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Abstract

In this Review, we describe the singular success of attractor neural 
network models in describing how the brain maintains persistent 
activity states for working memory, corrects errors and integrates noisy 
cues. We consider the mechanisms by which simple and forgetful units 
can organize to collectively generate dynamics on the long timescales 
required for such computations. We discuss the myriad potential uses 
of attractor dynamics for computation in the brain, and showcase 
notable examples of brain systems in which inherently low-dimensional 
continuous-attractor dynamics have been concretely and rigorously 
identified. Thus, it is now possible to conclusively state that the brain 
constructs and uses such systems for computation. Finally, we highlight 
recent theoretical advances in understanding how the fundamental 
trade-offs between robustness and capacity and between structure and 
flexibility can be overcome by reusing and recombining the same set 
of modular attractors for multiple functions, so they together produce 
representations that are structurally constrained and robust but exhibit 
high capacity and are flexible.
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the context of the brain involves challenges and simplifications that 
revolve around identifying a sufficiently self-contained system and 
the variables necessary to determine its dynamics.

Defining the state of a neural system
Inherent in the definition of a dynamical system is the assump-
tion that there are no external dynamical inputs to the system (or, 
equivalently, that the system definition includes all such external  
variables).

The first simplification in characterizing the dynamics of a neural 
circuit is to assume that, at least on the timescale of interest, the system  
evolves in an autonomous way. Given that subcircuits in the brain 
are interconnected with others, and that the brain itself interacts 
with the world, it is impossible to isolate these circuits completely  
into autonomous systems. However, we may define a notion of 
‘effectively autonomous’ dynamics, whereby inputs do not vary over 
time and are untuned, in the sense that they do not provide differential 
drive to subsets of the putative set of attractor states.

The second simplification is in defining the states of the system. 
The changes in state of a circuit in the brain over time may depend 
on the detailed pattern of all the spikes in all neurons, the levels of 
associated ions, neurotransmitters and modulators, and even the 
states of the ion channels. The weights and connections between 
neurons may be considered as parameters (rather than variables) 
on short timescales, but are themselves variables if considering a 
longer timescale. One widely used simplification in describing a neural 
circuit on the timescale of seconds is to use just the spiking outputs 
of the neurons in the circuit as the states, often further simplified 
as time-varying spike rates. If such a description is sufficient to pre-
dict the state changes of the system at the relevant timescales, it can 
be viewed as a reasonable dynamical system model of the circuit. 
Although spike or spike-rate descriptions ignore subcellular and 
molecular variables to make the grossly simplifying assumption that 
the relevant circuit dynamics are governed by spikes, the state space 
of a vertebrate microcircuit described in this way is nevertheless very 
high-dimensional, comprising the number of neurons in the circuit, 
which can be in the order of 102–107 cells. As we discuss below, such 
simplified models can nevertheless yield rich and accurate predictions 
about neural circuits.

Attractors exist in various flavours: an attractor may consist of a 
single state, a set of discrete states, a set of states that effectively behave 
as a continuous set or many such near-continuous sets (Fig. 1). If a set 
of attractor states traces out a shape in state space that is approxi-
mately continuous and locally Euclidean, it is known as an attractor 
manifold. Nonlinear continuous-attractor manifolds can be curved 
and topologically complex (for example, resembling rings, tori and 
so on; Fig. 1c,d, rightmost column)19,20. States on an attractor may be 
stationary, or might flow along the attractor to trace out trajectories 
that are periodic (known as limit cycles; Fig. 1f, rightmost column) or 
chaotic (that is, with dynamics that are inherently unpredictable owing 
to high sensitivity to small changes in the state21).

Various combinations of such attractors, of different dimen-
sions, geometries and topologies, may coexist in different regions 
of the state space of a single dynamical system. Typically, the set of 
attractors in a dynamical system comprises a small subset of the state 
space, and attractor manifolds are usually much lower-dimensional 
than the state space. In cases in which a system has multiple attractor 
states, the initial condition determines the attractor state to which the  
system flows.

Introduction
One of biology’s grand challenges is to explain how order and complex 
function spring from inanimate physical systems composed of much 
simpler parts. The brain creates order in its representations of the 
world and performs complex functions through the collective interac-
tions of simpler elements. In this Review, we describe and evaluate the 
hypothesis that attractor dynamics in widespread regions of the CNS 
have a key role in constructing some of these representations, generat-
ing long timescales to support integration and memory functions and 
endowing all these functions with robustness. We review the specific 
predictions of attractor-based models and the now extensive body of 
work testing these predictions. Thus, we illustrate that the theory and 
validation of computation with attractor dynamics in the brain is one 
of the biggest success stories in systems neuroscience.

Some of the first formal circuit-level models of brain function 
focused on the problem of associative memory and how neural circuits 
might generate spatially distributed, stable patterns of activity that 
could function as such a memory1–4. Hopfield networks, with multiple 
stable states constructed by inscribing input patterns into connec-
tion weights, were proposed more than four decades ago3,5,6. Network 
models possessing a continuous set of stable states that could be used 
to represent continuous variables were also first proposed in the same 
period7. Subsequently, many canonical brain circuits for motor control, 
sensory amplification and memory, motion integration, evidence inte-
gration, decision-making and spatial navigation have been modelled 
using the same general principle — that a set of states can be stabilized 
through collective positive feedback8–17.

Because these are circuit-level models, but were typically inspired 
by experimental characterization of neurons recorded singly or a few 
at a time, the patterns of connectivity and the cell–activity correla-
tions in the models automatically became novel and relatively specific 
predictions about the population dynamics and architecture of such 
circuits. As we discuss below, the combination of these prediction-
rich (yet conceptually simple) models, modern experimental break-
throughs in the acquisition of cellular-resolution population activity 
data and novel and rigorous analyses of such data on the basis of 
the model predictions has provided much evidence that the brain 
constructs and exploits attractor networks for performing several 
essential computations.

We begin by defining attractors, and then describe proposed 
mechanisms for the construction of attractor network models in neu-
roscience. We provide an overview of why attractor networks can be 
important for computation in the brain and highlight criteria for deter-
mining whether a system has non-trivial attractor dynamics. We also 
discuss examples of brain circuits with non-trivial attractor dynamics. 
We end with a summary of new directions in our understanding of how 
these simple circuits could contribute to flexible computation through 
reuse in multiple contexts.

What are attractors?
To define an attractor, we first define a dynamical system and its states. 
A dynamical system is a set of variables together with all the rules that 
determine their changes in value with the passage of time. The value 
of these variables at any given instant is called the state of the system 
at that moment. The state is a point (vector) in the state space of the 
dynamical system. An attractor is the minimal set of states in a state 
space, to which all nearby states eventually flow with time18. One sim-
ple example of an attractor is a stable fixed point: all neighbouring 
states flow to it. Transferring these crisp mathematical definitions to 
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Attractors in the presence of noise
Any real physical system unavoidably behaves non-deterministically 
from the perspective of a model of the system. This is because one can-
not observe and describe all variables, and all uncharacterized variables 
together with true stochastic sources of variation (such as synaptic 
signalling noise from stochastic vesicle release22; fluctuations in ion 
concentrations during processes such as spike initiation23 and calcium 
signalling; or fluctuations in small copy numbers of proteins24) serve as 
effective sources of noise in the model. Noise can disrupt states so they 
do not strictly localize to the attractor described in a noise-free version 
of the model, and can drive the system to escape from an attractor over 
time. However, the general idea of attractor states remains, in that, if 
the system is initialized near such a state, it tends to flow towards it 
and subsequently remains localized around it, for extended periods.

Because attractor states are where systems tend to localize (when 
not externally driven), they should be observable in the autonomous 
dynamics of real systems. This basic property is the basis for the most 
fundamental and robust tests of attractor dynamics in neural systems, 
as we discuss below. In a nutshell, the central signatures of attractors in 
real systems (discussed in more detail in later sections of this Review) 
can be summarized as: the localization of the states of a system to a 
lower-dimensional subset; the flow of the states towards the subset 
after perturbation; and the long-time and (effectively) autonomous 
stability of states in that subset.

Construction and mechanisms
The general principle underlying the formation of non-trivial attractor 
states in neural circuits is strong recurrent positive feedback. Positive 
feedback fights activity decay to stabilize certain states, and has been 
posited25–28 to be the basis for the stabilization of memory traces and 
persistent activity in the brain. Which states become stabilized into 
attractors depends on how the network sculpts the positive feedback, 
which, according to the synaptic hypothesis, is determined by synaptic 
weights29–31.

In general, characterizing the relationship between structure 
and function in a large collection of interacting elements is extremely 
difficult32. For example, a large collection of simple polar three-atom 
molecules of hydrogen and oxygen give rise to the emergent phenom-
ena we associate with water — such as liquidness, wetness and freezing 
into a solid — that cannot be predicted through intuition or by drawing 
box and arrow diagrams. Nevertheless, the transitions and properties 
of emergent states can be described relatively simply, with very few key 
parameters and variables.

