generate the data), and have the potential to greatly expand the settings in which supervised 

learning can be used to develop models of the brain109. Virtual environments also allow 

tests of optimality that would be impossible in biological systems, because they enable 

environmental conditions to be controlled, and permit optimization on rapid timescales.

Our approach is complementary to the long tradition of mechanistic modeling of sound 

localization. In contrast with mechanistic modeling, we do not produce specific hypotheses 

about underlying neural circuitry. However, the model gave rise to rich predictions of 

real-world behavior, and normative explanations of a large suite of perceptual phenomena. 

It should be possible to merge these two approaches, both by training model classes that 

are more faithful to biology (e.g. spiking neural networks)110,111, and by building in 

Francl and McDermott Page 12

Nat Hum Behav. Author manuscript; available in PMC 2022 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



additional known biological structures to the neural network (e.g. replicating brainstem 

circuitry)112,113.

One limitation of our approach is that optimization of biological systems occurs in two 

distinct stages of evolution and development, which are not obviously mirrored in our 

model optimization procedure. The procedure we used had separate stages of architectural 

selection and weight training, but these do not cleanly map onto evolution and development 

in biological systems. This limitation is shared by classical ideal observers, but limits the 

ability to predict effects that might be specific to one stage or the other, for instance 

involving plasticity114.

Our model also shares many limitations common to current deep neural network models of 

the brain115. The learning procedure is unlikely to have much in common with biological 

learning, both in the extent and nature of supervision (which involves millions of explicitly 

labeled examples) and in the learning algorithm, which is often argued to lack biological 

plausibility110. The model class is also not fully consistent with biology, and so does not 

yield detailed predictions of neural circuitry. The analogies with the brain thus seem most 

promising at the level of behavior and representations. Our results add to growing evidence 

that task-optimized models can produce human-like behavior for signals that are close to 

the manifold of natural sounds or images50,116,117. However, artificial neural networks also 

often exhibit substantial representational differences with humans, particularly for unnatural 

signals derived in various ways from a network118–122, and our model may exhibit similar 

divergences.

We chose to train models on a fixed representation of the ear. This choice was motivated 

by the assumption that the evolution of the ear was influenced by many different auditory 

tasks, such that it may not have been strongly influenced by the particular demands of sound 

localization, instead primarily serving as a constraint on biological solutions to the sound 

localization problem117. However, the ear itself undoutedly reflects properties of the natural 

environment123. It could thus be fruitful to “evolve” ears along with the rest of the auditory 

system, particularly in a framework with multiple tasks50. Our cochlear model also does not 

replicate the fine details of cochlear physiology124–126 due to practical constraints of limited 

memory resources. These differences could in principle influence the results, although the 

similarity of the model results to those of humans suggests that the details of peripheral 

physiology beyond those that we modeled do not figure critically in the behavioral traits we 

examined.

The virtual world we used to train our models also no doubt differs in many ways from 

real-world acoustic environments. The rendering assumed point sources in space, which 

is inaccurate for many natural sound sources. The distribution of source locations was 

uniform relative to the listener, and both the listener and the sound sources were static, all of 

which are often not true of real-world conditions. And although the simulated reverberation 

replicated many aspects of real-world reverberation, it probably did not perfectly replicate 

the statistical properties of natural environmental impulse responses127, or their distribution 

across environments. Our results suggest that the virtual world approximates the actual 
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world in many of the respects that matter for spatial hearing, but the discrepancies with the 

real world could make a difference for some behaviors.

We also emphasize that despite presenting our approach as an alternative to ideal observer 

analysis9,10, the resulting model almost surely differs in some respects from a fully ideal 

observer. The solutions reached by our approach are not provably optimal like classic 

ideal observers, and the model class and optimization methods could impose biases on the 

solutions. It is also likely that the architecture search was not extensive enough to find the 

best architectures for the task. Those caveats aside, the similarity to human behavior, along 

with the strong dependence on the training conditions, provides some confidence that the 

optimization procedure is succeeding to a degree that is scientifically useful.

Our focus in this paper has been to study behavior, as there is a rich set of auditory 

localization behaviors for which normative explanations have traditionally been unavailable. 

However, it remains possible that the model we trained could be usefully compared to neural 

data. There is a large literature detailing binaural circuitry in the brainstem128 that could be 

compared to the internal responses of the model. The model could also be used to probe 

for functional organization in the auditory cortex, for instance by predicting brain responses 

using features from different model stages45–50, potentially helping to reveal hierarchical 

stages of localization circuitry.

A model that can predict human behavior should also have useful applications. Our model 

showed some transfer of localization for specific sets of ears (Fig. 4G), and could be used 

to make predictions about the extent to which sound rendering in virtual acoustic spaces 

(which may need to use a generic set of head-related transfer functions) should work for 

a particular listener. It can also predict which of a set of sound sources will be most 

compellingly localized, or worst localized (Fig. 8). Such predictions could be valuable in 

enabling better virtual reality, or in synthesizing signals that humans cannot pinpoint in 

space.

One natural extension of our model would be to incorporate moving sound sources and head 

movements. We modeled sound localization in static conditions because the vast majority 

of experimental data has been collected in this setting. But in real-world conditions sound 

sources often move relative to the listener, and listeners move their head129,130, often to 

better disambiguate front from back62 and more accurately localize. Our approach could 

be straightforwardly expanded to moving sound sources in the virtual training environment, 

and a model that can learn to move its head42, potentially yielding explanations of auditory 

motion perception131–133. The ability to train models that can localize in realistic conditions 

also underscores the need for additional measurements of human localization behavior – 

front-back confusions, localization of natural sounds in actual rooms, localization with head 

movements etc. – with which to further evaluate models.

Another natural next step is to instantiate both recognition and localization in the same 

model, potentially yielding insight into the segregation of these functions in the brain134, 

and to the role of spatial cues in the ‘cocktail party problem’135–141. More generally, the 

approach we take here – using deep learning to derive optimized solutions to perceptual or 
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cognitive problems in different operating conditions – is broadly applicable to understanding 

the forces that shape complex, real-world, human behavior.

Methods

Training Data Generation

Virtual acoustic simulator - Image/Source method—We used a room simulator51 to 

render Binaural Room Impulse Responses (BRIRs). This simulator used the image-source 

method, which approaches an exact solution to the wave equation if the walls are assumed 

to be rigid59, as well as an extension to that method that allowed for more accurate 

calculation of the arrival time of a wave142. This enabled the simulator to correctly render 

the relative timing between the signals received by the two simulated ears, including 

reflections (enabling both the direct sound and all reflections to be rendered with the correct 

spatial cues). Our specific implementation was identical to that used in the original paper51, 

except for some custom optimization to take advantage of vectorized operations and parallel 

computation.

The room simulator operated in three separate stages. First, the simulator calculated the 

positions of reflections of the source impulse forward in time for 0.5s. For each of these 

positions, the simulator placed an image symmetrically reflected about the wall of last 

contact. Second, the simulator accounted for the absorption spectra of the reflecting walls 

for each image location and filtered a broadband impulse sequentially using the absorption 

spectrum of the simulated wall material. Third, the simulator found the direction of arrival 

for each image and convolved the filtered impulse with the head-related impulse response 

in the recorded set whose position was closest to the computed direction. This resulted in a 

left and right channel signal pair for each path from the source to the listener. Lastly, each of 

these signal pairs was summed together, factoring in both the delay from the time of arrival 

and the level attenuation based on the total distance traveled by each reflection. The original 

authors of the simulator previously assessed this method’s validity and found that simulated 

BRIRs were good physical approximations to recorded BRIRs provided that sources were 

rendered more than one meter from the listener51.

We used this room simulator to render BRIRs at each of a set of listener locations in 5 

different rooms varying in size and material (listed in Extended Data Fig. 5) for each of the 

source location bins in the output layer of the networks: all pairings of 7 elevations (between 

0° and 60°, spaced 10°), and 72 azimuths (spaced 5° in a circle around the listener), at a 

distance of 1.4 meters. This yielded 504 source positions per listener location and room. 

Listener locations were chosen subject to three constraints. First, the listener location had 

to be at least 1.4 meters from the nearest wall (because sounds were rendered 1.4 meters 

from the listener). Second, the listener locations were located on a grid whose axes ran 

parallel to the walls of the room, with locations spaced 1 meter apart in each dimension. 

Third, the grid was centered in the room. These constraints yielded 4 listener locations for 

the smallest room and 81 listener locations for the largest room. This resulted in 71,064 

pairs of BRIRs, each corresponding to a possible source-listener-room spatial configuration. 

Each BRIR took approximately 4 minutes to generate when parallelized across 16 cores. 

We parallelized143 the generation of the full set of BRIRs across approximately 1000 cores 
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on the MIT OpenMind Cluster, which allowed us to generate the full set of BRIRs in 

approximately 4 days.

Virtual acoustic simulator - HRIRs—The simulator relied on empirically derived 

Head Related Impulse Responses (HRIRs) to incorporate the effect of pinna filtering, 

head shadowing, and time delays without solving wave equations for the ears/head/torso. 

Specifically, the simulator used a set of HRIRs recorded with KEMAR – a mannequin 

designed to replicate the acoustic effects of head and torso filtering on auditory signals. 

These recordings consisted of 710 positions ranging from −40° to +90° elevation at 1.4 

meters53. A subset of these positions corresponded to the location bins into which the 

network classified source locations.

Virtual acoustic simulator - Two-microphone array—For comparison with the 

networks trained with simulated ears, we also trained the same neural network architectures 

to localize sounds using audio recorded from a two-microphone array (Extended Data Fig. 

6). To train these networks, we simulated audio received from a two-microphone array by 

replacing each pair of HRIRs in the room simulator with a pair of fractional delay filters 

(i.e, that delayed the signal by a fraction of a sample). These filters consisted of 127 taps 

and were constructed via a sinc function windowed with a Blackman window, offset in time 

by the desired delay. Each pair of delay filters also incorporated signal attenuation from 

a distance according to the inverse square law, with the goal of replicating the acoustics 

of a two-microphone array. After substituting these filters for the HRIRs used in our main 

training procedure, we simulated a set of BRIRs as described above.

Natural sound sources—We collected a set of 455 natural sounds, each cut to two 

seconds in length. 300 of these sounds were drawn from a set used in previous work 

in the lab144. Another 155 sounds were drawn from the BBC Sounds Effects Database, 

selected by the first author to be easily identifiable. The sounds included human and animal 

vocalizations, human actions (chopping, chewing, clapping, etc.), machine sounds (cars, 

trains vacuums, etc.), and nature sounds (thunder, insects, running water). The full list of 

sounds is given in Extended Data Fig. 4. All sounds were sampled at 44.1 kHz. Of this set, 

385 sounds were used for training and another 70 sounds were withheld for model validation 

and testing. To augment the dataset, each of these was bandpass filtered with a two-octave-

wide second-order Butterworth filter with center frequencies spaced in one-octave steps 

starting from 100 Hz. This yielded 2,492 (2,110 training, 382 testing) sound sources in total.

