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INTRODUCTION: Research on the neuro-
biology of decision-making has emerged as
a fertile ground for integrating cognitive,
systems, computational, and, more recently,
circuit and molecular neuroscience. However,
examinations of the underlying neural mech-
anisms have been largely limited to categoriz-
ing stimuli under uncertainty or
choosing among volatile rewards.
To realize the broader impact of
this integration, we need to under-
stand the neural underpinnings of
decision-making in more sophisti-
cated behavioral paradigms that
demand cognitive reasoning and
characterize the computational prin-
ciples that underlie such reasoning.

RATIONALE: Cognitive reasoning
often involves making hierarchically
organized decisions. For example,
imagine you want to prepare a dish
you once enjoyed at a restaurant.
You try an online recipe, but the out-
come falls short of expectations. You
ask yourself, “Is it me or is this the
wrong recipe?” Depending on your
confidence in your cooking skills,
you may try the recipe a few more
times, but if the results remain un-
satisfactory, you may switch to an-
other recipe. Behavioral studies have
shown that humans reason about
their failures by assessing their con-
fidence after one or more attempts.
However, the neural computations
supporting this high-level reason-
ing strategy are not understood. We sought to
characterize these computations in the frontal
cortex of nonhuman primates.

RESULTS: We trained monkeys to perform a
task comprised of two hierarchically organized
decisions. In their first decision, monkeys had
to choose between two stimulus-response con-
tingency rules that alternated covertly through-
out the experiment. Subsequently, monkeys
had to make a perceptual judgment about a
stimulus and respond according to the under-
lying contingency rule. In this task, making

the wrong choice in either decision could lead
to an error. Therefore, to correctly infer the
cause of the error, one has to reason hierar-
chically and ask, “Did the rule change, or did
I make a perceptual error?” We found that
monkeys, like humans, relied on their confi-
dence to decide whether to attribute errors to

themselves or to covert rule switches. They
treated each failure as evidence for a covert
rule switch but did so rationally by updating
their belief about the underlying rule depend-
ing on their level of confidence in their per-
ceptual judgments across multiple trials.
To assess the animals’ behavior rigorously,

we developed amodel of hierarchical decision-
making that was composed of two processes,
one supporting perceptual decisions within
each trial and another supporting decisions
about covert rule switches across trials. The
model was able to capture the animals’ be-

havior accurately and provided a quantitative
account of how the belief about covert rule
switches was updated.
Next, we sought to characterize how neu-

ral computations in the frontal cortex could
provide a substrate for representing and
updating the belief about rule switches. We

focused on anterior cin-
gulate cortex (ACC) and
dorsomedial frontal cor-
tex (DMFC), which have
been implicated in per-
formance monitoring,
adaptive reasoning, and

strategic decision-making. Electrophysiological
recordings indicated that neural activity in both
areas reflected the animals’ belief about the rule
on the basis of the outcome of the preceding
trials. A detailed comparison of the nature of
the signals in the two areas revealed that only
ACC had a strong correlate of the animals’

decisions about rule switches. Fur-
ther probing of these circuits using
causal tools revealed that ACC oper-
ates downstream of DMFC, inte-
grates trial-outcome information,
and drives decisions about when
a rule switch might have occurred.

CONCLUSION: Our behavioral re-
sults reveal that monkeys, like hu-
mans, can reason hierarchically and
make rational decisions that rely on
evidence at multiple time scales.
This opens the possibility for a de-
tailed examination of the neuro-
biology of hierarchical reasoning,
which is a central theme in cognitive
neuroscience. We were able to build
on previous foundational work on
models of decision-making to create
a unified framework for understand-
ing the computational principles of
hierarchical reasoning. In addition,
our neural recording and perturba-
tion experiments revealed a distrib-
uted and hierarchically organized
neural circuit in the frontal cortex, in-
cludingDMFCandACC, that is func-
tionally responsible for hierarchical
reasoning about errors. Confidence-

based updating of beliefs in uncertain environ-
ments is an integral part of human cognition,
and our discovery of its underlying compu-
tational principles and neural mechanisms is
likely to help bridge the gap between research
in cognitive and systems neuroscience.▪
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Cognitive error reasoning in the frontal cortex. In a hierarchical
reasoning task comprised of two alternating rules (bottom), animals
inferred covert rule switches by monitoring the outcome of their
perceptual decisions about unreliable stimuli (middle). In nonhuman
primates, this cognitive capacity was supported by circuit-level
interactions in the frontal cortex computing the belief about rule
switches on the basis of the outcome of the preceding trials (top).