One way to characterize the relationship between synaptic weights 
and attractor dynamics is to ask what attractor states a given set of 
weights produces (the ‘forward’ problem). With a given set of weights, 
one can simulate a circuit and explore the resulting dynamics to find 
attractors of the system. A more powerful method, the Lyapunov func-
tion approach, holds for symmetric weight matrices (Wij = Wji) and rate-
based neural dynamics. For this class of models, a generalized energy 
function (the Lyapunov function), which is a function of the weights 
and neural activation function2,5,6, analytically specifies the network’s 
dynamics. Stable and unstable attractor states are the energy minima 
and maxima of the derived landscape, respectively, and the network’s 
state flows downhill towards the attractors (Fig. 2e) in the way a ball 
rolls down a gravitational potential.

Another way to characterize the relationship between attractors  
and network structure is to consider the ‘inverse’ problem: given a 
set of attractors, what network structure could generate it? Neurosci
entists want to solve the inverse problem to make predictions 
about underlying mechanisms and, because neural activations are 
more readily observed than synaptic weights, the inverse problem  
is more frequently encountered than the forward problem. By contrast, 
evolution, the brain and artificially intelligent systems must solve the 
inverse problem to be able to perform computations that require  
a given type of attractor dynamics (discussed below). Theoretical 
neuroscience has discovered some solutions to the inverse problem 
for different types of attractors, as we describe below.

Discrete attractors
A well-known prescription for creating a set of discrete attractors at 
user-defined points is given by the Hopfield model5 (Fig. 1a). Input 
patterns of neural activation are inscribed into the network weights 
through a Hebbian-like learning rule, such that co-active neurons are 
connected by excitatory interactions and inhibit all the rest. Thus, 
these patterns stabilize themselves and become attractor states. If a 
sufficiently small number of patterns are learned, they can be retrieved 
from partial or corrupted versions of the stored states, and thus the 
network can be said to store content-addressable memories. More 
generally, the attractors of simple rate-based networks with arbitrary 
symmetric weight matrices and without communication delays con-
sist entirely of fixed points. Some non-symmetric networks can also 
support point attractors33, but not generically, and they can require 
additional mechanisms such as homeostatic plasticity34,35.

Attractor states in Hopfield-like networks typically have highly 
overlapping neural memberships, even when they are well separated in 

Fig. 1 | Mechanisms of attractor formation. Left columns: open grey circles 
represent neurons, and connections between them are excitatory (black 
lines ending in bars) or inhibitory (black lines ending in circles). For layout of 
neurons and connections, connectivity matrices are shown as the inset, with 
black to white colours indicating strongly inhibitory to excitatory interactions, 
respectively. Middle columns: examples of stable population activity patterns. 
Right columns: state-space views of population states and dynamics. Red 
circles with shades of blue rings indicate the activity states shown in middle 
column; grey lines denote transient dynamic trajectories and red denotes 
attracting states. a, A network with dense symmetric connections determined 
by associative Hebbian learning on a set of input patterns (middle) stores them 
as stable attractor states. This defines a Hopfield network. b, Disjoint groups 
of neurons that interact through within-group excitation and across-group 
inhibition lead to group winner-takes-all (WTA) dynamics. Stable states are any 
patterns with one winning group. The state-space plot collapses all activities of 
neurons in group gi along the axis rgi. c, Neurons arranged in a ring with global 
inhibition and either local excitation or a lack of local inhibition, combined 
with uniform excitatory input to all neurons, produce localized activity bumps 
(middle) as the stable states. Bumps may be centred anywhere on the neural 

ring, defining a near-continuum of attractor states that form a ring in state space 
(right). d, Neurons arranged on a two-dimensional neural sheet, interacting 
through local inhibition and either centre excitation or a lack of inhibition near 
the centre with uniform excitatory input to all neurons, result in a pattern of 
multiple periodically spaced activity bumps (middle). Any two-dimensional 
phase shift of the periodic pattern up to the lattice periodicity results in distinct 
but equivalent stable states, and then the states repeat; thus, the result is  
a torus of stable states. e, Two neuron groups with in-group excitation and 
across-group inhibition, precisely tuned interaction strengths and quasi-linear 
neural input–output responses can counteract activity decay in the network 
and produce persistent activity over a continuum of activity levels in the two 
populations, defining ramp-like neural tuning and a line of attractor states.  
f, Neurons arranged on a ring with asymmetric connections drive a flow of neural 
activity in a particular direction. The network forms localized activity bumps 
that sequentially move around the ring in that direction (middle). The state space 
contains a limit-cycle attractor (right). g, The copy-and-offset mechanism for 
constructing integrators, illustrated for the ring (left) and grid (right) attractor 
circuits. Each network copy receives velocity inputs tuned to the corresponding 
shift direction.
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the state space (Fig. 1a, middle column). Thus, there is not a clear notion 
of distinct ‘cell assemblies’. In a special case of Hopfield networks, neu-
rons are partitioned into largely disjointed groups with self-excitation 
within groups and inhibition between groups. In these winner-take-all 
(WTA) networks, the attractor states consist of largely non-overlapping 
active cell groups, which might then be called ‘assemblies’ (Fig. 1b).

Continuous attractors
How can one construct networks with a continuum of stationary attrac-
tor states? Weight matrices with a particular symmetry (across the diago-
nal) give rise to discrete attractors, as we have seen. If the weights instead 
exhibit a continuous symmetry — for example, if the weight profiles are 
invariant across neurons (they look the same at each neuron, thus the 

symmetry is translational) — then the set of formed attractors will be 
related by the same symmetry and could thus form a continuous set.

The general principle for the formation of stationary continuous 
attractors is pattern formation36–42. Simple and spatially local com-
petitive interactions across the neural sheet lead to the emergence of 
spatially structured activity patterns that are stable states: neurons 
with excitatory coupling between them become co-active and suppress 
the rest of their neighbours through inhibition in what is known as a 
linear Turing instability36.

Three conditions are generally sufficient (although not strictly 
necessary) to provide a solution to the inverse problem for forming sta-
tionary continuous attractors (Box 1). First, the system must include non-
linear neurons with saturating responses or inhibition-dominated 
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recurrent interactions and a uniform excitatory drive7,10,15,17,43,44 to keep 
network activity bounded. Second, the system must involve sufficiently 
strong recurrent weights with competitive dynamics in the form of local 
excitation or disinhibition, with broader inhibition, to drive spontane-
ous pattern formation through the Turing instability10,15,17,36–42,45–47; these 
patterns become the attractor states. Last, the system requires some 
continuous symmetry in the weights (a continuous weight symmetry is 
one where as some variable is varied continuously, the weights remain 
invariant), such as translational or rotational invariance (Fig. 1c,d), to 
ensure a continuum of attractor states.

A special set of networks generate continuous-attractor dynamics 
without pattern formation: those with linear, planar or hyperplanar 
attractors that are generated by neurons with linear or near-linear 
response functions. In circuits of linear neurons, the feedback within 
the network is a linear function of activity (Wr, where W is the weight 
matrix and r are the neural activities), as is the activity decay (given 
by −r). Such networks can stabilize non-zero activity states simply 
by tuning positive feedback to cancel the decay. The matrix W can 
direct feedback in state space; if feedback is directed largely along 
one dimension, the network can support a line attractor (Fig. 1e). If it is 
directed equally along two or more dimensions, it can support a plane 
or hyperplane attractor. To create long-lived attractors requires that 
the network feedback magnitude is finely tuned to precisely cancel the 
decay9,48, in contrast to pattern-forming continuous-attractor systems 
where the weight shapes (but not magnitudes) are tuned to maintain 
continuous symmetry across neurons.

Non-stationary continuous attractors
Large non-symmetric networks with nonlinear neurons and strong 
connectivity generically exhibit limit-cycle attractors or chaotic dynam-
ics49,50. Just as point attractors emerge generically in large networks with 
strong symmetric weights and bounded state spaces, chaotic attractors 
emerge generically in large recurrent networks with strong asymmet-
ric weights. Adequate asymmetries are easily achieved if excitatory 
and inhibitory synapses emerge from distinct sets of neurons49, as 
biologically necessitated by Dale’s law.

Despite the complexity of chaotic dynamics, chaotic attractors are 
also highly structured in that they typically exist in a relatively low number 

of dimensions compared with the number of neurons in the network51. 
Non-symmetric networks that are dominated by inhibition exhibit a 
single attractor at zero activity, although the flow towards the attractor in 
response to perturbations can involve large transients in neural activation 
that temporarily move the state further away from the attractor52,53.