Background noise sources—Background noise sources were synthesized using a 

previously described texture generation method that produced texture excerpts rated as 

highly realistic55. The specific implementation of the synthesis algorithm was that used 

in60, with a sampling rate of 44.1 kHz. We used 50 different source textures obtained from 

in-lab collections145. Textures were selected that synthesized successfully, both subjectively 

(sounding perceptually similar to the original texture) and objectively (the ratio between 

mean squared statistic values for the original texture and the mean squared error between 

the statistics of the synthesized and original texture was greater than 40dB SNR). We 

then rendered 1,000 5-second exemplars for each texture, cut to 2 seconds in length, for 
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a total of 50,000 unique waveforms (1000 exemplars x 50 textures). Background noises 

were created by spatially rendering between 3 and 8 exemplars of the same texture at 

randomly chosen locations using the virtual acoustic simulator described above. We made 

this choice on grounds of ecological validity, based on the intuition that noise sources are 

typically not completely spatially uniform96 despite being more diffuse than sounds made 

by single organisms or objects. By adding noises rendered at different locations we obtained 

background noise that was not as precisely localized as the target sound sources, which 

seemed a reasonable approximation of common real-world conditions.

Generating training exemplars—To reduce the storage footprint of the training data, 

we separately rendered the sound sources to be localized, and the background noise, and 

then randomly combined them to generate training exemplars. For each source, room, 

and listener location we randomly rendered each of the 504 positions with a probability 

p = 0.025 ⋅ # of listener locations in smallest room
# of listener locations in room being rendered . We used a base probability of 2.5% to limit the 

overall size of the training set and normalized by the number of listener locations in the 

room being used to render the current stimulus so that each room was represented equally in 

the dataset. This yielded 545,566 spatialized natural sound source stimuli in total (497,935 

training, 47,631 testing). This resulted in 988 examples per training location, on average.

For each training example, the audio from one spatialized natural sound source and one 

spatialized background texture scene was combined (with a signal-to-noise ratio sampled 

uniformly from 5 to 30 dB SNR) to create a single auditory scene that was used as a training 

example for the neural network. The resulting waveform was then normalized to have an 

rms amplitude of 0.1. Each training example was passed through the cochlear model before 

being fed to the neural network.

Stimulus preprocessing: Cochlear model—Training examples were pre-processed 

with a cochlear model to simulate the human auditory periphery. The output of the cochlear 

model is a time-frequency representation intended to represent the instantaneous mean firing 

rates in the auditory nerve. The cochlear model was chosen to approximate the time and 

frequency information in the human cochlea subject to practical constraints on the memory 

footprint of the model and the dataset. Cochleagrams were generated using a filter bank like 

that in previous work from our lab55. However, the cochleagrams we used provided fine 

timing information to the neural network by passing rectified subbands of the signal instead 

of the envelopes of the subbands. This came at the cost of substantially increasing the 

dimensionality of the input relative to an envelope-based cochleagram. The dimensionality 

was nonetheless considerably lower than what would have resulted from a spiking model of 

the auditory nerve, which would have been prohibitive given our hardware.

The waveforms for the left and right channels were first upsampled to 48 kHz, then 

separately passed through a bank of 36 bandpass filters. These filters were regularly spaced 

on an equivalent rectangular bandwidth (ERB)N scale54 with bandwidths matched to those 

expected in a healthy human ear. Filter center frequencies ranged from 45 Hz to 16,975 

Hz. Filters were zero-phase, with transfer functions in the frequency domain shaped as the 

positive portion of a cosine function. These filters perfectly tiled the frequency axis such 
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that the summed squared response of all filters was flat and allowed for reconstruction of 

the signal in the covered frequency range. Filtering was performed by multiplication in the 

frequency domain, yielding a set of subbands. The subbands were then transformed with a 

power function (0.3 exponent) to simulate the outer hair cells’ nonlinear compression. The 

results were then half-wave rectified to simulate auditory nerve firing rates and were lowpass 

filtered with a cutoff frequency of 4 kHz to simulate the upper limit of phase-locking in the 

auditory nerve56, using a Kaiser-windowed sinc function with 4097 taps. The results of the 

lowpass filtering were then downsampled to 8 kHz to reduce the dimensionality of the neural 

network input (without information loss because the Nyquist limit matched the lowpass filter 

cutoff frequency). Because the lowpass filtering and downsampling were applied to rectified 

filter outputs, the representation retained information at all audible frequencies, just with 

limits on fidelity that were approximately matched to those believed to be present in the 

ear. We note also that the input was not divided into “frames” as are common in audio 

engineering applications, as these do not have an obvious analogue in biological auditory 

systems. All operations were performed in Python but made heavy use of the NumPy and 

SciPy library optimization to decrease processing time. Code to generate cochleagrams in 

this way is available on the McDermott lab webpage (http://mcdermottlab.mit.edu).

To minimize artificial onset cues at the beginning and end of the cochleagram that would 

not be available to a human listener in everyday listening conditions, we removed the first 

and last .35 seconds of the computed cochleagram and then randomly excerpted a 1-second 

segment from the remaining 1.3 seconds. The neural network thus received 1s of input from 

the cochlear model, as a 36×8000×2 tensor (36 frequency channels × 8000 samples at 8kHz 

× 2 ears).

For reasons of storage and implementation efficiency, the cochlear model stage was in 

practice implemented as follows, taking advantage of the linearity of the filter bank. First, 

the audio from each spatialized natural sound source and each spatialized background 

texture scene was run through the cochlear filter bank. Second, we excerpted a 1-second 

segment from the resulting subbands as described in the previous pararaph. Third, the 

two sets of subbands were stored in separate data structures. Fourth, during training, the 

subbands for a spatialized natural sound source and a spatialized background scene were 

loaded, scaled to achieve the desired SNR (sampled uniformly from 5 to 30 dB), summed, 

and scaled to correspond to a waveform with rms amplitude of 0.1. The resulting subbands 

were then half-wave rectified, raised to the power of 0.3 to simulate cochlear compression, 

and downsampled to 8 kHz to simulate the upper limit of auditory nerve phase locking. This 

“cochleagram” was the input to the neural networks.

Environment Modification for Unnatural Training Conditions

In each unnatural training condition, one aspect of the training environment was modified.

Anechoic environment—All echoes and reflections in this environment were removed. 

This was accomplished by setting the room material parameters for the walls, floor, and 

ceiling to completely absorb all frequencies. This can be conceptualized as simulating a 

perfect anechoic chamber.
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Noiseless environment—In this environment, the background noise was removed by 

setting the SNR of the scene to 85dB. No other changes were made.

Unnatural sound sources—In this environment, we replaced the natural sound sources 

with unnatural sounds consisting of repeating bandlimited noise bursts. For each 2 second 

sound source, we first generated a 200 ms 0.5 octave-wide noise burst with a 2 ms half-

Hanning window at the onset and offset. We then repeated that noise burst separated by 200 

ms of silence for the duration of the signal. The noise bursts in a given source signal always 

had the same center frequency. The center frequencies (the geometric mean of the upper and 

lower cutoffs) across the set of sounds were uniformly distributed on a log scale between 60 

Hz and 16.8 kHz.

Neural Network Models

The 36×8000×2 cochleagram representation (representing 1s of binaural audio) was passed 

to a convolutional neural network (CNN), which instantiated a feedforward, hierarchically 

organized set of linear and nonlinear operations. The components of the CNNs were 

standard; they were chosen because they have been shown to be effective in a wide range 

of sensory classification tasks. In our CNNs, there were four different kinds of layers, 

each performing a distinct operation: (1) convolution with a set of filters, (2) a point-wise 

nonlinearity, (3) batch normalization, and (4) pooling. The first three types of layers always 

occurred in a fixed order (batch normalization, convolution, and a point-wise nonlinearity). 

We refer to a sequence of these three layers in this order as a “block”. Each block was 

followed by either another block or a pooling layer. Each network ended with either one or 

two fully connected layers feeding into the final classification layer. Below we define the 

operations of each type of layer.

Convolutional layer—A convolutional layer consists of a bank of K linear filters, 

each convolved with the input to produce K separate filter responses. Convolution 

performs the same operation at each point in the input, which in our case was the 

cochleagram. Convolution in time is natural for models of sensory systems as the input 

is a temporal sequence whose statistics are translation invariant. Convolution in frequency 

is less obviously natural, as translation invariance does not hold in frequency. However, 

approximate translation invariance holds locally in the frequency domain for many types 

of sound signals, and convolution in frequency is often present, implicitly or explicitly, 

in auditory models146,147. Moreover, imposing convolution greatly reduces the number 

of parameters to be learned, and we have found that neural network models train more 

readily when convolution in frequency is used, suggesting that it is a useful form of model 

regularization.

The input to a convolutional layer is a three-dimensional array with shape (nin,min,din) 

where nin and min are the spectral and temporal dimensions of the input, respectively, and 

din is the number of filters. In the case of the first convolutional layer, nin = 36 and min = 

16,000, corresponding to the temporal and spectral dimensions of the cochleagram, and din = 

2, corresponding to the left and right audio channels.

A convolution layer is defined by five parameters:
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1. nk: The height of the convolutional kernels (i.e., their extent in the frequency 

dimension)

2. mk: The width of the convolutional kernels (i.e., their extent in the time 

dimension)

3. K: The number of different kernels

4. W: The kernel weights for each of the K kernels; this is an array of dimensions 

(nk, mk, din, K).

5. B: The bias vector, of length K

For any input array X of shape (nin,min,din), the output of this convolutional layer is an array 

Y of shape (nin,min - mk +1,K) (due to the boundary handling choices described below):

Y [i, j, k] = B[k] + ∑
n = − nk/2, m = − mk/2, d = 0

nk/2, mk/2, din
W [n, m, d, k] ⊙ X[i + n, j + n, d]

where i ranges from (1, …, nin), j ranges (1, …, min), ⊙ represents pointwise array 

multiplication.

Boundary handling via valid padding in time—There are several common choices 

for boundary handling during convolution operations. In order to have the output of a 

convolution be the same dimensionality as the input, the input signal is typically padded 

with zeros. This approach - often termed ‘same’ convolution – has the downside of creating 

an artificial onset in the data that would not be present in continuous audio in the natural 

world, and that might influence the behavior of the model. To avoid this possibility, we used 

‘valid’ convolution in the time dimension. This type of convolution only applies the filter at 

positions where every element of the kernel overlaps with the actual input. This eliminates 

artificial onsets at the start/end of the signal but means that the output of the convolution 

will be slightly smaller than its input, as the filters cannot be centered over the first and 

last positions in the input without having part of the filter not overlap with the input data. 

We used ‘same’ convolution in the frequency dimension because the frequency dimension 

has lower and upper limits in the cochlea, such that boundary effects are less obviously 

inconsistent with biology. In addition, the frequency dimension was much smaller than the 

time dimension, such that it seemed advantageous to preserve channels at each convolution 

stage.