ON OUR WEBSITE
◥

Read the full article
at http://dx.doi.
org/10.1126/
science.aav8911
..................................................

D
ow

nloaded from
 https://w

w
w

.science.org at M
assachusetts Institute of T

echnology on M
ay 17, 2024



RESEARCH ARTICLE
◥

NEUROSCIENCE

Hierarchical reasoning by neural
circuits in the frontal cortex
Morteza Sarafyazd and Mehrdad Jazayeri*

Humans process information hierarchically. In the presence of hierarchies, sources of failures
are ambiguous. Humans resolve this ambiguity by assessing their confidence after one or
more attempts.To understand the neural basis of this reasoning strategy, we recorded from
dorsomedial frontal cortex (DMFC) and anterior cingulate cortex (ACC) of monkeys in a task in
which negative outcomes were caused either by misjudging the stimulus or by a covert switch
between two stimulus-response contingency rules.We found that both areas harbored a
representation of evidence supporting a rule switch. Additional perturbation experiments
revealed that ACC functioned downstream of DMFC and was directly and specifically involved
in inferring covert rule switches.These results reveal the computational principles of
hierarchical reasoning, as implemented by cortical circuits.

A
hallmark of cognition is the ability to
process information hierarchically. Con-
sider the deliberations of a doctor helping
a patient with equivocal symptoms. The
doctor has to choose a judicious diagnostic

test, interpret the results, prescribe a suitable
medicine on the basis of test results, and, finally,
evaluate the outcome. The hierarchical nature of
this decision process makes failures ambiguous.
When facing an unfavorable outcome, the doctor
may question the dosage, the medicine, the test
results, or the suitability of the test. Resolving
this ambiguity demands a sophisticated causal
inference strategy. Although human capacity to
make such inferences is well established (1–7),
the link between the key computational princi-
ples and the underlying neurobiology is not well
understood.
When decisions are organized hierarchically,

causal inference about errors demands two crit-
ical computations. First, one has to compute a
graded expectation of potential outcomes—also
known as confidence—depending on the quality
of evidence. Decades of work have provided
strong evidence that humans and animals com-
pute confidence over their choices (4, 8–15) and
use it to improve subsequent decisions (3, 16, 17).
Second, one must monitor performance at mul-
tiple time scales to tease apart proximal versus
higher-order causes of a failure (e.g., wrong
choice of drug versus wrong assumption about
the disease). Numerous experiments have found
strong error-dependent signals in the dorso-
medial frontal cortex (DMFC) and anterior cin-
gulate cortex (ACC) consistent with performance
monitoring in a variety of instrumental and
conditioning tasks (18–27). An important obser-
vation has been that both cortical areas carry

performance monitoring signals and that ACC
harbors representations of reward on a longer
time scale that could be used to regulate strategic
exploratory behavior in nonstationary environ-
ments (5, 28–38).
However, the neural substrates and mech-

anisms that allow humans and animals to com-
pute and integrate confidence about low-level
decisions to make strategic adjustments to
higher-level decisions are not known. To tackle
this problem, we designed a hierarchical decision-
making task for monkeys in which the rule re-
lating the sensory evidence to behavioral response
changed covertly throughout the experiment so
that the animals had to compare outcomes with
expected outcomes across multiple trials to infer
rule changes (Fig. 1A). Behavioral results in-
dicated that monkeys, like humans, make such
causal inferences using their level of confidence.
Concurrent neural recordings revealed that both
DMFC and ACC carry signals related to perform-
ance monitoring, with ACC playing a key causal
role in making inferences about covert rule
changes on longer time scales.