Attractors for neural computation
A system could theoretically be perfectly tuned such that every point 
in state space is a neutrally stable attractor, and thus the system has 
maximally high-dimensional attractor dynamics. However, because the 
robustness of attractor networks is related to the low-dimensionality of 
the attractor states (as discussed below), the system would lose most 
of its interesting computational properties: error correction or noise 
tolerance, nearest-neighbour computation, pattern completion and 
content-addressable memory. It could perform integration, but with no 
robustness to noise. As such, networks with low-dimensional attractor 
dynamics exhibit myriad properties that can be vital for computation in 
the brain These include robust representation, memory, sequence gen-
eration, integration, and robust classification and decision-making —  
ideas that have been extensively explored in the literature. In a later 
section, we describe how, although attractor dynamics may be  
rigid and invariant as needed for the roles listed above, recent theoreti-
cal and experimental findings are beginning to reveal how these rigid 
constructions may also be exploited to perform flexible computation 
through reuse and recombination across tasks.

Representation and memory
A representation of a set of inputs means the assignment of inputs 
to representational states (not necessarily on a one-to-one basis), 
with the ability to reproducibly retrieve those states (‘labels’) when 
cued. Attractor networks provide a stable internal set of states that 
can be used for reproducible representation of discrete or analogue 
variables, by mapping states in the world to the attractor states. One 
way to achieve this mapping is through a feedforward learning pro-
cess that associates each external state with an internal attractor  
state (Fig. 2a).

An attractor network can exhibit two kinds of memory. The first is 
in the structure of the weights, which specify the set of all attractors. 

Fig. 2 | The utility of low-dimensional attractor networks. a, Persistent and 
stable states generated by attractor networks (red) can be used to represent 
and remember external variables (blue) by constructing an appropriate 
mapping between them (vertical lines). b, Attractor networks can correct 
errors by mapping noisy states to the nearest attractor state262. N-dimensional 
noise drawn from the unit sphere centred on a one-dimensional attractor has 
a projection strength of only 1/N along the attractor: in this counter-intuitive 
high-dimensional geometry, a ball is more similar to a pancake, with the attractor 
orthogonal to the large dimensions19. c, Flow to the nearest (continuous or 
discrete) attractor can perform a nearest-neighbour computation and, thus, 
perform classification. For example, the two attractors may represent ‘cat’ and 
‘dog’ perceptual manifolds, and the blue dot a specific input data point. d, Left: 
continuous attractors can become integrators if velocities or movements in  
the external space are inputs to the network and induce proportional shifts  
in the internal attractor state. The current state on the attractor is then the 
integral of past velocity inputs relative to the starting state. Right: if the input to 
an integrating attractor consists of temporally varying evidence pulses (bottom, 
evidence about one option in dark blue and evidence about the opposing option 
in light blue), these will move the state on the attractor (top) so the system’s 
current state reflects the integral of the total evidence. e, The energy  

(E) landscape of a combined integration and decision-making network: inputs 
push the state left or right, and as the system integrates, the network state also 
moves towards one of two discrete attractors (left and right; white arrows, two 
sample trajectories). Arrival in the basin of one of the discrete attractors is a 
decision point65,66. f, An integrator can be quickly re-purposed to represent 
multiple different and new external variables simply by yoking its velocity shift 
mechanism to different external velocities cues through feedforward learning. 
This mechanism also supports zero-shot learning and inference: given an 
initial state and an input velocity trajectory, it will generate a self-consistent 
representation for the current state even if the trajectory is different and new 
each time218,230,232. g, A set of (continuous or discrete) attractor subnetworks  
(red boxes at bottom) can interact bidirectionally with a shared network to form  
a high-capacity attractor network62,236,237,263. h, Mixed modular representations 
can enable representation of inputs of different dimensions, by reusing the  
same attractors of fixed dimension each. Velocities (vi) from external spaces  
of potentially different dimension are selected by a set of selection signals (si). 
The selected velocity (green) is routed through random projections to a set of  
M modular integrator networks of dimension K each. This kind of mixed modular 
circuit can interchangeably represent various input spaces of dimension D ≤ MK 
while smoothly trading off resolution for dimension230.
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If these weights are specified through an input-driven learning pro-
cess, this is a form of long-term memory about the inputs. The second 
kind of memory is the ability to maintain persistent activity in a sta-
tionary attractor state: if a system with multiple stationary attractor 
states is initialized in one of them, it will tend to remain at or near 
the same state for some time. In other words, the activation levels 
of the neurons contributing to that state persist while the system 
remains in the state. This persistent activity response is thus a form 
of short-term memory of the input that initialized the circuit. If these 
persistent memory states can be activated without an explicit address, 
using just the content (or partial content) of the memory, they are  
content-addressable.

The short-term memory function of attractors depends on the 
prior formation of stable states through long-term plasticity. For 
instance, in Hopfield-like networks, states cannot persist if they were 
not first trained to be attractor states. Even models of short-term mem-
ory that are based on presynaptic facilitation, rather than persistent 
activity, rely implicitly on prior long-term associative plasticity to con-
struct recurrently stabilized neural ensembles that can be reinstated by 
random inputs54. (Additionally, these models are not activity-silent in 
the delay period, in the sense that they would require ongoing activity to 
refresh the facilitation state over longer delays and to generate robust-
ness against random background activity that would facilitate different 
synapses.) In other words, these presynaptic facilitation models cannot 

explain short-term memory for entirely novel inputs; however, combina-
tions of attractors could enable more flexible short-term memory, as we  
discuss later.

De-noising representations and memories
If representational states are attractors, then the representations are 
robust in the sense that they perform de-noising: if the input cues or 
initial conditions reflect noisy or corrupted versions of an attractor 
state, the dynamics drive the state to a point on the representational 
attractor (Fig. 2b, inset). When attractors form a continuous manifold 
of dimension K N≪ , where N is the number of neurons in the circuit, 
all noise in N–K dimensions is erased. A noise ball of unit radius in N 
dimensions (corresponding to random independent noise per  
neuron) has a projection of size only ~ K N/ 1≪  along K dimensions. 
If K is low-dimensional, as is often the case, and N ranges from 102 to 
107 as estimated before for common microcircuits, this constitutes a 
massive reduction in the sensitivity of the state to internal or input 
noise (Fig. 2b). Thus, most noise is rendered impotent by attractor  
dynamics.

De-noising owing to attractor dynamics is especially important 
for memory maintenance as, otherwise, noise-induced deviations 
would accumulate and grow over time. Discrete attractors continually 
erase all noise by mapping perturbed states back to the point attractor, 
resulting in zero drift. With continuous attractors as memory states, 

Box 1

Attractor dynamics, anatomical topography and weight 
symmetries
Anatomical topography, in which functionally similar neurons are 
near one another, is neither a necessary nor a sufficient condition for 
the existence of an attractor, because any low-dimensional attractor 
network is mathematically unchanged if all weights are preserved 
but neuron locations are scrambled. However, if the network is 
merely a spatially scrambled version of the idealized model, then 
the symmetries of the weight matrix can be revealed after an 
appropriate reordering of the neurons. An advantage of anatomical 
topography from a biological perspective is that it can reduce the 
complexity of development, in that wiring decisions can be guided 
by spatial proximity rather than depending entirely on activity or 
other target cell-signalling mechanisms. For example, the locally 
competitive interactions of grid and head-direction circuit models 
could be largely constructed through local arborization. Anatomical 
topography also reduces overall wiring length in the mature 
circuit269. However, a circuit with three-dimensional dynamics or 
higher that are represented in an unfactorizable form cannot be 
embedded topographically in a two-dimensional cell layout, limiting 
the feasibility of topographic layouts for circuits that represent 
higher-dimensional unfactorizable manifolds.

In addition, the posited weight symmetries in simple models 
of attractors need not exist in a biological instance of the circuit 
with the same dynamics: unscrambling or reordering neurons 
may not be sufficient to reveal the symmetries. Consider, for 

example, a scenario in which low-dimensional attractor dynamics 
are generated by a recurrent network of N neurons, but are only 
needed downstream in a set of M < N neurons. In this situation, the 
weight symmetries needed for continuous-attractor dynamics can 
be spread across both the recurrent and readout networks, such 
that the weights of the recurrent network alone will not reflect the 
relevant symmetries. Unveiling the symmetry in the circuit weights  
will require combining the readout weights with the recurrent 
ones247.

These considerations give rise to a hypothesis for circuits with 
continuous attractors of dimension ≤2: evolutionarily conserved 
circuits that do not require extensive early experience270,271 should 
be topographically organized. We might thus predict that the 
circuit that originates head-direction signals in mammals should be 
topographically organized. By contrast, if low-dimensional dynamics 
only emerge on the basis of activity-dependent plasticity with repetitive 
training, we may not expect the circuit to be topographically organized 
(or even localized to a single brain region).

Remarkably, despite these caveats, and in a beautiful example  
of the predictive power of simple theories in neuroscience, empirical 
evidence from the anatomy of the zebrafish oculomotor integrator 
and the fly head-direction circuit in the past few years shows that 
nature has used precisely the hypothesized constructions proposed 
in simple circuit models to build some integrator networks.
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all noise orthogonal to the manifold is corrected; thus, there is a net 
reduction of the effects of noise by the factor ≪K N~ / 1  (refs.45,55). 
However, all states on the attractor manifold are neutrally stable, so 
the state can drift along the attractor. As such, components of noise 
along the K attractor dimensions are not internally corrected and cause 
an accumulating drift away from the initial state, with variance propor-
tional to KT/N, where T is the elapsed time15,45,55,56. Thus, through the 
1/N decrease in variance, even continuous memory states can be well 
stabilized in sufficiently large attractor networks.