Pointwise nonlinearity—If a neural network consists of only convolution layers, it can 

be mathematically reduced to a single matrix operation. A nonlinearity is needed for the 

neural network to learn more complex functions. We used rectified linear units (a common 

choice in current deep neural networks) that operate pointwise on every element in the input 

map according to a piecewise linear function:

f(x) = x x > 0
0 else
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Normalization layer—The normalization layer applied batch normalization148 in a 

pointwise manner to the input map. Specifically, for a batch B of training examples, 

consisting of examples {X1, …, XM}, with shape (nin,min,din), each example is normalized 

by the mean and variance of the batch:

μB[n, m, d] = 1
M ∑

i = 0

M
Xi[n, m, d] σB

2 [n, m, d] = 1
M ∑

i = 0

M
Xi[n, m, d] − μB[n, m, d] 2

Xi[n, m, d] =
Xi[n, m, d] − μB[n, m, d]

σB
2 [n, m, d] + ϵ2

Where Xi is the normalized three-dimensional matrix of the same shape as the input matrix 

and ϵ = 0.001 to prevent division by zero.

Throughout training, the batch normalization layer maintains a cumulative mean and 

variance across all training examples, μTotal and σTotal
2 . At test time Xi is calculated using 

μTotal and σTotal
2  in place of μB and σB

2 .

Pooling layer—A pooling layer allows downstream layers to aggregate information 

across longer periods of time and wider bands of frequency. It downsamples its input by 

aggregating values across nearby time and frequency bins. We used max pooling, which is 

defined via 4 parameters:

1. ph, the height of the pooling kernel

2. pw, the width of the pooling kernel

3. sh, the stride in the vertical dimension

4. sw, the stride in the horizontal dimension

A pooling layer takes array X of shape (nin,min,din) and returns array Y with shape (nin/

sw,min/sh,din) according to:

Y (i, j, k) = max Npwpℎ X, i ⋅ sw, j ⋅ sℎ, k

where Npwpℎ(X, i, j, k) is a windowing function that takes a (pw, ph) excerpt of X of centered 

at (i,j) from filter k. The maximum is over all elements in the resulting excerpt.

Fully connected layer—A fully connected layer, also often called a dense layer, does not 

use the weight sharing found in convolutional layers, in which the same filter is applied to 

all positions within the input. Instead, each (input unit, output unit) pair has its own learned 

weight parameter and each output unit has its own bias parameter. Given input X with shape 

(nin,min,din), it produces output Y with shape (nout). It does so in two steps:

1. Flattens the input dimensions creating an input Xflat of shape (nin · min · din)
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2. Multiplies Xflat by weight and bias matrices of shape (nout, nin · min · din) and 

(nout) respectively. This is implemented as:

Y ni = B ni + ∑
l = 1

nin ⋅ min ⋅ din
W ni, l Xflat (l); ni ∈ 1…nout

where B(nout) is the bias vector, W(nout, l) is the weight matrix, and l ranges from 1 to (nin · 

min · din) and indexes all positions in the flattened input matrix.

Softmax classifier—The final layer of every network was a classification layer, which 

consists of a fully connected layer where nout is the number of class labels (in our case 504). 

The output of that fully connected layer was then passed through a normalized exponential 

(softmax) function. Together this was implemented as:

y(i) =
exp ∑j = 0

nT wijxj

∑k = 0
nout exp ∑j = 0

nT wkjxj

The vector y sums to 1 and all entries are greater than zero. This is often interpreted as a 

vector of label probabilities conditioned on the input.

Dropout during training—For each new batch of training data, dropout was applied to 

all fully connected layers of a network. Dropout consisted of randomly choosing 50% of the 

weights in the layer and temporarily setting them to zero, thus effectively not allowing the 

network access to the information at those positions. The other 50% of the weights were 

scaled up such that the expected value of the sum over all inputs was unchanged. This was 

implemented as:

dropout W i, j = W i, j ⋅ 1
(1 − .5) j ∉ W eigℎts to Drop

0 j ∈ W eigℎts to Drop

Dropout is common in neural network training and can be viewed as a form of model 

averaging where exponentially many models using different subsets of the input vector are 

being trained simultaneously 149. During evaluation, dropout was turned off (and no weight 

scaling was performed) so that all weights were used.

Neural Network Optimization

Architecture search - Overview—When neural networks are applied to a new problem 

it is common to use architectures that have previously produced good results on similar 

problems. However, most standard CNN architectures that operate on two-dimensional 

inputs have been designed for visual tasks and make assumptions based on the visual 

world. For example, most architectures assume that the units in the x and y dimension 

are equivalent, such that square filter kernels are a reasonable choice. However, in our 

problem the two input dimensions are not comparable (frequency vs time). Additionally, 
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our input dimensionality is several orders of magnitude larger than standard visual stimuli 

(70k vs 1.1M), even though some relevant features occur on the scale of a few samples. For 

example, an ITD of 400 μs (a typical value) corresponds to only a 6 sample offset between 

channels. Given that our problem was distinct from many previous applications of standard 

neural network architectures, we performed an architecture search to find architectures that 

were well-suited to our task. First, we defined a space of architectures described by a small 

number of hyperparameters. Next, we defined discrete probability distributions for each 

hyperparameter. Lastly, we independently sampled from these hyperparameter distributions 

to generate architectures. We then trained each architecture for a brief period and selected 

the architectures that performed best on our task for further training.

Architecture search – Distribution over hyperparameters—To search over 

architectures we defined a space of possible architectures that were encoded via a set of 

hyperparameters. The space had the following constraints:

• There could be between 3 and 8 pooling layers for any given network.

• A pooling layer was preceded by between 1 and 3 blocks. Each block consisted 

of a batch norm, followed by a convolution, followed by a rectified linear unit.

• The number of channels (filters) in the network was always 32 in the first 

convolutional layer and could either double or remain the same in each 

successive convolutional layer.

• The penultimate stage of each network consisted of 1 or 2 fully connected layers 

containing 512 units each. Each of these was followed by a dropout layer.

• The final stage of each network was always a Softmax Classifier with 504 output 

units, corresponding to the 504 locations the network could report.

We picked the pooling and convolutional kernel parameters at each layer by uniformly 

sampling from the lists of values in Extended Data Fig. 2. We chose these distributions to 

skew toward smaller values at deeper layers, approximately in line with the downsampling 

that resulted from pooling operations. Multiple copies of the same number increased the 

probability of that value being chosen for the kernel size. Note that differences between the 

time and frequency dimensions of cochlear responses motivate the use of filters that are not 

square.

Filter weight training—Throughout training, the parameters in each convolutional kernel 

and all weights from fully connected layers were iteratively adjusted to improve task 

accuracy via Mini-Batch Stochastic Gradient Descent (SGD)150. Training was performed 

with 1.6 million sounds (100,000 training steps each with a batch of 16 training examples) 

generated by looping over the 500,000 foreground sounds and combining each with a 

randomly selected background sound. Networks were assessed via a held-out set of 50,000 

test stimuli created by looping over the 48,000 sound sources in the validation set in the 

same manner. We used a batch size of 16 and a Softmax Cross-Entropy loss function. The 

trainable weights in the convolutional layers and fully connected layers were updated using 

the gradient of the loss function, computed using backpropagation.
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Gradient checkpointing—The dimensionality of our input is sufficiently large (due to 

the high sampling rates needed to preserve the fine timing information in the simulated 

auditory periphery) as to preclude training neural networks using standard methodology. For 

example, consider training a network consisting of four pooling layers (2 × 1 kernel), each 

preceded by one block. If there are 32 convolutional filters in the first layer, and double 

the number of filters in each successive layer, this network would require approximately 

80GB of memory at peak usage, which exceeded the maximum memory of GPUs that 

were standard at the time of model training (available GPUs varied between 12GB and 

32GB). We addressed this problem using a previously proposed solution called gradient 

checkpointing52.

In the standard backpropagation algorithm, we must retain the output from each layer 

of a network in memory because it is needed to calculate gradients for each updatable 

parameter. The gradient checkpointing algorithm we used trades speed for lower memory 

usage by not retaining each layer’s output during the forward pass, instead recomputing it 

a second time during the backward pass when gradients are computed. In the most extreme 

version, this would result in laboriously recomputing each layer starting with the original 

network input. Instead, the algorithm creates sparse, evenly spaced checkpoints throughout 

the network that save the output of selected layers. This strategy allows re-computation 

during backpropagation to start from one of these checkpoints, saving compute time. In 

practice, it also provides users with a parameter that allows them to select a speed/memory 

tradeoff that will maximize speed subject to a network fitting onto the available GPU. We 

created checkpoints at every pooling layer and found it kept our memory utilization below 

the 16GB limit of the hardware we used for all networks in the architecture search.

Network architecture selection and training—We performed our architecture search 

on the Department of Energy’s Summit Supercomputer at Oak Ridge National Laboratory. 

First, we randomly drew 1,500 architectures from our hyperparameter distribution. Next, 

we trained each architecture (i.e., optimized the weights of the convolutional and fully 

connected layers) using Mini-Batch Stochastic Gradient Descent for 15,000 steps, each with 

a batch size of 16, for a total of 240,000 unique training examples, randomly drawn from 

the training set described above. We then evaluated the performance of each architecture 

on left-out data. This length of this training period was determined by the job limits on 

Summit; however, it was long enough to see significant reductions in the loss function for 

many networks. We considered the procedure adequate for architecture selection given that 

performance early in training is a good predictor of training performance late in training151. 

In total, this architecture search took 2.05 GPU years and 45.2 CPU years.

We selected the ten best-performing architectures. They varied significantly, ranging from 4 

to 6 pooling layers. We then retrained these 10 architectures until a point where performance 

on the withheld validation set began to decrease, evaluating every 25,000 iterations. This 

occurred at 100,000 iterations for the naturalistic, anechoic, and noiseless training conditions 

and at 150,000 iterations for the unnatural sounds training condition. Model architectures 

and the trained weights for each model are available online in the associated codebase: 

www.github.com/afrancl/BinauralLocalizationCNN.
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Real-World Evaluation

We tested the model in real-world conditions to verify generalization from the virtual 

training environment. We created a series of spatial recordings in an actual conference 

room (part of our lab space, with dimensions distinct from the rooms in our virtual training 

environment) and then presented those to the trained networks. We also made recordings of 

the same source sounds and environment with a two-microphone array to test the importance 

of naturally induced binaural cues (from the ears/head/torso).

Sound sources—We used 100 sound sources in total. 50 sound sources were from our 

validation set of withheld environmental sounds, and the remaining 50 sound sources were 

taken from the GRID dataset of spoken sentences152. For the examples from the GRID 

dataset, we used 5 sentences from each of 10 speakers (5 male and 5 female). The model 

performed similarly for stimuli from the GRID dataset as for our validation set stimuli. 

All source signals were normalized to the same peak amplitude before the recordings were 

made.