A behavioral task for
hierarchical reasoning

In a volatile environment with two alternating
response contingency rules (C), the animals had
to discriminate a sample interval, ts (Fig. 1B). The
interval varied between 530 and 1170ms andwas
demarcated by two flashes, one at the fixation
point and one in the periphery (Fig. 1C). In rule
1 (C1), the animals had to look toward the second
flash (prosaccade) when ts was shorter than the
median interval, 850 ms, and away from it (anti-
saccade) when ts was longer than 850 ms (Fig.
1B). In rule 2 (C2), response contingencies were
reversed: prosaccade (“Pro”) for “Long” and an
antisaccade (“Anti”) for “Short.” Because gen-
erating antisaccades requires inhibition of a
prepotent prosaccade response (25, 39, 40), we

refer to C1 and C2 as “late inhibition” and “early
inhibition,” respectively (Fig. 1B). The two rules
alternated in a blocked fashion, and the length of
each block was a minimum of 10 trials plus a
sample from a geometric distribution with a
mean of 6 trials (Fig. 1C). In each trial, the
animals had to make two hierarchically or-
ganized decisions. First, they had to report their
belief about the current rule bymaking a saccade
to one of two colored targets (blue for C1 and red
for C2). Subsequently, ts was presented and the
animals had to make a pro- or antisaccade de-
pendingon ts and the rule. In themainexperiment,
which we refer to as the “inferred rule experi-
ment,” rules were not cued, and rule switches
occurred covertly. Therefore, the animals had to
infer the rule based on the outcome of previous
trials. The animals also performed a control “in-
structed rule experiment” in which rule switches
were explicitly cued. To receive reward, the ani-
mals had to correctly report the rule and cor-
rectly discriminate ts (Fig. 1C).
To assess the animals’ performance, we mea-

sured the proportion of antisaccades [Pr(Anti)]
as a function of the sample interval. As a matter
of convenience, we will express the interval in
each trial relative to the criterion, which we refer
to as the discriminant interval, td = ts – 850 ms.
In the instructed rule experiment, Pr(Anti) in-
creased lawfully with td for the late inhibition
rule (Fig. 1D, blue, and table S1) and decreased
for the early inhibition rule (Fig. 1D, red, and
table S1). In the inferred rule experiment, we
analyzed responses both in terms of the sub-
jective rule (i.e., the rule reported by the animal;
Fig. 1E) and in terms of the experimentally im-
posed objective rule (Fig. 1F). The animals’ per-
formance with respect to the subjective rule was
not statistically different from that of the in-
structed rule experiment (table S1), verifying that
the animals understood the hierarchical structure
of the task and followed the response contingencies
according to their belief about the rule. Errors,
when measured with respect to the objective
rule, increased by a factor of 1.76 ± 0.04 and 1.62 ±
0.05 in monkeys K and I, respectively (Wilcoxon
rank sum test,P<0.001). This is a straightforward
consequence of the incorrect rule reports after
covert rule switches.
Next, we focused on the animals’ decision

about the rule (Fig. 1, G and H). In the instructed
rule experiment, the animals switched their se-
lection of rule immediately after every objective
rule switch, indicating that they successfully
learned to follow instructions (Fig. 1G, yellow).
In the inferred rule experiment, rule switches
were covert and thus had to be inferred from
the pattern of feedbacks. A rational observer
would make the following considerations: (i)
Any rewarded trial indicates that the rule was
selected correctly and no rule switch is needed;
(ii) after a negative outcome, there is a chance
that a covert rule switch might have occurred,
and the chances increase after multiple con-
secutive negative outcomes; and (iii) when td is
far from the median value (i.e., trials in which
interval discrimination is relatively easy), the
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Fig. 1. Hierarchical causal inference, behavioral task, performance,
and model. (A) Causal inference when the task involves two
hierarchically organized decisions. The observer has to infer the
stimulus-response contingency rules and judge the sensory evidence.
Because both are uncertain, when a decision leads to an error (i.e.,
negative feedback), the observer has to decide whether to attribute the
error to an incorrect decision about the rule or an incorrect judgment
about the stimulus. (B) Task contingencies. The sample interval (ts)
varied between 530 and 1170 ms and was designated Short or Long
depending on whether it was shorter or longer than 850 ms. For the first
rule (C1), the animal had to make a prosaccade (Pro) when ts < 850 ms
and an antisaccade (Anti) when ts > 850 ms. For the second rule (C2),
the response contingencies were reversed. Response contingency rules
were volatile and switched throughout the experiment (arrows).
(C) Experimental conditions and trial structure. The order of events in
every trial was as follows: (i) fixation: the animal had to fixate a central
spot; (ii) decision about the rule: the animal had to report its belief
about the underlying rule by making a saccade to one of two targets
presented above and below the fixation spot corresponding to two rules
(blue, C1; red, C2); (iii) refixation: choice targets were removed, cueing
the animal to immediately refixate; (iv to vi) ts presentation: two flashes,
one around the fixation point (iv), and one to the left or right of the fixation
point (vi), separated by ts were presented (v); (vii) response: depending on
its belief about the rule and the duration of ts, the animal had to either
make a prosaccade (Pro) toward the second flash or an antisaccade (Anti)
away from it. Pro and Anti responses by the animal were followed by
reward if both rule and interval discrimination were correct. The animal
performed two variants of the experiment. In the instructed rule
experiment, a colored cue around the fixation spot indicated the correct
rule. This rule cue was only provided during the initial fixation before the
rule decision was made. In the inferred rule experiment, no cue was
provided regarding the rule, and the animal had to infer the rule from
the pattern of errors and its own expected accuracy. As shown above the