Although content-addressable long-term memory and error 
reduction can be instantiated through feedforward computations 
involving only a few steps57–59 in place of attractor dynamics, recur-
rent attractor dynamics are indispensable for the generation  
of persistent activity states (and thus for short-term memory through 
persistent activity60,61) and integration, as we discuss below.

Robust classification
When there are finitely many separated attractors (each a discrete attrac-
tor or a continuous manifold), states that are not initially on one of the 
attractors will flow to one of the attractors. An input to the network can 
then be classified according to the attractor to which the network state 
flows after initialization by the input. We can now identify inputs based on 

the attractors they flow to, a mechanism of classification. If the dynamics 
of the network further correctly assign corrupted versions of an input 
to the same attractor state as the uncorrupted input, this constitutes 
robust classification. In other words, the dynamical basins of attraction 
of the network must align with the Voronoi regions of the attractor states 
(that is, corrupted inputs that are closest in distance to one of the uncor-
rupted inputs should flow to that input’s attractor through the dynamics 
and not another). This is approximately the case for attractor networks 
operating well below capacity, but typically deteriorates when attractor 
networks are pushed towards their capacity62.

Integration
Single neurons integrate their inputs, but usually can only do this over 
the timescales associated with their membrane capacitances, typically 
10–100 ms. Continuous-attractor dynamics can enable neural circuits 
to integrate over much longer timescales (in the order of about 1–100 s).

A pattern-forming continuous-attractor network requires an 
additional mechanism to gain the functionality of an integrator: a way 
to shift the internal state along the attractor in response to an input that 
encodes changes in the external variable (Fig. 2d, left). Conceptually, 
the simplest way to build a shift mechanism is by a copy-and-offset 
construction: construct multiple copies or subpopulations of the 

Glossary

Associative memory
The ability to remember and recall 
the relationship (association) between 
arbitrary items or concepts.

Autonomous
Characterized by time evolution 
through internal dynamics, without 
external driving forces.

Eccentricity
The degree of deflection of the gaze in 
the horizontal plane relative to a neutral 
centred position.

Error backpropagation
A procedure for updating the weights 
of all layers in artificial neural networks 
(ANNs) based on gradients of an 
objective function.

Euclidean
A space where it is possible to construct 
an orthogonal coordinate system and 
define a particular metric structure.

Hippocampal replay
Ordered sequences of place cell 
activity during rest or sleep, typically 
corresponding to sequences that 
occurred during normal behaviour 
or their time-reversed counterparts.

Homeostatic plasticity
Plasticity mechanisms that maintain 
the state of a system by counteracting 
induced changes.

Hopfield networks
Content-addressable associative 
memory networks, in which 
distributed activity states are 
stabilized as attractor states by 
synaptic weights using Hebbian 
learning.

Nearest-neighbour 
computation
Identifying the closest target out 
of a set of target states from any 
starting state, where closest is usually 
defined by a standard distance 
metric (for example, Euclidean or 
Hamming).

Nonlinear neurons
Neurons with input–output response 
relationships that are nonlinear; 
that is, the change in the output is not 
directly proportional to the change  
of the input.

Non-trivial attractor states
Any attractor states other than the null 
activity state.

Persistent activity
Maintenance of the firing rate of 
a neuron about a non-trivial value 
after removal of the stimulus that 
induced elevated firing, for durations 
that exceed the membrane time 
constant.

Positive feedback
Interactions between elements in which 
increasing the level of one element 
increases the level of the other. Positive 
feedback includes mutual excitation 
and disinhibition or inhibition of one’s 
inhibitor.

Presynaptic facilitation
A form of short-term synaptic plasticity 
where the effect of presynaptic activity 
on the post-synaptic response is 
enhanced following recent presynaptic 
activity.

Simple cells
Neurons in the primary visual 
cortex (V1) of many vertebrate 
species that respond strongly to 
oriented edges and gratings of a 
particular spatial phase.

State space
The coordinate system in which each 
dimension corresponds to one of the 
variables of the dynamical system; 
often, the space is approximated by  
the spike counts of single neurons.

Synaptic hypothesis
The hypothesis that synaptic change is 
the substrate of learning and memory 
in the brain.

Symmetric weight matrices
Weight matrices W that satisfy WT = W; 
that is, that are invariant to reflection  
of their entries about their diagonal.

Turing pattern formation
A dynamic process dependent on 
positive feedback in which a spatial 
pattern of a particular wavelength 
is amplified whereas others are 
suppressed.

Unsupervised
Characterization of the structure in 
data without any prior training data 
that contains information about the 
relationship between the data and 
external variables.
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attractor network, each with slightly offset (asymmetric) weights in the 
sense that active neurons centre their excitation or point of maximal 
disinhibition slightly offset from themselves on the neural sheet (for 
example, see that the network in Fig. 1g is a slightly asymmetric version 
of the network in Fig. 1c). The states in each such network will then form 
a limit-cycle attractor, with patterns of activity flowing in the direction 
of the asymmetry in each copy. If opposing copies are coupled together, 
the pattern is stabilized through a push–pull balance. A velocity input 
whose components project differentially to the copies will break the 
push–pull balance, driving the pattern along the flow direction of  
the more active copy (Fig. 1g). Thus, the total direction and magnitude 
of the shift of the pattern, corresponding to movement along the 
attractor manifold, represents the time integral of the velocity input 
to the network. This common principle unifies the mechanisms across 
diverse integrator models12,13,15,63,64.

Decision-making
If, instead of a velocity signal, the input to an integrator network 
consisted of temporally varying positive and negative evidence in 
support of each of two options65 (Fig. 2d, right) (or in the case of 
multiple options, evidence vectors instead of velocity vectors66), the 
network would integrate those inputs and thus perform evidence  
accumulation.

Decision-making can be viewed as a selection process applied to 
an integrator that is based on a readout that detects when the integra-
tor state has accumulated enough evidence and moved past a decision 
threshold56,67. The selection process can be external to the integrator, 
in the form of a readout circuit that detects such threshold crossings 
and outputs the decision. Alternatively, the selection process can be 
built into the dynamics of the integrator itself, in the form of a more 
complex attractor landscape, in which the states move along a continu-
ous attractor but, at some point, the continuous attractor gives way 
to a pair of discrete attractors, towards which the states flow (Fig. 2e). 
Neural WTA models implement such a hybrid analogue–discrete  
computation16,65,66,68–70. The parameters of WTA networks determine 
the balance between integration dynamics and competitive dynam-
ics, and thus how well the network integrates later evidence: when 
the network is tuned to be a perfect integrator, its response to inputs 
is gradual, and small amounts of evidence cause (reversible) flow 
along the continuous-attractor manifold. In cases in which com-
petition dominates, the response to evidence is a fast flow towards 
one of the discrete attractors; beyond a point, the flow is nearly irre-
versible, leading to rapid decision-making and the discounting of  
later evidence71.

Neural WTA networks can leverage specific neural non-linearities 
to accurately and rapidly (in ∼log(N) time) make the best decision 
among N alternatives, even if the presented data are noisy (fluctuating 
over time around their means)66,70 and even if the number of options 
varies over orders of magnitude66.

Sequence generation
Attractor dynamics can be important for stabilizing another long-
timescale behaviour: the generation of sequences. Robust sequences 
can be constructed as low-dimensional limit-cycle attractors, in which 
high-dimensional perturbations are corrected while along the attractor, 
there is a systematic, periodic or quasiperiodic flow of states72–76. The 
attractor property that affords ongoing de-noising is important for 
preventing spatial dispersion and temporal dissipation of the activity 
packet during sequence generation.

Similar to the case for stationary attractor manifolds, the small 
components of noise along the limit-cycle attractors are not correctable 
and lead to a gradual accumulation of drift, which for sequence genera-
tion is manifest as timing variability: the standard deviation in the time 
of reaching the Tth state in the sequence is predicted to grow as T  for 
unbiased random drift along the attractor45.

Evidence of attractors in the brain
Criteria for attractor dynamics
The fundamental predictions of attractor models centre on the state-
space dynamics of the circuit, as initially explicitly discussed and tested 
in refs.9,15,77,78. First, a system’s states should be found localized at or 
around a low-dimensional set of states that correspond to the attrac-
tors in the state space. Second, a system’s state should flow quickly 
back to the low-dimensional state after perturbation. Third, the set 
of attractor states — quantified either by direct characterization of 
the full state space or by the relationships between cells — should be 
invariant, persisting over time and after removal of tuned input, across 
conditions, across behavioural states and even when there are induced 
variations in the mapping from internal states to external inputs15,77,78. 
Fourth, integrator networks should further exhibit the property of 
isometry, whereby lengths of coding space along a dimension are allo-
cated to equal displacements along a dimension of the external variable. 
Additional predictions of attractor dynamics models, that are not as 
fundamental in the sense that they are not theoretically necessary 
or sufficient but are nevertheless of high importance because they 
are highly supportive of the mechanisms of attractor dynamics, are 
anatomical and structural correlates: the existence of low-dimensional 
physical structures and directly visible symmetries in connectivity 
between cells.