Recording setup—We made the set of real-world evaluation recordings using a KEMAR 

head and torso simulator mannequin built by Knowles Electronics to replicate the shape and 

absorbency of a human head, upper body, and pinna. The KEMAR mannequin contains a 

microphone in each ear, recording audio similar to that which a human would hear in natural 

conditions. The audio from these microphones was then passed through Etymotic Research 

preamplifiers designed for the KEMAR mannequin before being passed to the Zoom 8 USB 

to Audio Converter. Finally, it was passed to Audacity where the left and right channels were 

simultaneously recorded at 48kHz.

We made recordings of all 100 sounds at every azimuth (relative to the KEMAR mannequin) 

from 0° to 360° in 30° increments. This led to 1,200 recordings in total. All source sounds 

were played 1.5 meters from the vertical axis of the mannequin using a KRK ROKIT 7 

speaker positioned at approximately 0° elevation. The audio was played using Audacity and 

converted to an analogue signal using a Zoom 8 USB to Audio Converter.

Recordings were made in our main lab space in building 46 on the MIT campus, which is 

roughly 7×6×3 meters. The room is filled with furniture, shelves and has multiple windows 

and doors (Fig. 1E). This setup was substantially different from any of the simulated rooms 

in the virtual training environment, in which all rooms were convex, empty, and had smooth 

walls. During the recordings, there was low-level background noise from the HVAC system, 

the refrigerator, and lab members talking in surrounding offices. For all recordings, the 

mannequin was seated in an office chair, with the head approximately 1 meter from the 

ground.

Two-microphone array baseline—We made a second set of recordings using the same 

sound sources, room, and recording equipment as above, but with the KEMAR mannequin 

replaced with a 2-microphone array consisting of two Beyerdynamic MM-1 Omnidirectional 

Microphones separated by 15cm (the same distance separating the two microphones in the 

mannequin ears). The microphone array was also elevated approximately 1 meter from the 

floor using a microphone stand (Extended Data Fig. 6A).
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Baseline algorithms—We evaluated our trained neural networks against a variety of 

baseline algorithms. These comprised: Steered-Response Power Phase Transform (SRP)65, 

Multiple Signal Classification (MUSIC)64, Coherent Signal-Subspace Method (CSSM)63, 

Weighted Average of Signal Subspaces (WAVES)66, Test of Orthogonality of Projected 

Subspaces (TOPS)67, and the WavLoc Neural Network68. With the exception of the 

WavLoc model, in each case we used the previously validated and published algorithm 

implementations in Pyroomacoustics153. For the WavLoc model, we used a reference 

GitHub implementation and confirmed that we could reproduce the results of the original 

paper68 before testing with our KEMAR mannequin recordings. We also created a baseline 

model trained using a simulation of the two-microphone array described in the previous 

section within the virtual training environment (the same 10 neural network architectures 

used for our primary model were trained to localize sounds using audio recorded from 

simulated a two-microphone array).

The results shown in Extended Data Fig. 6B&C for the baselines (aside from our two-

microphone array baseline neural network model) all plot localization of the KEMAR 

mannequin recordings. We found empirically that the baseline methods performed better for 

the KEMAR recordings than for the two-microphone array recordings, presumably because 

the mannequin head increases the effective distance between the microphones. The baseline 

algorithms require prior knowledge of the inter-microphone distance. In order to make the 

baselines as strong as possible relative to our method, we searched over all distances less 

than 50cm and found that an assumed distance of 26cm yielded the best performance. We 

then evaluated the baselines at that assumed distance. This optimal assumed distance is 

greater than the actual inter-microphone distance of 15cm, consistent with the idea that the 

mannequin head increases the effective distance between microphones.

Comparison with human listeners—To provide an example of free-field human sound 

localization, Fig. 1F plots the results of an experiment by Yost and colleagues154. In that 

experiment, humans were presented with noise bursts (lowpass filtered white noise with a 

cutoff of 6 kHz, 200ms in duration, with 20ms cosine onset and offset ramps) played from 

one of 11 speakers in an anechoic chamber. The speakers were spaced every 15 degrees, 

with the array centered on the midline. Speakers were visible to participants. Participants 

indicated the speaker from which the sound was played by entering a number corresponding 

to the speaker. Results are shown for 45 participants (34 female), ages 21–49. Because 

the human experiment was restricted to speakers in front of the participants, for ease 

of comparison Fig. 1G plots model results after front-back folding of actual and judged 

positions (Fig. 1H shows model results without front-back folding). Fig. 1F–1H display 

kernel density estimates of the response distributions, generated using the seaborn statistical 

data visualization library.

Psychophysical Evaluation of Model

Overview—We simulated a suite of classic psychoacoustic experiments on the 10 trained 

neural networks, using the same stimuli for each network. We then calculated the mean 

response across networks for each experimental condition and calculated error bars by 

bootstrapping across the 10 networks. This approach can be interpreted as marginalizing 
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out uncertainty over architectures in a situation in which there is no single obviously 

optimal architecture (and where the space of architectures is so large that it is probably 

not possible to find the optimum even if it exists). Moreover, recent work suggests 

that internal representations across different networks trained on the same task can vary 

considerably57, so this approach aided in mitigating the individual idiosyncrasies of any 

given network. The approach could also be viewed as treating every network as an individual 

experimental participant, calculating means and error bars as one would in a standard human 

psychophysics experiment.

In each experiment, stimuli were run through our cochlear model and passed to each of 

the networks, whose localization responses were recorded for each stimulus. Stimuli were 

generated as 2s sound signals, normalized to have an rms amplitude of 0.1. The output of the 

cochlear model was then cropped to 1s (by excerpting the middle 1s), which provided the 

input to the networks.

Front-back folding—For experiments in which human participants judged locations 

within the frontal hemifield, we front-back folded the model responses to enable a fair 

comparison. This consisted of treating each model response in the rear hemifield as though 

it was a response in the corresponding front hemifield. For example, the 10° and 170° 

azimuthal positions were considered equivalent.

Sensitivity to interaural time and level differences – Stimuli—We reproduced the 

experimental stimuli from69, in which ITDs and ILDs were added to 3D spatially rendered 

sounds. In the original experiment, participants stood in a dark anechoic room and were 

played spatially rendered stimuli with modified ITDs or ILDs via a set of headphones. After 

each stimulus presentation, participants oriented their head towards the perceived location of 

the stimulus and pressed a button. The experiment included 13 participants (5 male) ranging 

in age from 18–35 years old.

Stimulus generation for the model experiment was identical to that in the original 

experiments apart from using our acoustic simulator to render the sounds. First, we 

generated highpass and lowpass noise bursts with passbands of 4–16 kHz and 0.5–2 kHz, 

respectively (44.1 kHz sampling rate). Each noise burst was 100 ms long with a 1 ms 

squared-cosine ramp at the beginning and end of the stimulus. We randomly jittered the 

starting time of the noise burst by padding the signal to 2,000 ms in total length, constrained 

such that the entire noise burst was contained in the middle second of the 2s audio signal 

(the noise onset was uniformly distributed subject to this constraint). These signals were 

then rendered at 0° elevation, with azimuth varied from 0°−355° (in 5° steps) for a total of 

72 locations. All signals were rendered using our virtual acoustic simulator in an anechoic 

environment without any background noise.

Next, we created versions of each signal with an added ITD or ILD bias. ITD biases 

were ±300 μs and ±600 μs and ILD biases were ±10 dB and ±20 dB (Fig. 2A). As in 

the original publication69, we prevented presentation of stimuli outside the physiological 

range by restricting the 400μs/10dB biases to signals rendered less than 40° away from the 

midline and restricting the 600μs/20dB biases to signals rendered less than 20° away from 
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the midline. In total there were 4 stimulus sets (2 passbands x 2 types of bias) of 266 stimuli 

(72 locations with no bias, 52 locations at ± medium bias, 45 locations ± large bias). We 

replicated the above process 20 times with different exemplars of bandpass noise, increasing 

each stimulus set size to 5,320 (20 exemplars of 266 stimuli).

Sensitivity to interaural time and level differences – Analysis—We measured the 

perceptual bias induced by the added ITD or ILD bias in the same manner as the published 

analysis of human listeners69.

We first calculated the naturally-occurring ITD and ILD for each sound source position 

(varying in azimuth, at 0° elevation) from the HRTFs used to train our networks. For ITDs, 

we ran the HRTFs for a source position through our cochlear model and found the ITD 

by cross-correlating the cochlear channels whose center frequency was closest to 600, 700, 

and 800 Hz and taking the median ITD from the three channels. For ILDs, we computed 

power spectral density estimates via Welch’s method (29 samples per window, 50% overlap, 

Hamming windowed) for each of the two HRTFs for a source position and integrated across 

frequencies in the stimulus passband. We expressed the ILD as the ratio between the energy 

in the left and right channel in decibels, with positive values corresponding to more power in 

the right ear. This set of natural ILDs and ITDs allowed us to map the judged position onto a 

corresponding ITD/ILD.

For each stimulus with added ITD, we used the response mapping described above to 

calculate the ITD of the judged source position. Next, we calculated the ITD for the judged 

position of the unaltered stimulus using the same response mapping. The perceptual effect of 

the added ITD was calculated as the difference between these two ITD values, quantifying 

(in microseconds) how much the added stimulus bias changed the response of the model. 

The results graphs plot the added stimulus bias on the x-axis and the resulting response 

bias on the y-axis. The slope of the best-fitting regression line (the ‘Bias Weight’ shown in 

the subplots of Fig. 2 C&D) provides a unitless measure of the extent to which the added 

bias affects the judged position. We repeated an analogous process for ILD bias using the 

natural ILD response mapping, yielding the bias in decibels. The graphs in Fig. 2D plot the 

mean response across the 10 networks with standard error of the mean (SEM) computed via 

bootstrap over networks.

Azimuthal localization of broadband sounds – Stimuli—We reproduced the 

stimulus generation from80. In the original experiment, participants were played 6 

broadband white noise bursts, with 3 bursts (15 ms in duration, 5ms cosine ramps, repeated 

at 10 Hz) played from a reference speaker followed by 3 noise bursts played from one of two 

target speakers, located 15° to the left or right of the reference speaker. Participants reported 

whether the latter 3 noise bursts were played to the left or the right of the reference speaker, 

and performance was expressed as d’. The experiment included 16 participants between the 

ages of 18 and 35 years old.

We measured network localization performance using the same stimuli as in the original 

paper, but for simplicity rendered the stimulus at a single location and measured 

performance with an absolute, instead of relative, localization task. The stimuli presented 
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to the networks consisted of 3 pulses of broadband white noise. Each noise pulse was 15 

ms in duration and the delay between pulses was 100 ms. A 5 ms cosine ramp was applied 

to the beginning and end of each pulse. We generated 100 exemplars of this stimulus using 

different samples of white noise (44.1 kHz sampling rate). The stimuli were zero-padded to 

2,000 ms in length, with the temporal offset of the three-burst sequence randomly sampled 

from a uniform distribution such that all three noise bursts were fully contained in the 

middle second of audio. We then rendered all 100 stimuli at 0° elevation and azimuthal 

positions ranging from 0° to 355° in 5° steps. All stimuli were rendered in an anechoic 

environment without any background noise using our virtual acoustic simulator. This led to 

7,200 stimuli in total (100 exemplars at each of 72 locations).