“rule report” screen in (C), rule switches occurred in a blocked fashion.
In the instructed rule experiment, the rule was cued after each switch
and intermittently during the block. In the inferred rule experiment, there
was no external information about the rule (gray cue). (Top right) The
animal could be correct (green checkmark) or incorrect (red cross)
about either the rule or the action (Pro or Anti). Reward was provided
only if both were correct. (D) The proportion of Anti [Pr(Anti)] as a
function of interval (td = ts − 850 ms) for the instructed rule experiment
for the two monkeys. Lines show model fits (see methods). Blue, C1; red,
C2. (E) Same as (D) for the inferred rule experiment, plotted with respect
to the rule reported by the animal (i.e., “subjective”). (F) Same as (E),
plotted with respect to the experimentally imposed rule
(i.e., “objective”). (G) Probability of choosing a new rule by the animal
[P(new rule)] after an objective rule switch for the instructed (yellow)
and inferred (turquoise) experiments. (H) Proportion of subjective rule
switches [Pr(Sw)] as a function of td after reward (Rw, green), one-back
error (1B-Er, filled red circle), and two-back error (2B-Er, open red circle)
after a rewarded trial. Lines show model fits (see methods).
(I) Confidence-based switch model. This model updates the value
of switch evidence (different levels of red), XS, on the basis of the
outcome of the previous trials (Rw/Er, reward versus error), and the
animal’s belief about tsðt̂s Þ. After rewarded trials (green drop), XS is
reset to zero. After each error (red cross), XS is incremented. We
modeled XS as a Gaussian distribution whose mean and standard

deviation (mXS
and sXS ) as a function of ts and the number of

consecutive errors were set such that the model’s behavior approximates
the behavior of an ideal observer (see methods). When XS breaches a
threshold (dashed line, q), the model switches the rule. Modeling XS

as a Gaussian distribution, the probability of switch at any trial can
be related to the area under the distribution beyond the threshold (red
region under the Gaussian). In (D) to (H), error bars (SEM across
sessions) are included, but for most points, the bars are not visible
because they are smaller than the symbol size.
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error is more likely to be due to a covert rule
switch than incorrect timing. Qualitatively, the
animals’ pattern of subjective rule switches was
consistent with all these predictions. For exam-
ple, the probability of choosing a new rule was
low in the first trial after an objective rule switch
and increased monotonically afterward (Fig. 1G,
turquoise). Similarly, the probability of subjec-
tive rule switches [Pr(Sw)] was small after re-
warded trials (Fig. 1H; Rw, green), increased
after one error (Fig. 1H; 1B-Er, filled red), and
further increased after two consecutive errors
(Fig. 1H; 2B-Er, open red). Moreover, Pr(Sw) after
both one and two errors seemed to increase
systematically with td (Fig. 1H). To assess these
observations quantitatively, we used logistic re-
gression to measure the effect of trial difficulty
and number of consecutive errors on Pr(Sw). The
regression coefficients (b) associated with both
trial difficulty (indexed by |td|) and the number
of consecutive errors (indexed by nB-Er) were
positive (monkey K: b|td| = 5.78 ± 0.37, P < 10−16

and bnB-Er = 0.91 ± 0.07,P< 10−16;monkey I: b|td| =
1.73 ± 0.26, P < 10−8 and bnB-Er = 1.17 ± 0.09, P <
10−8). These characteristics were present for
both saccade directions (fig. S1), both rules, and
both response types (fig. S2). Therefore, we con-
cluded that the animals (i) updated their belief
about covert rule switches on the basis of their
trial-by-trial confidence in their interval judg-
ments and (ii) accumulated evidence across con-
secutive errors. These findings demonstrate that
monkeys, like humans (3, 4, 16, 41–47), are ca-
pable of adopting a sophisticated causal infer-
ence strategy in a hierarchical decision task.