As we have seen, attractor networks dynamics need not be used 
by the brain in an autonomous setting: inputs that drive attractor net-
works can be an important part of their function, for instance in inte-
gration and evidence accumulation. Nevertheless, because attractor 
systems are characterized by their internally generated or autonomous 
dynamics, putative attractor networks are best tested in conditions 
that minimize external cues that are time-varying or tuned to provide 
localized inputs along the putative attractor — that is, in an effectively 
autonomous setting.

Innovations in recording methods that have made it possible to 
record multiple neurons simultaneously in animals performing natu-
ralistic behaviours79–82 have enabled crucial tests of these state-space 
predictions of attractor models described above. The newest methods 
provide activity data from thousands of neurons in a circuit83–85, ena-
bling characterization of the low-dimensional state-space dynamics 
of whole circuits19,20,86–88.

When the attractor manifolds have three or fewer dimensions, 
one can directly visualize them by projecting or embedding the high-
dimensional state spaces into dimension ≤3. This can be done using 
methods such as principle components analysis, multidimensional 
scaling, tensor factorization or other linear methods for projection; 
or Isomap, locally linear embedding, t-distributed stochastic neigh-
bour embedding, variational autoencoders, latent factor analysis via 
dynamical systems and nonlinear tensor factorization, among oth-
ers, for nonlinear embedding89–92. These methods can also be useful 
when manifolds have dimension ≥3 but are topologically simple88,93. 
For topologically non-trivial structures (such as rings and tori), espe-
cially those of dimension ≥3, topological data analysis methods become 
important19,20,94–98.
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Testing the first, second and third predictions of attractor models 
described above requires examination of the state-space structure of 
the population, rather than the more conventional characterization  
of relationships (tuning curves) between cell activity and input or out-
put variables. The most direct way to examine state-space structure is 
to record enough cells simultaneously that it is possible to characterize 
the full state-space manifold19,20,97. However, the existence, stability 
and invariance of low-dimensional state-space structures (the first 
three predictions) can be inferred indirectly from smaller samples of 
simultaneously recorded cells, for example by characterizing invariant 
structure in pairwise cell–cell relationships, as has been successfully 
done in several studies77,78,99–102.

The existence and stability of low-dimensional state-space struc-
tures are necessary but not sufficient for identification of recurrent 
attractor dynamics in a target network. First, if the behaviours, circuit 
fluctuations and inputs to the network are themselves low-dimensional, 
then any observed low-dimensionality of the circuit states may be 
ascribed to those inputs and reveals little about intrinsic constraints 
imposed by the circuit. Second, even if inputs and behaviours are high-
dimensional, a low-dimensional feedforward projection into the target 
network would generate low-dimensional states, and high-dimensional 
perturbations to the circuit would not persist. The essential, defining 
prediction of attractor dynamics is that of invariance: because the 
states are internally generated and stabilized by strong recurrent con-
nectivity, the population states and cell–cell relationships should be 
invariant when probed across time and across various input conditions, 
including when tuned input is removed and across waking and sleep. 
In simple terms, the stable low-dimensional states should be invariant 
across a broad range of conditions15,78.

Next is the question of circuit localization: does a circuit exhibiting 
the key signatures of attractor dynamics give rise to these dynamics, 
or are they a readout of some other region? Localization need not be a 
primary goal of establishing attractor dynamics: an important problem 
is to simply characterize whether the brain solves certain problems 
through attractor dynamics, regardless of which local circuits create 
these dynamics. Nevertheless, the persistence of activity states in 
attractors can lend a helping hand to localization efforts. If a region 
gives rise to or is upstream (but not downstream) of the attractor 
dynamics, perturbations that alter its state along the set of attractors 
should persist after the perturbing drive is removed103.

As we describe next, theoretically motivated analyses of popula-
tion activity data have firmly established that low-dimensional attrac-
tor dynamics are ubiquitous in the brain, across levels in the brain’s 
hierarchy and across species.

Discrete attractors
Up and down states. The simplest example of non-trivial discrete 
attractor dynamics (that is, beyond a single point attractor) is bista-
bility. Bistable dynamics are a feature of cortical activity in the form 
of up and down states4,104–108, in which the subthreshold membrane 
potential of neurons switches between a hyperpolarized state and a 
relatively depolarized one, with long persistence (in the order of hun-
dreds of milliseconds to seconds) per state (Fig. 3a). The two states are 
relatively invariant over time, as seen in the relatively sharply peaked 
histograms (Fig. 3a), and despite presumed internal noise in the system 
the peaks are well separated, suggesting relatively rapid corrective 
dynamics towards the two states. There is little evidence of a strong 
contribution from cellular bistability in supporting these states, sug-
gesting that it is a network-driven phenomenon involving self-excitation 

and global inhibition4,104,105,107–111. Transitions are believed to be driven 
through adaptation (from up to down) and by stochastic as well as 
external coordinating events (from down to up)106. Although these 
states and switches can occur in the cortex without input from the 
thalamus and striatum, they tend to be synchronous across the cortex 
and striatum112,113. Thus, the origin of up and down states may be highly 
distributed.

Perceptual bistability. Visual and auditory percepts including binocu-
lar rivalry, the Necker cube and some auditory illusions114–120 offer clear 
examples of bistability in neural processing, suggesting the operation 
of a dynamical system with two attractors. In these illusions, the brain 
(at the level of perceptual reports) selects one possible interpretation 
of an ambiguous input, often switching between possibilities. Although 
the phenomenon has long been known and studied, no localized bista-
ble attractor circuit has been identified as the basis of perceptual 
bistability. Indeed, some percepts may involve top-down activation 
and modulation of activity across many brain areas118, suggesting once 
again a widely distributed circuit for bistability.

Bistability in a premotor area. Recent studies identify and localize 
discrete attractor dynamics in a mouse premotor area, the anterior 
lateral motor cortex (ALM)121–124. In a cued two-alternative delayed 
response task, ALM neurons exhibit persistent activity over a 1-s delay 
period. During the post-cue delay period, activity evolves towards 
one of two states that guide the response (Fig. 3b), fulfilling the first 
prediction of attractor dynamics. The delay-period terminal states are 
similar for cues from different sensory modalities125, partially meeting 
the prediction of invariance. ALM perturbations during the delay are 
either erased (corrected) by the circuit (Fig. 3b, top) or drive a jump  
to the opposite state (Fig. 3b, bottom), which results in the animal  
making the wrong action, suggesting bistable switching dynamics 
similar to the mechanism shown in either Fig. 1b or Fig. 2e.

Given the long training time required for the task and the resulting 
tailoring of the ALM dynamics to the specific task structure — bistability 
for a two-choice task — it is likely that this system acquires its dynamics 
through slow plasticity and, thus, that the network’s recurrent structure 
is malleable in adult animals. New results showing the existence of small 
(on the scale of about 100 μm) clusters of locally recurrent neurons in 
the ALM that can maintain persistent responses to microstimulation126 
may provide experimental evidence of the theoretically posited mixed 
modular networks (below) that are hypothesized to support robust 
and high-capacity memory states62.

Discrete multistability. Hopfield networks and WTA networks69,127–134 
(which can be viewed as a special type of Hopfield network, with bista-
ble switch networks as a special type of WTA network) are models of 
multistability beyond bistability.

At present, the evidence for discrete multistability as a circuit-
level brain process is less direct and less exhaustive than that for 
continuous-attractor networks (described below). However, there 
are many likely candidate systems and brain regions with dynamics 
that are suggestive of and consistent with discrete multistability, at 
least of the special case of WTA attractor dynamics — including in 
the mammalian hippocampus and auditory cortex, and in the fly and 
mammalian olfactory system132–137. In particular, many of these circuits 
exhibit global inhibition that clearly narrows and refines activity in 
the circuit (Fig. 3c, left), and also show evidence of selective recurrent 
excitation that leads to multiple distinct and stably correlated input 
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responses in distinct subpopulations of cells (Fig. 3c, middle and 
right)132–137. In our view, it is likely that these circuits exhibit multiple 
discrete attractor states, but quantitative testing of the first three 
predictions of attractor dynamics and direct demonstration of these 
states as stable and invariant remain an important future direction for 
characterizing these circuits.