Azimuthal localization of broadband sounds – Analysis—Because human 

participants in the analogous experiment judged relative position in the frontal hemifield, 

prior to calculating the model’s accuracy we eliminated front-back confusions by mirroring 

model responses of each stimulus across the coronal plane. We then calculated the difference 

in degrees between the rendered azimuthal position and the position judged by the model. 

We calculated the mean error for each rendered azimuth for each network. The graph in Fig. 

3C plots the mean error across networks. Error bars are SEM, bootstrapped over networks.

Integration across frequency – Stimuli—We reproduced stimuli from82. In the 

original experiment, human participants were played a single noise burst, varying in 

bandwidth and center frequency, from one of 8 speakers spaced 15° in azimuth. Participants 

judged which speaker the noise burst was played from. The experimenters then calculated 

the localization error in degrees for each bandwidth and center frequency condition. The 

experiment included 33 participants (26 female) between the ages of 18 and 36 years old.

The stimuli varied in bandwidth (pure tones, and noise bursts with bandwidths of ½0, 1/10, 

1/6, 1/3, 1, and 2 octaves wide; all with 44.1 kHz sampling rate). All sounds were 200 ms 

long with a 20 ms squared-cosine ramp at the beginning and end of the sound. All pure tones 

had random phase. All other sounds were bandpass-filtered white noise with the geometric 

mean of the passband cutoffs set to 250, 2,000, or 4,000 Hz (as in the original paper82).

For the model experiment, the stimuli were zero-padded to 2000ms in length, with the 

temporal offset of the noise burst randomly sampled from a uniform distribution such 

that the noise burst was fully contained in the middle second of audio. We generated 30 

exemplars of each bandwidth/frequency pair using different exemplars of white noise (or of 

random phase for the pure tone stimuli). Next, we rendered all stimuli at 0° elevation and 

azimuthal positions ranging from 0° to 355° in 5° steps. All stimuli were rendered in an 

anechoic environment without any background noise using our virtual acoustic simulator. 

This led to 45,360 stimuli in total (30 exemplars x 72 positions x 3 center frequencies x 7 

bandwidths).

Integration across frequency – Analysis—Because human participants in the original 

experiment judged position in the frontal hemifield, prior to calculating the model’s 

accuracy we again eliminated front-back confusions by mirroring model responses of each 

stimulus across the coronal plane. We then calculated the difference in degrees between 
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the rendered azimuthal position and the azimuthal position judged by the model. For each 

network, we calculated the root-mean-squared error for each bandwidth. The graph in Fig. 

3F plots the mean of this quantity across networks. Error bars are SEM, bootstrapped over 

networks.

Use of ear-specific cues to elevation – Stimuli—We simulated a change of ears for 

our networks, analogous to the ear mold manipulation in84). In the original experiment84, 

participants sat in a dark anechoic room and were played broadband white noise bursts from 

a speaker on a robotic arm that moved ±30° in azimuth and elevation. Participants reported 

the location of each noise burst by saccading to the perceived location. After collecting 

a baseline set of measurements, participants were fitted with plastic ear molds (Fig. 4A), 

which modified the location-dependent filtering of their pinnae, and performed the same 

localization task a second time. The experimenters plotted the mean judged location for each 

actual location before and after fitting subjects with the plastic ear molds (Fig. 4B&C). The 

experiment included 4 participants between the ages of 22 and 44 years old.

For the model experiment, instead of ear molds we substituted HRTFs from the CIPIC 

dataset155. The CIPIC dataset contains 45 sets of HRTFs, each of which is sampled at 

azimuths from −80 to +80 in 25 steps of varying size, and elevations from 0 to 360 in 50 

steps of varying size. For the sound sources to be localized, we generated 500 ms broadband 

(0.2–20 kHz) noise bursts sampled at 44.1 kHz (as in84). We then zero-padded these sounds 

to 2,000 ms, with the temporal offset of the noise burst randomly sampled from a uniform 

distribution such that it was fully contained in the middle second of audio. We generated 20 

such exemplars using different samples of white noise. We then rendered each stimulus at 

±20 and ±10° azimuths and 0°, 10°, 20°, and 30° elevation for all 45 sets of HRTFs as well 

as the standard set of HRTFs (i.e., the one used for training the model). This led to a total of 

14,720 stimuli (46 HRTFs x 4 azimuths x 4 elevations). The rendered locations were slightly 

different from those used in84 as we were constrained by the locations that were measured 

for the CIPIC dataset.

Use of ear-specific cues to elevation – Analysis—The results graphs for this 

experiment (Fig. 4B–E) plot the judged source position for each of a set of rendered source 

positions, either for humans (Fig. 4B&C) or the model (Fig. 4D&E). For the model results, 

we first calculated the mean judged position for each network for all stimuli rendered at 

each source position. The graphs plot the mean of this quantity across networks. Error bars 

are the SEM, bootstrapped over networks. In Fig. 4D we plot model responses for stimuli 

rendered using the HRTFs used during network training. In Fig. 4E we plot the average 

model responses for stimuli rendered with 45 sets of HRTFs from the CIPIC database (none 

of which were used during network training). In Figs. 4F&G we plot the results separately 

for each alternative set of HRTFs, averaged across elevation or azimuth. The thickest bolded 

line denotes the mean performance across all HRTFs, and thinner bolded lines denote 

HRTFs at the 5th, 25th, 75th, and 95th percentiles order by error. Each line plots the mean 

over the 10 networks.

Limited spectral resolution of elevation cues – Stimuli—We ran a modified version 

of the spectral smoothing experiment in86 on our model using the training HRTFs. The 
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original experiment86 measured the effect of spectral detail on human sound localization. 

The experimenters first measured HRTFs for 4 participants. Participants then sat in an 

anechoic chamber and were played broadband white noise bursts presented in one of two 

ways. The noise burst was either played directly from a speaker in the room or virtually 

rendered at the position of the speaker using the participant’s HRTF and played from 

a set of open-backed earphones worn by the participant. The experimenters manipulated 

the spectral detail of the HRTFs as described below. On each trial, two noise bursts (one 

for each of the two presentation methods) were played in random order and participants 

judged which of the two noise bursts were played via earphones. In practice, this judgment 

was performed by noticing changes in the apparent sound position that occurred when the 

HRTFs were sufficiently degraded. The results of the experiment were expressed as the 

accuracy in discriminating between the two modes of presentation as a function of the 

amount of spectral detail removed (Fig. 4I). The experiment included 4 participants.

The HRTF is obtained from the Fourier transform of the head-related impulse response 

(HRIR), and thus can be expressed as:

H[k] = ∑
n = 0

N − 1
xn ⋅ e− i2πnk

N

where x is the head-related impulse response, N is the number of samples in the HRTF, 

and k = [0,N-1]. To smooth the HRTF, we first compute the log-magnitude of H[k]. This 

log-magnitude HRTF can be decomposed into frequency components via the discrete cosine 

transform:

log H[k] = ∑
n = 0

M
C(n)cos(2πnk/N)

where C(n) is the nth cosine coefficient of log|H[k]| and M = N/2.

As in the original experiment86, we smoothed the HRTF by reconstructing it with M < 

N/2. In the most extreme case where M=0, the magnitude spectrum was perfectly flat at 

the average value of the HRTF. Increasing M increases the number of cosines used for 

reconstruction, leading to more spectral detail (Fig. 4H). After smoothing, we calculated 

the minimum phase filter from the smoothed magnitude spectrum, adding a frequency-

independent time delay consistent with the original HRIR. Our HRIRs consisted of 512 time 

points, corresponding to a maximum of 256 points in its cosine series.

We repeated this smoothing process for each left and right HRTF at each spatial position. 

We then generated 20 exemplars of broadband white noise (0.2–20kHz, 2000 ms length) 

with a 10 ms cosine ramp at the beginning and end of the signal. Each exemplar was 

rendered at 0° elevation and azimuthal positions ranging from 0° to 355° in 5° steps using 

each smoothed set of HRTFs. This yielded 12,960 stimuli (9 smoothed sets of HRTFS × 20 

exemplars × 72 locations).
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Limited spectral resolution of elevation cues – Analysis—For the model, the effect 

of the smoothing was measured as the average absolute difference in degrees between the 

judged position and the rendered position for each stimulus. Fig. 4J plots the mean error 

across networks for each smoothed set of HRTFs. Error bars are SEM, bootstrapped over 

networks. Figs. 4K&L plot the mean judged azimuth (left) and elevation (right) vs. the 

actual rendered azimuth and elevation, plotted separately for each smoothing level. Each line 

is the mean response pooled across networks. Error bars are shown as bands around the line 

and show SEM, bootstrapped over networks.

Dependence on high-frequency spectral cues to elevation – Stimuli—In the 

original experiment90, human participants were played high-pass and low-pass noise bursts. 

The high-pass cutoff frequencies took on one of six values: 3.8, 5.8, 7.5, 10.0, 13.2, and 

15.3kHz; low-pass cutoff frequencies took on one of seven values: 3.9, 6.0, 8.0, 10.3, 

12.0,14.5, and 16.0 kHz (imposed with an analogue Cauer-Chebychev filter). The sampling 

rate was 44.1 kHz. Each noise burst was 1000 ms in duration, with a 5 ms squared-cosine 

ramp at the beginning and end. Each stimulus was presented from one of 9 speakers spaced 

along the midline at 30° increments in elevation from −30° to 210°, with 0° being frontal 

horizontal. Participants judged which speaker the noise burst was played from, indicating 

their judgment with a keypress. The results graph (Fig. 4N) plots the proportion correct for 

each condition (error bars were not plotted in the original publication, and the raw data were 

no longer available). The experiment included 10 participants.

Stimuli for the model experiment were similar to those from the human experiment apart 

from being presented from a subset of elevations used in the human experiment due to 

the constraints of the HRTF set in the model. We generated 50 exemplars of each cutoff 

frequency used in the human experiment, each with a different exemplar of white noise. 

Filtering was performed in the frequency domain by setting Fourier coefficients beyond the 

cutoff to zero. We then rendered all 650 noise bursts at one of 6 locations along the midline: 

0°, 30°, 60°, 120°, 150°, and 180°, with 0° being frontal horizontal. This led to 3,900 stimuli 

in total (650 noise bursts at each of 6 locations). All stimuli were rendered in an anechoic 

environment without any background noise using our virtual acoustic simulator.

Dependence on high-frequency spectral cues to elevation – Analysis—We 

determined the model’s response in the experiment to be the elevation in the stimulus set 

that was closest to the elevation of the softmax class bin with the maximum activation. 

Fig. 4O plots the proportion of correct responses for each high-pass and low-pass cutoff 

frequency, averaged across the 10 networks. Error bars are SEM, bootstrapped over 

networks.