A computational model for
hierarchical reasoning

We tested various classes of models to infer the
relevant latent variables that guide the animals’
behavior (figs. S3 and S4). In one model, we
assumed that the animals implemented a prob-
abilistic switching behavior, which is a general-
ization of the well-known win-stay lose-switch
strategy (48). According to this model, the agent
switches the rule with fixed probabilities de-
pending on trial outcome without regard to trial
difficulty and/or the number of consecutive errors
(fig. S4A). Although variants of this model have
successfully captured the behavior of monkeys
and rodents in a number of simple tasks (49–52),
it failed to explain the behavioral characteristics
of monkeys during hierarchical reasoning (fig.
S4D) and was unable to reach the animals’ level
of performance (fig. S4E). In another model, we
assumed that monkeys learned the hazard rate
of environmental switches and delayed their sub-
jective switches accordingly (fig. S4B). Thismodel
also failed to capture the animals’ switch be-
havior (fig. S4D) and level of performance (fig. S4E).
We also considered othermodels of hierarchical

reasoning that were used to explain how humans
decompose tasks into hierarchies (6), track higher-
order parameters (i.e., hyperparameters) and
environmental states (2, 4, 7, 53), and reduce
failures by comparing new, old, and counter-
factual strategies (1). Although these models

have successfully captured human behavior in a
range of hierarchical decision-making tasks, they
could not straightforwardly be adapted to our
experiment because they were not intended to
account for failures caused by misjudgments of
unreliable stimuli, which is a central component
of our task.
To develop a suitable model for our experi-

ment, we first formulated the problem in terms
of the behavior of an ideal observer, similar to a
recent behavioral study in humans (3). The ideal
observer computes the posterior probability of a
rule switch by integrating information about (i)
the expected accuracy of trial-by-trial interval
judgments and (ii) the outcome of preceding
trials (see methods). We then created a simplified
confidence-based model that computes the evi-
dence for or against a covert rule switch by a
single graded latent variable, XS, whose value
as a function of task difficulty (indexed by td)
and the number of consecutive errors was in-
ferred from the ideal observer model (see meth-
ods). After updating the value of XS , the model
sets a binary switch decision,Xy=n, to “switch” or
“no switch” depending on whether XS is larger
or smaller than a threshold, q (Fig. 1I). To capture
both animals’ behavior quantitatively, we had to
augment the model with a perseveration factor.
This factor enabled us to account for the devia-
tion of each animal’s behavior from the ideal ob-
server model that computes switch evidence
optimally (see methods). The model captured
the characteristic dependence of switch behavior
on trial difficulty and number of consecutive
errors for both animals (Fig. 1H, and fig. S4D;
see tables S1 and S2 for model parameters).
Further interrogation of the model using cross-
validation, parameter identification, and in silico
lesioning indicated that the key parameters were
both necessary and identifiable (fig. S5). We also
verified the predictive validity of the model by
confirming that simulations of the model fitted
to the subjective psychometric function (Fig. 1E)
in the presence of experimentally imposed covert
switches were able to capture the objective psy-
chometric function without additional fitting or
parameterization (Fig. 1F). On the basis of the
success of this model and the failure of alter-
natives in capturing the animals’ switch behavior
(Fig. 1H), we hypothesized that the computa-
tional logic of the underlying neural circuitry
could be understood in terms XS and Xy=n.