Continuous attractors
The oculomotor integrator. The oculomotor integrator, together 
with the head-direction circuit, was one of the first systems in neuro
science to be studied theoretically8,9,138 and experimentally139 as a  
continuous-attractor network — specifically as a line attractor (Fig. 1e). 
This network, which is presynaptic to the motor neurons that con-
trol horizontal eye position, is highly conserved across vertebrates, 
from fish139,140 to primates141,142. It integrates pulse-like saccadic eye 
movement-command signals to generate step-like stable muscle ten-
sion command signals (Fig. 4a) that persist autonomously at graded 
activity levels after removal of the movement cue and even in the dark 
in the absence of visual feedback (Fig. 4b; third prediction), and thus 
enable stable gaze fixation at various degrees of eccentricity. Saccadic 
inputs knock the system slightly off the linear response states, but the 
neural responses rapidly decay back towards the persistent firing states 
(in line with the second prediction). Remarkably, the same system also 
integrates smooth head-velocity signals to permit gaze stabilization 
during head movement.

Integration functionality is a network-level rather than single-
cell process: single neurons do not generate persistent responses to 
transient current injections (Fig. 4c, inset), whereas decreasing net-
work feedback through the use of synaptic blockers reduces the time 
constant of integration and results in a leaky integrator143 (Fig. 4c). It 
is possible to reduce or increase network feedback through training 
with a virtual surround that generates an artificial retinal-slip percept 
(Fig. 4d), implying that the system is capable of error-driven fine-tuning 
to maintain a high degree of persistence144. Finally, a recent electron 
microscopy reconstruction145,146 finds recurrent synaptic intercon-
nectivity between integrator neurons, with excitatory connections 
between ipsilateral neurons and primarily inhibitory contralateral 
projections, in excellent agreement with line-attractor models of the 
oculomotor circuit9 (Fig. 1e).

Head-direction cells. Some of the earliest experiments to suggest the 
existence of low-dimensional continuous-attractor dynamics were 
done in the rodent head-direction circuit77,99,147 (Fig. 5a,b). The head-
direction circuit in mammals maintains an updated internal compass 
estimate of the heading direction, relative to some arbitrary external 
reference, as animals move around. It does so by integrating internal 

rotational velocity estimates during navigation and incorporating 
information from external cues148–152. The head-direction circuit is 
modelled as a ring-attractor network10,12,13,17,64 (Fig. 1c,g, left). Before 
large population recordings became available, cell–cell correlations 
established that the network states remained invariant on a very low-
dimensional manifold across environments77,99,147 (Fig. 5a), in line with 
the first and third predictions. The complete set of states of the several 
thousand-neuron mammalian head-direction network was shown to 
consist solely of a one-dimensional ring19,97 (Fig. 5b) (in line with the 
first prediction), revealing that the brain has completely factorized 
its navigational representations to dedicate a circuit only to head 
direction. Furthermore, intervals in the state-space ring manifold 
map isometrically to intervals of head direction (in line with the fourth 
prediction), as evidenced by a close match between the isometrically 
parameterized internal ring states and the measured head direction 
(Fig. 5b, inset and right).

After natural perturbations away from the ring attractor, the activ-
ity of the head-direction circuit flowed back to it19 (Fig. 5d), meeting the 
second prediction, and the ring manifold was invariant across waking 
and rapid eye movement (REM) sleep19,97 (Fig. 5e), meeting the third 
prediction. These findings explicitly validate the most fundamental 
predictions of ring attractor models and continuous attractor-based 
integrators, providing (together with the grid cell system; see below) 
the most direct and compelling evidence of continuous-attractor 
dynamics in the brain.

In a striking example of convergent evolution151,153, Drosophila 
compute head-direction estimates using apparently very similar 
dynamics to mammals148,152,154,155. The fly neural compass circuit is 
topographically organized such that the neuropil forms a physical 
ring-shaped structure in the ellipsoid body, with a local moving activity 
peak that tracks head direction as the fly turns (Fig. 5f). Other notable 
advantages of the fly circuit in the effort to characterize its mecha-
nisms are that the number of neurons is small and their morphology 
and connectivity have been fully traced156 (Fig. 5g). This detailed view 
of the circuit permits quantitative, not just qualitative, comparisons 
with ring-attractor models.

The combined activity and connectivity data reveal that the fly 
head-direction system quite literally implements the copy-and-offset 
double-ring network architecture that has been proposed for velocity 
integration13,157. However, the dimensionality of the fly head-direction 
circuit and its full state-space dynamics remain to be characterized. 
Notably, although the circuit is organized physically as a ring network, 
recent evidence suggests that the insect head-direction circuit may be 
involved in performing two-dimensional path integration as well158,159. 
Thus, unlike the anterodorsal thalamic nucleus network in mammals, the 
insect head-direction circuit may not be confined to a one-dimensional 

Fig. 3 | Evidence of discrete attractor dynamics in the brain. a, Multi-unit 
activity (MUA) and single-unit activity (Vm) during cortical up states and down 
states show signatures of bistability (clusters and histograms at bottom).  
b, Delay-period dynamics in rodent premotor area (anterolateral motor cortex 
(ALM)) during a binary decision task (blue and red correspond to correct and 
incorrect direction choices, respectively). Before the animal makes a motor 
report of its decision (at the ‘go’ cue delivery), ALM activity seems to converge 
to one of two discrete end points (blue and red curves and histograms, top). 
Perturbations (optogenetic inhibition, denoted by pale blue) are either robustly 
erased (top; dashed lines show the unperturbed trajectory, and solid line shows a 
return to the unperturbed trajectory) or flip the dynamics so that the end points 

are reversed (bottom) and the animal reports the incorrect decision. c, Evidence 
of all-to-all inhibition and competitive winner-takes-all (WTA) recurrent 
dynamics in the fly olfactory system. Kenyon cells (KCs) activate anterior paired 
lateral (APL) inhibitory neurons, which in turn globally inhibit KCs. KC responses 
to odours, when input from the APL neurons is intact, are sparse: top-left image 
shows calcium fluorescence responses of KCs to odorant isoamyl acetate.  
KC responses are also decorrelated across odours (left). Blocking either KC drive 
to APL neurons or APL inhibition of KCs results in dense and correlated odour 
responses (middle, right). Part a adapted with permission from ref.264, Society for 
Neuroscience. Part b adapted from ref.121, Springer Nature. Part c adapted from 
ref.136, Springer Nature.
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ring of attractor states that fully factorizes out the representation of 
head direction in its representation of spatial variables.

Finally, the head-direction system of both insects and mammals 
can be re-anchored and reset based on tuned external cues148,152,160, and 
this can change the orientation tuning curves of cells and moment by 
moment firing rates of cells in a way that remains consistent with the 
third prediction for attractor dynamics.

Grid cells. A grid cell encodes spatial location through a periodic tri-
angular-lattice discharge pattern that tiles explored two-dimensional 
spaces161. Grid cell phases update during movement in the light and in 
the dark161 to reflect the animal’s current position, as a two-dimensional 
phase. Continuous-attractor models of grid cells are based on col-
lective Turing pattern formation15,162,163, explain their velocity integra-
tion function and predict that grid cells should exist in large sets with 
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identical spatial periodicity and orientation, but tile all possible two-
dimensional phases. As with the first general prediction of continuous-
attractor models, they specifically predict that the population states of 
such a set of cells should be confined to merely two dimensions along a 
torus-shaped manifold that remains unchanged across environments 
and behavioural states15 (Fig. 1d, rightmost column).

Analyses of simultaneously recorded grid cells with similar peri-
ods revealed that their periods and orientations are identical down to 
estimation noise (thus defining a discrete population, subsequently 
called a ‘module’164) and that they tile all possible two-dimensional 
phases78,165, strongly suggesting a two-dimensional torus in line with 
the first prediction. Moreover, the relative firing phases and grid param-
eter ratios of co-modular cells are tightly conserved even as the spatial 
tuning of cells varies across time and environments78 (Fig. 6a), with  
the dimensionality of the spatial environment166 (Fig.  6b) and  
with large environmental rescaling-driven deformations of grid tun-
ing78, confirming the prediction of invariance. In addition, the detailed 
cell–cell relationships seen in waking exploration that define the low-
dimensional response of a grid module are conserved across overnight 
sleep in grid cells but not in place cells101,102 (Fig. 6c), establishing that 
the low-dimensional states are autonomously generated. In line with 
all of the fundamental predictions of continuous-attractor dynamics15, 
these findings established that each grid module’s response is very low-
dimensional; is invariant across environments, time and behavioural 
states; and is internally stabilized and autonomously generated. Most 
recently, these findings were confirmed by large-scale recordings of 
grid cells that made it possible to directly characterize the grid cell 
population response by applying the topological analyses of state-
space structure pioneered earlier19,97 to grid cells (Fig. 6e), directly 
illustrating the low-dimensional, toroidal and invariant state-space 
structure of grid cell modules20.

A corollary is that the grid cell response is not derived from 
upstream place cells, which remap across environments and during 
sleep (Fig. 6c): as shown in ref.101, this finding renders models in which 
the place cell response is primary to grid cells167–169 inconsistent with the  
data. Another corollary of the population states of grid cells remain-
ing strictly preserved20,78,170, even when their spatial tuning curves in 
two-dimensional and three-dimensional environments are altered so 
they do not form equilateral triangular grids170–176, is that these varia-
tions must result from changes in how the invariant internal states are 
mapped to external states. Such changes may arise from, for example, 
alterations in velocity estimation15,78 that stretch the grid or from exter-
nal cues that shift the phase of the grid cell network177–180, rather than 
because of alterations in the internal grid network dynamics.