Precedence effect – Stimuli—For the basic demo of the precedence effect (Fig. 5B) 

we generated a click consisting of a single sample at +1 surrounded by zeros. We then 

rendered that click at ±45 azimuth and 0° elevation in an anechoic room without background 

noise using our virtual acoustic simulator. We added these two rendered signals together, 

temporally offsetting the −45° click behind the 45° click by an amount ranging from 1 to 50 

ms. We then zero-padded the signal to 2000 ms, sampled at 44.1 kHz, and randomly varied 

the temporal offset of the click sequence, constrained such that all nonzero samples occurred 
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in the middle second of the stimulus. For each delay value, we created 100 exemplars with 

different start times.

To quantitatively compare the precedence effect in our model with that in human 

participants, we reproduced the stimuli from95. In the original experiment, participants were 

played two broadband pink noise bursts from two different locations. The leading noise burst 

came from one of 6 locations (±20°, ±40°, or ±60°) and the lagging noise burst came from 

0°. The lagging noise burst was delayed relative to the leading noise burst by 5, 10, 25, 50, 

or 100 ms. For each pair of noise bursts, participants reported whether they perceived one 

or two sounds and the judged location for each perceived sound. The experimenters then 

calculated the mean localization error separately for the leading and lagging click for each 

time delay (Fig. 5C). The experiment included 10 participants (all female) between the ages 

of 19 and 26 years old.

For both the human and model experiments, stimuli were 25 ms pink noise bursts, sampled 

at 44.1kHz, with a 2 ms cosine ramp at the beginning and end of the burst. For the model 

experiment, we generated two stimuli for each pair of noise burst positions, one where the 

0° noise burst was the lead click and another where it was the lag click. For each delay 

value, location and burst order, we created 100 exemplars with different start times. This was 

achieved by zero-padding the signal to 2000 ms and randomly varying the temporal offset, 

constrained such that all nonzero samples occurred in the middle second of the stimulus.

Precedence effect – Analysis—Because human experiments on the precedence effect 

typically query participants about positions in the frontal hemifield, we corrected for front-

back confusions in the analysis of both the precedence effect demo and the Litovsky and 

Godar experiment by mirroring model responses of each stimulus across the coronal plane. 

Fig. 5B plots the mean judged position at each inter-click delay, averaged across the means 

of the 10 individual networks. Error bars are SEM, bootstrapped over networks.

To generate Fig. 5D (plotting the results of the model version of the Litovsky and Godar 

experiment) we calculated errors for each stimulus between the model’s judged position and 

the positions of the leading and lagging clicks. We calculated the average lead click error 

and average lag click error for each network at each delay. Fig. 5D plots the mean across the 

mean error for each network. Error bars are SEM, bootstrapped over networks.

Multi-source localization – Stimuli—We reproduced stimuli from the original 

experiment98, in which human participants were played between 1 and 8 concurrent speech 

stimuli. Each stimulus was played from a different location (out of 12 possible, evenly 

spaced in azimuth). Participants judged the number of stimuli as well as the locations 

at which stimuli were presented in each trial. The experimenters then plotted the mean 

number of sources perceived versus the actual number of sources presented (Fig. 6B) and 

localization accuracy (proportion correct) versus the number of sources presented (Fig. 6D). 

The experiment included 8 normal-hearing participants.

Stimuli were 10 seconds in duration and consisted of a concatenation of 10 1-second 

recordings of a person saying the name of a country (randomly drawn without replacement 
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from a list of 24 countries). Each stimulus used recordings from a single talker (out of 12 

possible talkers; 6 female). Each stimulus was presented from one of 12 speakers at 0° 

elevation, spaced 30° apart in azimuth (Fig. 6A). On each trial, between 1 and 8 stimuli were 

simultaneously presented, each spoken by a different talker and presented from a different 

speaker.

The model experiment used the same 1-second recordings used in the original experiment 

(kindly provided by Bill Yost), but presented a single 1-second recording (of a speaker 

saying a single country name, rather than the sequence of 10 such recordings used in the 

human experiment) at each location, to accommodate the 1-second input length of the 

model. For each number of sources (1 to 8) we computed each possible spatial source 

configuration and rendered 20 scenes for each configuration, randomly sampling talkers and 

country names for each trial (without replacement). All stimuli were rendered in an anechoic 

environment without any background noise using the virtual acoustic simulator. This led to 

75,920 stimuli in total (20 exemplars in each of 3796 spatial configurations).

Multi-source localization – Output layer fine-tuning—To enable the model to 

perform the multi-source localization experiment, we altered the softmax output layer, 

which was designed to report one source at a time. We replaced the softmax function 

with independent sigmoid functions for each output unit. This allowed the model to 

independently report the probability of a source at each location. To allow our model to 

use this new output representation, we retrained this new final model stage. We froze all 

weights in each network except for those in the final fully-connected layer, which we 

then trained using gradient descent for 10,000 steps (“fine-tuning”). The fine-tuning used 

a dataset consisting of auditory scenes generated and rendered in the same manner as the 

original training data (as described in Training Data Generation above), with two exceptions. 

First, each scene contained between 1 to 8 natural sounds, each rendered at a different 

location. Second, the scenes did not contain background noise. This process was repeated 

for each network to allow the model to utilize its features on the multi-source localization 

task.

To measure accuracy after fine-tuning, we created a multi-source validation set using the 

natural sounds from the main model validation set. We measured the area under the curve 

(AUC) for the receiver operator characteristic (ROC) curve over the entire multi-source 

validation set. The average AUC across fine-tuned networks after fine-tuning was 0.73.

Multi-source localization – Analysis—The output layer of the multi-source model 

contained a unit for each location, like the main single-source localization model, but 

differed in that the unit activation represented the judged probability that a source was 

present at that location. To enable the model to perform the multi-source experiment, we 

implemented a decision rule whereby the model would determine a source to be present at 

a location if the probability for that location exceeded a criterion. We set this criterion such 

that the model would correctly estimate the number of sources when a single source was 

present. We found empirically that the absolute activations resulting from the sigmoid output 

units varied considerably across sounds, presumably because the networks were trained 

with a softmax output layer that normalizes the output activations (which was no longer 
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present in the multi-source decision layer). We thus adopted a criterion that was a proportion 

of the maximum probability across all output units, and found that this yielded results 

that were stable across stimuli. Using all the experiment stimuli containing one source, 

we successively lowered the criterion from 1, each time running through the full set of 

scenes and estimating confidence intervals on the average predicted number of sources, until 

the 95% confidence interval for the predicted number of sources (after front-back folding) 

included 1. This yielded a decision criterion of .09 times the maximum probability across all 

output unit activations for the stimulus.

To perform a trial in the experiment, we first selected the model’s location bins whose 

probability exceeded the criterion of .09 times the maximum proability across all output 

unit activations for the stimulus. We then mapped these locations to the 12 possible speaker 

locations in the experiment (for each output location bin, we selected the speaker location 

closest in azimuth). The number of sources was calculated as the number of these 12 speaker 

locations to which a localized source was mapped (Fig. 6C). The proportion correct was 

calculated as the hit rate – the fraction of the 12 speaker locations at which the model 

correctly judged there to be a source (Fig. 6E).

Evaluation of Models Trained in Unnatural Conditions

Once trained, each alternative model was run on each of the psychophysical experiments. 

The exception was the multi-source localization experiment, which was omitted because 

it was not clear how to incorporate the background noise training manipulation into the 

fine-tuning of the model output layer. The psychophysical experiments were identical for all 

training conditions.

Analysis of Results of Unnatural Training Conditions

Human-model dissimilarity—We assessed the effect of training condition on model 

behavior by quantifying the extent of the dissimilarity between the model psychophysical 

results and the human results. For each results graph, we measured human-model 

dissimilarity as the root-mean-squared error between corresponding y-axis values in the 

human and model experiments. In order to compare results between experiments, before 

measuring this error, we min-max normalized the y-axis to range from 0 to 1. For 

experiments with the same y-axis for human and model results, we normalized the model 

and human data together (i.e., taking the min and max values from the pooled results). For 

experiments where the y-axes were different for human and model results (because the tasks 

were different, as in Figs. 3B&C and 4I&J), we normalized the data individually for human 

and model results.

The one exception was the Ear Alteration experiment (Fig. 4A–G), in which the result 

of primary interest was the change in judged location relative to the rendered location, 

and for which the locations were different in the human and model experiments (due to 

constraints of the HRTF sets that we used). To measure the human-model dissimilarity 

for this experiment, we calculated the error between the judged and rendered location for 

each point on the graph, for humans and the model. We then calculated human-model 

dissimilarity between these error values, treating the two grids of locations as equivalent. 
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This approach would fail to capture some patterns of errors but was sufficient to capture 

the main effects of preserved azimuthal localization along with the collapse of elevation 

localization.

This procedure yielded a dissimilarity measure that varied between 0 and 1 for each 

experiment, where 0 represents a perfect fit to the human results. For Fig. 7B, we then 

calculated the mean of this dissimilarity measure over the seven experiments. To generate 

error bars, we bootstrapped across the 10 networks and recalculated all results graphs and 

the corresponding mean normalized error for each bootstrap sample. Error bars in Fig. 

7B plot the SEM of this distribution. Additionally, we plotted the mean normalized error 

individually for each of the 10 networks (Extended Data Fig. 7).

Between-human dissimilarity—The dissimilarity that would result between different 

samples of human participants puts a lower bound on model-human dissimilarity, and 

would thus be useful to compare to the dissimilarity plotted in Fig. 7B. This between-

human dissimilarity could be estimated using data from the original individual human 

participants. Unfortunately, the individual participant data was unavailable for nearly all 

of the experiments that we modeled, many of which were conducted several decades ago. 

Instead, we used the error bars in the published results figures to simulate different samples 

of human participants given the variability observed in the original experiments. Error 

bars were provided for only some of the original experiments (the exceptions being the 

experiments in Figs. 2 and 4N), so we were only able to estimate the between-human 

dissimilarity for this subset. We then compared the estimated between-human dissimilarity 

to the model-human dissimilarity for the same subset of experiments (Extended Data Fig. 8).

We assumed that human data for each experimental condition were independently normally 

distributed with a mean and variance given by the mean and error bars for that condition. 

Depending on the experiment, the error bars in the original graphs plotted the standard 

deviation, the standard error of the mean (SEM), or the 95% confidence interval of the 

data. In each case we estimated the variance from the mean of the upper and lower error 

bar (for SD: the square of the error bar; for SEM:variance = ( N × SEM)2; for 95% CI:

variance = ( N × (error bar widtℎ)/1.96)2, where N is the number of participants). To obtain 

behavioral data for one simulated human participant, we sampled from the Gaussian 

distribution for each condition. We sampled data for the number of participants run in 

the original experiment, and obtained mean results for this set of simulated participants. 