Electrophysiology

Previous work has established a central role for
the DMFC and dorsal ACC in monitoring and
predicting outcomes (18–25), using outcomes
to regulate actions (48, 54–58) and strategic de-
cisions (5, 28–33). Therefore, we recorded neural
activity in DMFC—comprising supplementary
eye field, dorsal supplementary motor area (i.e.,
excluding themedial bank), andpresupplementary
motor area—and ACC (stereotactic coordinates
in table S3) while the animals performed the
task. Because our main focus was to understand
how the animal used decision outcomes to dis-
ambiguate errors, we focused our analyses of

neural activity during the intertrial interval (ITI)
after the trial outcome was revealed.
As a first step, we characterized individual

neurons in terms of their sensitivity to trial out-
come, trial difficulty, and the number of con-
secutive errors (Fig. 2). In both areas, a large
proportion of neurons responded differently de-
pending on trial outcome (DMFC: Fig. 2, A to C;
ACC: Fig. 2, J to L). Many of the neurons that
signaled error trials were differentially modulated
depending on trial difficulty (i.e., magnitude of
td). This difficulty-dependent modulation was
present at the level of single neurons (Fig. 2, D,
E, M, and N) and across the population (Fig. 2, F
and O), as evident from a comparison of firing
rates associatedwith relatively easy (|td|≥ 160ms)
and difficult (|td| < 160 ms) trials. Moreover, the
firing rate ofmany error-modulated neuronswas
modulated depending on the number of preced-
ing errors (Fig. 2, G to I and P to R). The sen-
sitivity of DMFC and ACC neurons to error,
difficulty, and trial history corroborates previous
findings in a variety of sensorimotor, cognitive,
and economic decision-making tasks (18, 59) and
suggests that these areas might serve as the
neural substrate for making causal inferences
about errors in our hierarchical decision task.

Integration of DMFC error-related
signals in ACC

Rule inference during ITI depends on two se-
quential computations: a retrospective computa-
tion to evaluate the outcome of the previous trial
(i.e., reward versus error) and a subsequent pro-
spective computation to decidewhether or not to
switch the rule in the upcoming trial. Previous
work found that ACC encodes errors with longer
latencies than DMFC (18) and suggested that
it may act as a “storage buffer” (60), tracking
task-relevant variables across trials (24, 28, 33).
Following these suggestions, we analyzed the sen-
sitivity of neurons in DMFC and ACC during the
ITI to (i) error versus reward in the previous trial
and (ii) switch versus no switch in the next trial.
Our prediction was that DMFC would exhibit
strong and early error-modulated activity but
would be less sensitive to switch behavior in the
next trial. For ACC, on the other hand, we ex-
pected neurons to show a longer latency modu-
lation reflecting subsequent rule switches. To
test these predictions, we used a simple linear
regression model that aimed to explain modu-
lations of spiking activity in each neuron in
terms of two indicators: one specifying whether
the animal made an error in the previous trial
and one specifying whether the animal switched
the rule in the next trial (see methods).
We found that both DMFC and ACC signals

during ITI were modulated depending on both
error in the previous trial and the animal’s switch
behavior in the next trial (Fig. 3, A and B). DMFC
selectivity (i.e., regression slope, see methods)
averaged across neurons that were significantly
modulatedwith respect to error (permutation test
for regression slope for each neuron, P < 0.01)
exhibited strong sensitivity early during ITI. The
peak sensitivity occurred at a latency of 145 ms
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and was highly significant (peak sensitivity =
2.48, Wilcoxon rank sum test, P < 0.001). ACC
was also strongly modulated with respect to trial
outcome early during ITI (peak latency = 187 ms,
peak sensitivity = 2.21, P < 0.001). Additionally,
ACC exhibited a strong and late modulation that
forecasted the animal’s switch behavior in the
subsequent trial (peak latency = 415 ms, peak
sensitivity = 2.1, P < 0.001). DMFC was alsomod-
ulated by the animal’s switch behavior, but these
modulations were significantly weaker than ACC
(selectivity ratio of DMFC to ACC = 0.74, P <
0.001) and lacked the distinctive temporal struc-
ture evident in ACC that was indicative of a
switch-related computation. Consistent with our

hypothesis, these results suggest that DMFC sig-
nals errors and that ACC receives error signals
and helps the animal decide whether and when
to switch (fig. S6 shows the same results for the
two monkeys separately).
To validate this hypothesis, we performed an

experiment to test whether the late responses in
ACCwere sensitive to early signals in DMFC. In a
random 50% of error trials, we used electrical
microstimulation to alter DMFC activity within a
window of 50 to 150 ms in ITI while recording
the ensuing spiking activity in ACC. Our choice of
the time window of microstimulation was in-
formed by our analysis of the temporal profile
of sensitivity of DMFC to error versus reward