Despite having periodic representations, and thus each only rep-
resenting position as an ambiguous two-dimensional phase, collec-
tively grid cells form a discrete set of modules with distinct but similar 
periodicities164. This allows grid cells to unambiguously represent 
position over a scale that grows exponentially in the number of grid 
modules131,181.

In sum, the head-direction cell and grid cell systems show that the 
same pattern formation principle — based on local excitation or disin-
hibition, with broader inhibition — that is pivotal for morphogenesis 
in plants and animals38 is also fundamental to the genesis of stationary 
continuous-attractor states for computation and representation in 
the brain.

Graded working memory networks. In monkeys trained to saccade 
to a remembered cued location (selected from a set arranged in a cir-
cle), cells in the prefrontal cortex and posterior parietal cortex exhibit 
persistent activity across the delay period that is selective for the 
direction of the cue, consistent with the first and third predictions 
of attractor dynamics182,183. The delay period activity in the prefron-
tal cortex is a bump that moves apparently randomly along a one-
dimensional manifold with the characteristics of a diffusion process87. 
Thus, the variance in bump location grows linearly with time during 
the delay, as predicted by continuous-attractor models15,19,55, but the 
bump profile remains largely invariant (first and second predictions).  
Bump movement predicts subsequent behavioural errors87, suggesting 
that these states are repositories or read-outs of the memory.

The need for extensive training and the resulting tailoring of the 
attractor states to this specific but not naturally encountered multi-cue 
task suggests that this attractor forms through learning in a flexible 
system. We might therefore also expect a loss of the neural correlation 
structure if the animal is subsequently trained on other tasks, unlike 
with the grid and head-direction cell networks.

Limit-cycle attractors
The CNS and peripheral nervous system contain numerous instances of 
periodic dynamics, from the spiking of single neurons184,185 to circadian 
rhythms and sleep-cycle generation186, to rhythmic activity in motor 
circuits. The amplitude of a linear oscillator is set by the initial condi-
tion (for example, the height at which a pendulum is released), whereas 
limit-cycle oscillators have an invariant intrinsic amplitude. Thus, oscil-
lations that decay or whose long-term amplitude or frequency changes 
after transient perturbation are not limit cycles.

Many of the oscillations noted above maintain their amplitude 
over time and, given their robustness, are probably generated through 

Fig. 4 | Linear attractor dynamics generated by network feedback in the 
oculomotor integrator. a, In the goldfish, the positions of the ipsilateral and 
contralateral eyes (Eipsi and Econtra, respectively) can be maintained for a stable 
horizontal gaze during inter-saccadic fixation at different angular positions 
(top two traces). This is supported by stable steps in firing rate by oculomotor 
integrator neurons (bottom two traces show extracellularly recorded firing 
rate and voltage (V)), which integrate transient (in the order of about 100 ms) 
saccadic command bursts. b, Oculomotor neurons drive eye position with 
linearly ramping tuning curves (bottom). Their responses are the same in 
the light and the dark (top), and thus do not depend on visual input for gaze 
stabilization on the timescale of seconds. c, Transient current injection into 
individual oculomotor neurons results in only a transient (that is, not persistent) 
decrease (left) or increase (right) in firing rate, consistent with lack of a cellular 

origin for persistent intersaccadic firing. d, Injection of kainic acid into the 
oculomotor integrator produces leaky dynamics in horizontal eye position, 
consistent with network models. The leak is pronounced in the dark and is still 
present although reduced, presumably because of visual feedback, during 
illumination (triangles). e, Visual training (here, from the motion of dots of 
light in a planetarium-like set-up) that mimics leaky or unstable eye positions 
in goldfish can mistune the oculomotor integrator, making it unstable or 
leaky, respectively. Arrows highlight fixations following saccades towards the 
mid position. Part a is adapted from ref.139, Springer Nature. Part b is adapted 
with permission from ref.265, American Society of Physiology. Part c is adapted 
from ref.139, Springer Nature. Part d is adapted with permission from ref.266, 
Wiley. Part e is adapted with permission from ref.144, National Academy of 
Sciences, USA.
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attractor dynamics. Experimentally well-characterized examples of 
sustained periodic dynamics are central pattern generators in spinal 
motor circuits that drive swimming, crawling, walking, breathing 
and digestion; these differ in specifics across species but have com-
mon principles of mechanism and operation, including high robust-
ness187,188. Central pattern generator circuits typically integrate external 

feedback, but can operate in isolation without external drive189. How-
ever, driven (non-autonomous) systems could exhibit limit cycles 
that are attributable to their inputs rather than to intrinsic attractor 
dynamics190.

Given the sizeable literature on these topics, we refer the reader 
to some excellent papers and reviews186,191–195.
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Departures from attractor dynamics
Not all circuits hypothesized to exhibit low-dimensional attractor 
dynamics seem under further experimentation to do so, or currently 
lack sufficient evidence to establish such dynamics in the circuit. We 
discuss three such examples.

Orientation tuning in visual cortex
The circuit of simple cells in the primary visual cortex (V1) satisfies 
some key properties of attractor networks10: V1 and V2 cells exhibit 
orientation-tuned responses to real and illusory edges196–198, and in 
V1 the activity of neurons with similar orientation tuning is correlated 
during spontaneous activity199. However, changing the state of an 
attractor requires strong inputs and is slow200,201, inconsistent with 
the need for perceptual systems to respond sensitively and rapidly202. 
Moreover, the responses to illusory edges in V1 tend to occur at longer 
latency than responses to real edges, suggestive of top-down inputs 
rather than within-V1 dynamics. These observations lend weight to 
the possibility that responses might be dominated by feedforward 
drive196,203, potentially with non-normal amplification processes52,204. 
Quantitative characterizations of response speed will be important 
to draw clear conclusions about V1 circuit dynamics.

Place cells
Place cells form stable representations of space205 that can persist 
in the dark206 and shortly after the animal has fallen asleep207,208. In 
any particular environment, the population response lies on a low- 
dimensional manifold in state space88. Accordingly, the place cell circuit 
has been modelled as a continuous-attractor network209 with one or 
multiple overlapping maps210, whereby each map is a different assign-
ment of cells to spatial locations. However, the storage of multiple high-
resolution maps in a homogeneous attractor network severely limits 
capacity181,211–213. Cell–cell correlations are not preserved across envi-
ronments, as implied by the phenomenon of remapping101,102,207,214,215. 
Similar to V1 neurons, place cells might be better described as deriving 
their tuning by forming conjunctions between multiple feedforward 
inputs, including those from grid cells and cells that encode external 
cues such as borders, landmarks and reward sites59,131,213,216–218. At the 
same time, place cells exhibit sequential activation of previous tra-
jectories during activity hippocampal replay208,219–221. This sequential 
activation is hypothesized to be generated by recurrent connections 
in hippocampal area CA3, suggesting that recurrent and feedforward 
dynamics may collaborate in the generation of place cell states; more 

recent models are beginning to capture this interplay59,218,222. Closing 
the book on the question of autonomous low-dimensional dynamics 
in what, in our view, is the far more complex response of place cells 
than grid cells requires more detailed experimentation, analysis and 
modelling.

Motor cortical trajectories
Finally, recordings of motor cortical activity during stereotyped arm 
movements in primates reveal the existence of stable low-dimensional 
trajectories86,223–226, similar to the trajectories in state space that were 
originally characterized in olfactory circuit responses to different 
odours227. Limit cycles and other low-dimensional attractors have been 
hypothesized to have a key role in cortical movement generation228,229. 
The behaviours typically performed during these neural recordings 
are themselves restricted to be stereotyped and low-dimensional, 
and thus it remains unclear whether activity would remain equally 
low-dimensional across richer behaviours (for example, over the set 
of all possible arm movements). Recent evidence from perturbation 
experiments190 suggests that neural trajectories in the motor cortex 
during skilled movements are driven by input from the thalamus, and 
thus that the circuits for motor pattern generation in the CNS might be 
distributed across multiple brain regions. Characterizing the intrinsic 
dimensionality of motor cortical activity, and determining whether 
the command to make more-complex motions involves multiple 
upstream or distributed primitive attractors, remain important open 
questions for both clinical brain–machine interfaces and neuroscience.

Flexibility despite rigidity
The attractor networks we have described in this Review are typically rigid 
across time and conditions. However, recent experimental and theoreti-
cal work has suggested that low-dimensional and rigid attractor states 
could be reused and recombined to create versatile and efficient systems 
for representation and computation in new situations.