We then calculated the root-mean-squared error (described in previous section) between 

the simulated human data and actual human data (normalized as described in the previous 

section for the human-model dissimilarity). We repeated this process 10,000 times for 

each experiment, yielding a distribution of dissimilarities for each experiment. We then 

calculated the mean dissimilarity across experiments and samples. Extended Data Fig. 8 

plots this estimated between-human dissimilarity (with confidence intervals obtained from 

the distribution of between-human dissimilarity) alongside the human-model dissimilarity 

for the same subset of experiments.
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Models with internal noise—To test for the possibility that the noiseless training 

environments might have had effects that were specific to the lack of internal noise in 

the cochlear model used as input to our networks, we trained an alternative model with 

internal noise added to the output of the cochlear stage. This alternative model was identical 

to the main model used throughout the paper except that independent Gaussian noise was 

added to each frequency channel prior to the rectification stage of the cochlear model. The 

noise was sampled from a standard normal distribution and then scaled so that its power 

was on average 60.6 dB below the average power in the subbands of the input signal 

(intended to produce noise at 9.4 dB SPL assuming sources at 70 dB SPL156). In practice we 

pre-generated 50,000 noise arrays, sampled one at random on each trial, and added it to the 

output of the cochlear filters at the desired SNR.

Cohen’s d—To assess how training conditions impacted individual psychophysical effects, 

we measured the effect size of the difference between human-model dissimilarity in the 

naturalistic and alternative training conditions for each psychophysical effect. Specifically, 

we measured Cohen’s d for each experiment:

d =
μmodified − μnormal

s

S =
σmodified

2 + σnormal
2

2

where μ and σ are the mean and variance of the human-model dissimilarity across our 10 

networks for the normal or modified training condition. We calculated error bars on Cohen’s 

d by bootstrapping across the 10 networks, computing the effect size for each bootstrap 

sample. Fig. 7C plots the mean and SEM of this distribution.

Instrument Note Localization

Instrument note localization – Stimuli—To assess the ability of the model to predict 

localization behavior for natural sounds, we rendered a set of instruments playing notes 

at different spatial positions. Instruments were sourced from the Nsynth Dataset101, which 

contains a large number of musical notes from a wide variety of instruments. We used the 

validation set component of the dataset, which contained 12,678 notes sampled from 53 

instruments. For each note, room in our virtual environment, and listener location within 

each room, we randomly rendered each of the 72 possible azimuthal positions (0° elevation, 

0°−355° azimuth in 5° steps) with a probability p = 0.025 ⋅ # of locations in smallest room
# of locations in current room . We 

used a base probability of 2.5% to limit the overall size of the test set and normalized by the 

number of locations in the current room so that each room was represented equally in the 

test set. This yielded a total of 456,580 stimuli.

Instrument note localization – Analysis—We anticipated performing a human 

instrument note localization experiment in an environment with speakers in the frontal 
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hemifield, so we corrected for front-back confusions by mirroring model responses of each 

stimulus across the coronal plane. Different instruments in the dataset contained different 

subsets of pitches. To ensure that differences in localization accuracy would not be driven 

solely by the instrument’s pitch range, we limited analysis to instruments for which the 

dataset contained all notes in the octave around middle C (MIDI note 55 through 66) and 

performed all analysis on notes in that range. This yielded 43 instruments and 1860 unique 

notes. We calculated the mean localization error for each network judgment by calculating 

the absolute difference, in degrees, between the judged and rendered location. We then 

averaged the error across networks and calculated the mean error for each of the 1860 

remaining notes from the original dataset. We plotted the distributions of the mean error over 

notes for each instrument (8A) using letter-value plots157.

To characterize the density of the spectrum we computed its spectral flatness. We first 

estimated the power spectrum x(n) using Welch’s method (window size of 2000 samples, 

50% overlap). The spectral flatness was computed for each note of each instrument as:

Spectral Flatness =
∏n = 0

N − 1x(n)N

1
N ∑n = 0

N − 1x(n)

We averaged the spectral flatness across all notes of an instrument and then computed the 

Spearman correlation of this measure with the network’s mean accuracy for that instrument.

Statistics

Real-world localization—For plots comparing real-world localization across models 

(Extended Data Fig. 6B&C), error bars are SEM, bootstrapped over stimuli (because there 

was only one version of the baseline models).

Psychophysical experiments—For plots assessing duplex theory (Fig. 2D), azimuth 

sensitivity (Fig. 3C), bandwidth sensitivity (Fig. 3F), ear alteration (Fig. 4D&E), spectral 

smoothing (Fig. 4J), sensitivity to low-pass and high-pass filtering (Fig. 4O), the precedence 

effect (Fig. 5B&D) and multi-source localization (Fig. 6 C&E) error bars are SEM, 

bootstrapped across networks. In some cases the graph of human results used SD rather 

than SEM for error bars because that is what was used in the original paper, the results of 

which were scanned from the original figure. We opted to use SEM error bars for all model 

results for the sake of consistency.

To assess the significance of the interaction between the stimulus frequency range and 

the magnitude of the ITD/ILD bias weights (Fig. 2D), we calculated the difference of 

differences in bias weights across the 4 stimulus/cue-type conditions:

Difference of Differences = (BILD
Higℎpass − BILD

Lowpass) − (BITD
Higℎpass − BITD

Lowpass)

where B denotes the bias weight for each condition). We calculated the difference of 

differences bootstrapped across models with 10,000 samples, and compared it to 0. As this 
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difference of differences exceeded 0 for all 10,000 bootstrap samples, we fit a Gaussian 

distribution to the histogram of values for the 10,000 bootstrap samples and calculated the 

p-value (two-tailed) for a value of 0 or smaller from the fitted Gaussian.

We assessed the significance of the lowpass ILD bias weight (Fig. 2D) by bootstrapping 

across networks, again fitting a Gaussian distribution to the histogram of bias weights from 

each bootstrap sample and calculating the p-value (two-tailed) for a value of 0 or smaller 

from the fitted Gaussian.

Statistical significance of unnatural training conditions—We assessed the 

statistical significance of the effect of individual unnatural training conditions (Fig. 7B) 

by comparing the human-model dissimilarity for each unnatural training condition to a null 

distribution of the dissimilarity for the natural training condition. The null distribution was 

obtained by bootstrapping the human-model dissimilarity described above across networks. 

We fit a Gaussian distribution to the histogram of the dissimilarity for each bootstrap sample 

and calculated the p-value (two-tailed) of obtaining the value of the dissimilarity measure (or 

smaller) obtained for each unnatural training condition under the fitted Gaussian. The effect 

size of the difference in dissimilarity between training conditions was quantified as Cohen’s 

d (calculated as described above for individual experiments, but with the dissimilarity 

aggregated across experiments, as is plotted in Fig. 7B).

We also assessed the statistical significance of the effect size of the change to individual 

experiment results (relative to other experiments) when training in alternative conditions 

(Fig. 7C). We first measured Cohen’s d as described above for 10,000 bootstrap samples 

of the 10 networks, leading to a distribution over Cohen’s d for each experiment and 

each training condition. For each experiment of interest, we assessed the probability under 

its bootstrap distribution that a value at or below the mean Cohen’s d of each other 

experiment could have occurred. The histogram of bootstrap samples was non-Gaussian 

so we calculated this probability by counting the number of values at or below the mean for 

each condition and reported the proportion of such values as the p-value (two-tailed).

We assessed the statistical significance of the effect of training condition on real-world 

localization performance (Fig. 7E) by bootstrapping the RMS localization error across 

networks. We fit a Gaussian distribution to the histogram of RMS error for the normal 

training condition. The reported p value (two-tailed) is the probability that a value could 

have been drawn from that Gaussian at or above the mean RMS error for each alternative 

training condition.

Data Availability

Data used to train and analyze the main model in this paper, as well as the 

weights of the trained networks in the model, are available at: www.github.com/afrancl/

BinauralLocalizationCNN

Training data for the unnatural training conditions are not posted publicly as their overall 

size is prohibitive, but will be shared upon request to the corresponding authors.
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Code Availability

Code used to train and analyze the model in this paper is available at: www.github.com/

afrancl/BinauralLocalizationCNN

Extended Data

Extended Data Figure 1. 
A. Histogram of validation set accuracies (proportion correct) for neural network 

architectures after 15k steps of training during architecture search. Here and in B, 

histograms include the 897 architectures that remained (out of the initial set of 1500) at 

this point in the architecture search. B. Histogram of validation set losses for neural network 

architectures after 15k steps of training during architecture search.

Extended Data Figure 2. 
Discrete prior distributions used for architecture search. Pooling and convolutional kernel 

parameters at each layer were uniformly sampled from the lists of values.
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Extended Data Figure 3. 
Summary of the 10 network architectures. These architectures performed best in the 

architecture search and were used as “the model” in all experiments in this paper.
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Extended Data Figure 4. 
Natural sounds used in training. The set of sources contained multiple exemplars of some of 

the sound classes, denoted with the numeral at the end of the source name.
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Extended Data Figure 5. 
Room configurations used in virtual training environment.

Extended Data Figure 6. 
Comparison of our model to alternative two-microphone localization systems. A. Photo of 

two-microphone array. Microphone spacing was the same as that in the KEMAR mannequin 

(shown in Fig. 1E) used to record our real-world test set, but the recordings lacked the 

acoustic effects of the pinnae, head, and torso. B. Localization accuracy of standard two-

microphone localization algorithms, our neural network localization model trained with ear/

head/torso filtering effects (same data as plotted in Fig. 1G and 1H), and neural networks 
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trained instead with simulated input from the two-microphone array. Localization judgments 

are front-back folded. Error bars here and in C plot SEM, obtained by bootstrapping across 

stimuli. C. Front-back confusions by each of the algorithms from B. Chance level is 50%. 

Our main model (i.e., the one trained with ears) is the only model whose front-back 

confusions are substantially below chance levels, confirming the utility of head-related 

transfer function cues for partially resolving front-back ambiguity.

Extended Data Figure 7. 
Human-model dissimilarity for natural and unnatural training conditions for each of the 10 

individual neural networks.
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Extended Data Figure 8. 
Human-model dissimilarity and human-human dissimilarity (root-mean-square error; 

RMSE) calculated over the subset of experiments for which across-participant variability 

could be estimated (typically from error bars in the original results graphs).
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Extended Data Figure 9. 
Model psychophysical results across training conditions for first three psychophysical 

experiments. A. Model sensitivity to interaural time and level differences (Figure 2D). B. 

Model accuracy for broadband noise at different azimuthal positions (Figure 3C). C. Effect 

of bandwidth on model localization of noise bursts (Figure 3F). All plotting conventions are 

the same as in the corresponding figures in the main text.
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Extended Data Figure 10. 
Model psychophysical results across training conditions for fourth through seventh 

psychophysical experiments. A. Sound localization by the model in azimuth and elevation 

before and after ear alteration (Figure 4 D&E). B. Effect of spectral smoothing on model 

localization accuracy (Figure 4J). C. Effect of low-pass and high-pass cutoff on model 

localization accuracy for elevation (Figure 4O). D. Model error in localization of the leading 

and lagging clicks in the precedence effect experiment, as a function of delay (Figure 5D). 

All plotting conventions are the same as in the corresponding figures in the main text.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of approach. A. Illustration of method. A variety of constraints (left) shape human 

behavior. Models optimized under particular environmental constraints (right) illustrate the 

effect of these constraints on behavior. Environment simulators can instantiate naturalistic 

environments as well as alternative environments in which particular properties of the 

world are altered, to examine the constraints that shape human behavior. B. Cues to sound 

location available to humans: interaural time and level differences (left and center) and 

spectral differences (right). Time and level differences are shown for low and high frequency 
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sinusoids (left and center, respectively). The level difference is small for the low frequency, 

and the time difference is ambiguous for the high frequency. C. Training procedure. 

Natural sounds (green) were rendered at a location in a room, with noises (natural sound 

textures, black) placed at other locations. Rendering included direction-specific filtering by 

the head/torso/pinnae, using head-related transfer functions from the KEMAR mannequin. 

Neural networks were trained to classify the location of the natural sound source (azimuth 

and elevation) into one of a set of location bins (spaced 5 degrees in azimuth and 10 

degrees in elevation). D. Example neural network architectures from the architecture search. 

Architectures consisted of sequences of “blocks” (a normalization layer, followed by a 

convolution layer, followed by a nonlinearity layer) and pooling layers, culminating in fully 

connected layers followed by a classifier that provided the network’s output. Architectures 

varied in the total number of layers, the kernel dimensions for each convolutional layer, 

the number of blocks that preceded each pooling layer, and the number of fully connected 

layers preceding the classifier. Labels indicate an example block, pooling layer, and fully 

connected layer. The model’s behavior was taken as the average of the results for the 

10 best architectures (assessed by performance on a held-out validation set of training 

examples). E. Recording setup for real-world test set. Mannequin was seated on a chair and 

rotated relative to the speaker to achieve different azimuthal positions. Sound was recorded 

from microphones in the mannequin ears. F. Free-field localization of human listeners, 

replotted from a previous publication154. Participants heard a sound played from one of 11 

speakers in the front horizontal plane and pointed to the location. Graph plots kernel density 

estimate of participant responses for each actual location. G. Localization judgments of the 

trained model for the real-world test set. Graph plots kernel density estimates of response 

distribution. For ease of comparison with F, in which all locations were in front of the 

listener, positions were front-back folded. H. Localization judgments of the model without 

front-back folding. Model errors are predominantly at front-back reflections of the correct 

location.

Francl and McDermott Page 57

Nat Hum Behav. Author manuscript; available in PMC 2022 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Sensitivity to interaural time and level differences. A. Schematic of stimulus generation. 

Noise bursts filtered into high or low frequency bands were rendered at a particular 

azimuthal position, after which an additional ITD or ILD was added to the stereo audio 

signal. B. Schematic of response analysis. Responses were analyzed to determine the 

amount by which the perceived location (L) was altered (ΔL) by the additional ITD/ILD, 

expressed as the amount by which the ITD/ILD would have changed if the actual sound’s 

location changed by ΔL. C. Effect of additional ITD and ILD on human localization. Y 

axis plots amount by which the perceived location was altered, expressed in ITD/ILD as 

described above. Each dot plots a localization judgment from one trial. Data reproduced 

from a previous publication69. D. Effect of additional ITD and ILD on model localization. 

Same conventions as B. Error bars plot SEM, bootstrapped across the 10 networks.
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Figure 3. 
Azimuthal localization is most accurate at the midline and improves with stimulus 

bandwidth. A. Schematic of stimuli from experiment measuring localization accuracy at 

different azimuthal positions. B. Localization accuracy of human listeners for broadband 

noise at different azimuthal positions. Data were scanned from a previous publication80, 

which measured discriminability of noise bursts separated by 15 degrees (quantified as 

d’). Error bars plot SEM. C. Localization accuracy of our model for broadband noise at 

different azimuthal positions. Graph plots mean absolute localization error of the same 

noise bursts used in the human experiment in B. Error bars plot SEM across the 10 

networks. D. Schematic of stimuli from experiment measuring effect of bandwidth on 

localization accuracy. Noise bursts varying in bandwidth were presented at particular 

azimuthal locations; participants indicated the azimuthal position with a keypress. E. Effect 

of bandwidth on human localization of noise bursts. Error bars plot SD. Data are replotted 

from a previous publication82. F. Effect of bandwidth on model localization of noise bursts. 

Networks were constrained to report only the azimuth of the stimulus. Error bars plot SEM 

across the 10 networks.
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Figure 4. 
Dependence of elevation perception on ear-specific transfer functions. A. Photographs of ear 

alteration in humans (reproduced from a previous publication84). B. Sound localization by 

human listeners with unmodified ears. Graph plots mean and SEM of perceived locations 

for 4 participants, superimposed on grid of true locations (dashed lines). Data scanned from 

original publication84. C. Effect of ear alteration on human localization. Same conventions 

as B. D. Sound localization in azimuth and elevation by the model, using the ears (head-

related impulse responses) from training, with broadband noise sound sources. Graph plots 

mean locations estimated by the 10 networks. Tested locations differed from those in the 

human experiment to conform to the location bins used for network training. E. Effect of 

ear alteration on model sound localization. Ear alteration was simulated by substituting an 

alternative set of head-related impulse responses into the sound rendered following training. 

Graph plots average results across all 45 sets of alternative ears (averaged across the 10 

networks). F. Effect of individual sets of alternative ears on localization in azimuth. Graph 
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shows results for a larger set of locations than in D and E to illustrate the generality 

of the effect. G. Effect of individual sets of alternative ears on localization in elevation. 

Bolded lines show ears at 5th
, 25th

, 75th
, and 95th percentiles when the 45 sets of ears 

were ranked by accuracy. H. Smoothing of head-related transfer functions, produced by 

varying the number of coefficients in a discrete cosine transform. Reproduced from original 

publication86. I. Effect of spectral smoothing on human perception. Participants heard two 

sounds, one played from a speaker in front of them, and one played through open-backed 

earphones, and judged which was which. The earphone-presented sound was rendered using 

HRTFs smoothed by various degrees. In practice participants performed the task by noting 

changes in sound location. Data scanned from original publication86. Error bars plot SEM. 

Conditions with 4, 2, and 1 cosine coefficients were omitted from the experiment, but are 

included on the x-axis to facilitate comparison with the model results in J. J. Effect of 

spectral smoothing on model sound localization accuracy (measured in both azimuth and 

elevation). Conditions with 512 and 1024 cosine components were not realizable given the 

length of the impulse responses we used. K. Effect of spectral smoothing on model accuracy 

in azimuth. L. Effect of spectral smoothing on model accuracy in elevation. M. Stimuli from 

experiment in N and O. Noise bursts varying in low- or high-pass cutoff were presented 

at particular elevations. N. Effect of low-pass and high-pass cutoff on accuracy in humans. 

Data scanned from original publication90; error bars were not provided in the original 

publication. O. Effect of low-pass and high-pass cutoff on model accuracy. Networks were 

constrained to report only elevation. Here and in J, K, and L, error bars plot SEM across the 

10 networks.
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Figure 5. 
The precedence effect. A. Diagram of stimulus. Two clicks are played from two different 

locations relative to the listener. The time interval between the clicks is manipulated and 

the listener is asked to localize the sound(s) that they hear. When the delay is short but 

non-zero, listeners perceive a single click at the location of the first click. At longer delays 

listeners hear two distinct sounds. B. Localization judgments of the model for two clicks 

at +45 and −45 degrees. The model exhibits a bias for the leading click when the delay is 

short but non-zero. At longer delays the model judgments (which are constrained to report 

the location of a single sound, unlike humans), converge to the average of the two click 

locations. Error bars plots SEM across the 10 networks. C. Error in localization of the 

leading and lagging clicks by humans as a function of delay. SC denotes a single click at the 

leading or lagging location. Error bars plot SD. Data scanned from original publication95. D. 

Error in localization of the leading and lagging clicks by the model as a function of delay. 

Error bars plots SEM across the 10 networks.
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Figure 6. 
Multi-source localization. A. Diagram of experiment. On each trial, between 1 and 8 speech 

signals (each spoken by a different talker) was played from a subset of the speakers in a 

12-speaker circular array. The lower panel depicts an example trial in which three speech 

signals were presented, with the corresponding speakers in green. Participants reported the 

number of sources and their locations. B. Average number of sources reported by human 

listeners, plotted as a function of the actual number of sources. Error bars plot standard 

deviation across participants. Here and in D, graph is reproduced from original paper98 

with permission of the authors. C. Same as B, but for the model. Error bars plot standard 

deviation across the 10 networks D. Localization accuracy (measured as the proportion of 

sources correctly localized to the actual speaker from which they were presented), plotted as 

a function of the number of sources. Error bars plot standard deviation across participants. E. 

Same as D, but for the model. Error bars plot standard deviation across the 10 networks.
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Figure 7. 
Effect of unnatural training conditions. A. Schematic depiction of altered training 

conditions, eliminating echoes or background noise, or using unnatural sounds. B. 

Overall human-model dissimilarity for natural and unnatural training conditions. Error 

bars plot SEM, bootstrapped across networks. Asterisks denote statistically significant 

differences between conditions (p<.001, two-tailed), evaluated by comparing the human-

model dissimilarity for each unnatural training condition to a bootstrapped null distribution 

of the dissimilarity for the natural training condition. C. Effect of unnatural training 
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conditions on human-model dissimilarity for individual experiments, expressed as the effect 

size of the difference in dissimilarity between the natural and each unnatural training 

condition (Cohen’s d, computed between human-model dissimilarity for networks in normal 

and modified training conditions). Positive numbers denote a worse resemblance to human 

data compared to the model trained in normal conditions. Error bars plot SEM, bootstrapped 

across the 10 networks D. The precedence effect in networks trained in alternative 

environments. E. Real-world localization accuracy of networks for each training condition. 

Error bars plot SEM, bootstrapped across the 10 networks. Asterisks denote statistically 

significant differences between conditions (p<.001, two-tailed), evaluated by comparing 

the mean localization error for each unnatural training condition to a bootstrapped null 

distribution of the localization error for the natural training condition.
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Figure 8. 
Model localization accuracy for musical instrument sounds. A. Mean model localization 

error for each of 43 musical instruments. Each of a set of instrument notes was rendered 

at randomly selection locations. Graph shows letter-value plots157 of the mean localization 

error across notes, measured after actual and judged positions were front-back folded. 

Letter-value plots are boxplots with additional quantiles. The widest box depicts the middle 

two quartiles (1/4) of the data distribution, as in a box plot, the second widest box depicts 

the next two octiles (1/8), the third widest box depicts the next two hexadeciles (1/16), etc., 

up to the upper and lower 1/64 quantiles. Horizontal line plots median value and diamonds 

denote outliers. B. Spectrograms of example note (middle C) for the three most and least 

accurately localized instruments (top and bottom, respectively).
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