Building a representation (Fig. 2a) could proceed by painstakingly 
constructing a large set of associative feedforward correspondences, 
equivalent to a look-up table. By contrast, an attractor that is an inte-
grator requires only two feedforward correspondences: an anchoring 
process that identifies one external state to one internal one, and 
then an association of external movement-based velocities with the 
internal shift mechanism in the integrator230 (Fig. 2f). Thus, continu-
ous attractors that are also integrators could enable, for example, the  
rapid construction218,230,231 and even inference of states visited for  

Fig. 5 | The head-direction circuit: a ring attractor in the brain. a, Activity 
of two cells in the rat head-direction circuit during free foraging in a two-
dimensional circular arena with a globally orienting cue (top). When the cue is 
removed (bottom), the fields rotate, but the cells maintain their tuning shapes 
and relative tuning angles (pale curves show the cells’ activity from the top 
plot, but globally rotated). b, The population-level states of the anterodorsal 
thalamus during free-foraging and other natural behaviour in a two-dimensional 
environment, shown through nonlinear embedding in two dimensions and 
independently validated by topological data analysis, are confined to a one-
dimensional ring (as in Fig. 1c). Inset: another view of the same ring manifold in 
three dimensions (left). The manifold is colourized based on a computational 
approach called SPUD (spline parameterization for unsupervised decoding)19: 
the manifold is fit by a spline of matching dimension and topology (middle), 
and the spline is parameterized isometrically; equal changes in parameter 
value for equal distances along the manifold (right). Parameter changes are 

indicated by colour. c, There is a close match between unsupervised isometric 
parametrization of the manifold from part b and the externally measured head 
direction of the rodent. d,e, The same cells as in part b were recorded during rapid 
eye movement (REM) sleep (green): the states during REM sleep remain confined 
to a one-dimensional ring that precisely overlays the ring of waking states (blue, 
part e), and states off the ring exhibit large flows (black arrows) back towards 
the ring (part d). f, Calcium imaging of activity in the physically ring-shaped 
Drosophila ellipsoid body reveals a localized bump of excitation that follows the 
movement of a cue in the fly’s visual field. g, A combination of electrophysiology 
and electron microscopy imaging of the central complex in flies267 has provided 
detailed layout and connectivity data for comparison with predicted connectivity 
in ring attractor models. Part a adapted with permission from ref.77, Society for 
Neuroscience. Parts b–e adapted from ref.19, Springer Nature. Part f is adapted 
with permission from ref.154, Science/AAAS. Part g is adapted with permission 
from ref.267, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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the first time through a new trajectory218,230,232, and could be reused 
to represent multiple variables230. Indeed, the brain seems to (re)use  
grid cells and place cells when navigating in space and in non-spatial 

domains233–235; recent work shows how the dimensionality of the 
represented variable could be greater than the individual attractor  
networks230.
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A further line of work has posited that networks composed of 
modular subnetworks, each an attractor network, enable a given 
number of neurons to represent an exponentially larger number of 
representational or memory states62,131,181,213,236–240 through combina-
tions of states than fully connected, Hopfield-like networks can241–245. 
Although the combinatorial states expressed by the set of attractor 
networks are not themselves attractors, it is possible to couple together 
these subnetworks to generate an exponential number of attractor 
states such that they each have a reasonably sized basin and are thus 
robust59,62,222,236,237,242 (Fig. 2). The states in these networks cannot have 
arbitrary form and content; they are defined by the rigid states of 
each module. Thus, a crucial question is how they could be leveraged 
for memory. Such high-capacity sets of attractor states have been 
shown to provide possible models for high-capacity and robust action 
selection62, robust classification62 and smoothly decaying associative 
memory59. Moreover, the principles described in this paragraph can 
be combined in a ‘mixed modular coding scheme’ to represent and 
store inputs of any dimensionality relative to the individual attractor 
networks, so long as it is lower than the summed attractor dimension 
across networks230, without needing to reconfigure the recurrent 
network (Fig. 2h). Much of the potential for alternative uses, configura-
tions or combinations of attractor networks remains unexplored and 
is ripe for further study.

Looking ahead
The theory of attractor dynamics in the brain has provided a powerful 
and unifying conceptual framework for understanding integration, 
representation, memory, error correction and efficient learning and 
inference in the brain. The experimental effort to study candidate 
attractor circuits and test their predictions has been a fertile field 
of research, and population-wide physiology techniques have led to 
breath-taking direct visualizations of attractor dynamics at work in 
the brain.

The theory is also proving to be a powerful tool in interpreting how 
artificial neural networks (ANNs) solve complex tasks. ANNs trained 
to robustly solve memory, integration and decision-making tasks in 
domains as diverse as spatial navigation, vision and language develop 
attractor dynamics46,246–249, suggesting that attractor networks not only 
are able to solve such problems but also might be necessary when the 
computing elements are memoryless neurons. Furthermore, equipping 
ANNs with preconfigured attractor networks can help produce faster, 

more data-efficient and generalizable learning59,230,231. Because ANNs 
can be trained on complex tasks and then fully examined after learn-
ing, they will potentially more readily contribute to the next chapter in 
our understanding of how continuous-attractor networks can interact 
and combine with other mechanisms to enable the brain to solve rich 
problems associated with intelligence.

Notable mechanistic questions about attractor networks also 
remain open. One avenue may involve moving away from the high 
firing-rate asynchronous spiking regimens250,251 to better understand 
whether low firing-rate synchronous spiking networks might support 
attractor dynamics — and thus permit a combination of fast time-
scale dynamics such as spike synchronization and oscillatory phase 
dynamics250,252,253. For continuous attractors, understanding how the  
brain deals with the problem of fine-tuning in linear networks or  
the imposition and maintenance of a continuous symmetry across 
neurons remains unknown and is ripe for resolution34,254.

A few models of the development of continuous attractors show 
how they could emerge simply through unsupervised associative 
plasticity17,179,210, whereas others are based on combining feedback of 
known or plausible error signals with neural activity in relatively sim-
ple learning rules17,255,256. The rest of such models train networks on a 
high-level goal through error backpropagation, combined with several 
other constraints on architecture or the form the solutions should 
take46,231,247,249,257–259. As recent work suggests, however, training ANNs to 
solve tasks is not a panacea for understanding the brain’s solutions260. 
All models of attractor network development are incomplete for differ-
ent reasons: the unsupervised models require uniform exploration of 
the input variable space and suppression of recurrent weights during 
their training, whereas backpropagation models do not offer an account 
of how loss functions, learning and additional constraints might be 
generated and implemented in biological systems.

There is much left to do in the field and an exciting vista ahead. 
On the experimental side, tools for high-resolution population-level 
neural recordings and perturbation across multiple brain areas84,85,261 
enable us to peer further and deeper than ever. On the theory side, 
future developments will help us conceptualize how such circuits 
could help underwrite intelligent computation through the forma-
tion, interaction and reuse of multiple low-dimensional attractors or 
attractor-like structures.

Published online: 3 November 2022

Fig. 6 | Two-dimensional toroidal attractors in the grid cell system. a, The 
spatial tuning periods and orientations of grid cells reconfigure substantially 
in novel environments (left: firing patterns of an example pair of grid cells in a 
familiar and a novel environment), but cell–cell relationships remain the same, 
as seen from the tight covariance of changes across cells (right), implying an 
internally generated low-dimensional structure. Each colour corresponds to a 
variable that describes the lattice of the spatial tuning curve of the cell, as shown 
in the schematic. b, The non-periodic responses of two example co-modular 
cells (dark blue) on a one-dimensional linear track do not look like simple offsets 
of one another, raising the question of whether cell–cell relationships have 
reconfigured and the grid cell dynamics are not low-dimensional and invariant. 
However, the responses of the cells can be predicted (light blue) as parallel slices 
through the two-dimensional grid (bottom), and their two-dimensional relative 
phase offset is predicted by the separation of the one-dimensional response 
slices, showing that the cell relationships and two-dimensional circuit dynamics 
are preserved across diverse conditions. c, Pairwise correlations between grid 
cells in the medial entorhinal cortex (MEC) measured during navigation are 

preserved across overnight rapid eye movement (REM) sleep and non-REM 
(NREM) sleep, whereas those of place cells in hippocampal area CA1 are not.  
d, Grid cells are anatomically arranged according to their relative spatial firing 
phases. Left: cell positions in a field of view of the MEC coloured according 
to the phase of their spatial tuning curves. The relative cortical positions of 
same-phase cells make a triangular lattice pattern (middle), with a grid-like 
autocorrelation pattern (right). e, The population-level states of grid cells from 
one module (each dot represents the population state at one point in time) 
during free foraging in a two-dimensional environment are shown through 
nonlinear dimensionality reduction and confirmed by topological data analysis 
to lie on a two-dimensional torus (left) as predicted by models15. As the animal 
follows a spatial trajectory (right), the state moves along the torus manifold 
(left). Manifold colouring is a gradient along the first principal component of 
the data. Part a is adapted from ref.78, Springer Nature. Part b is adapted with 
permission from ref.166, Elsevier. Part c is adapted from ref.101, Springer Nature. 
Part d is adapted with permission from ref.268, Elsevier. Part e is adapted from 
ref.20, Springer Nature.
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