(Fig. 3A), and the stimulation current was weak
(see methods) to avoid changes in the animal’s
overt behavior (e.g., evoking saccades). Consistent
with our hypothesis, microstimulation of DMFC
changed the poststimulation spiking activity of
single neurons in ACC (Fig. 3C). To summarize
this effect across the population of ACC neurons,
we used a modulation index to quantify the rel-
ative increase in firing rate after microstimula-
tion. This analysis revealed that ACC neurons
were strongly and significantly modulated as a
result of DMFCmicrostimulation (Wilcoxon rank
sum test, P < 0.01; Fig. 3D). Importantly, we ver-
ified that DMFC microstimulation had no sta-
tistically significant effect on behavior, ensuring
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Fig. 2. DMFC and ACC selectivity patterns after feedback. (A and
B) Average firing rate of two example DMFC neurons in monkeys K (A)
and I (B) for rewarded (green) andunrewarded (red) trials relative to the timeof
feedback (dashed line).The gray bar in (B) represents a 600-ms window used
for analysis in (C), (F), and (I). K-DMFC-iNeu#164 indicates neuron #164 in
DMFCof animal K. spk/s, spikes per second. (C) Histogramof selectivity to trial
outcome (reward versus no reward) across DMFC neurons. Selectivity was
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on spike counts within a 600-ms window after feedback [gray bar in (A) and
(B)]. Black corresponds to neurons with significant selectivity (259/624;
permutation test, 100 times, P < 0.05). (D and E) Average firing rate
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relatively “easy” (dark red and green, |td|≥ 160ms) and “difficult” (light red and
green, |td| < 160 ms) trials. (F) Histogram of selectivity to trial difficulty (easy
versus difficult) across DMFC neurons using an ROC analysis similar to that
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modulated with respect to the number of consecutive errors (139/259;
permutation test, 100 times, P < 0.05). (J to R) Same as (A) to (I) for ACC.
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thatmodulation of ACC activitywas not due to an
indirect change in switch probability (fig. S7).
To ensure that the communication channel

from DMFC to ACC played a task-dependent
functional role and was not due to some non-
specific microstimulation-induced corticocortical
interactions, we additionally examined the effect
of DMFC microstimulation on ACC in the in-
structed rule experiment using an identical pro-
tocol (same experimental sessions, same time
window, same current levels, etc.). The key dif-
ference in the instructed rule experiment com-
pared with the inferred rule experiment was that
rule switches were instructed and the animals
did not have to rely on errors in the previous trial
to decidewhether to switch. In other words, errors
did not inform rule switches, and, therefore, there
was no need to engage the communication chan-
nel from DMFC to ACC to integrate early error-
related signals. Accordingly, we found that the
same microstimulation protocol had no statis-
tically significant effect on ACC activity in the
instructed rule experiment (Fig. 3D and fig. S8,
for the individual animals). These results provide
evidence that ACC integrates error-related sig-
nals in DMFC selectively when there is a need to
evaluate errors with respect to a hierarchy of
potential causes and decide whether to switch.

ACC represents cumulative switch
evidence and drives switching behavior

Both the task-selective effect of DMFC micro-
stimulation on ACC (Fig. 3, C and D) and the
strong switch-predictive signals in ACC (Fig. 3B)
motivated a hypothesis that ACC may be in-
volved in computing the decision to switch. For

the hypothesis to hold, ACC must harbor both
a graded representation of the evidence sup-
porting a switch and a binary signal predict-
ing future switches. To test this hypothesis,
we examined ACC signals in the context of our
model of behavior. The model formalized sub-
jective switches in terms of a binary variable,
Xy=n , whose state (switch or no switch) was
set on the basis of the value of cumulative
switch evidence relative to a threshold (Fig.
1I). The cumulative switch evidence, in turn,
was captured by a single graded latent varia-
ble, X̂ S, whose value absorbed the dependence
of behavior on both trial difficulty (e.g., larger
for easier trials) and the number of consecutive
errors.
We performed a regression analysis on indi-

vidual ACC neurons to investigate whether X̂ S

and Xy=n were encoded by distinct subpopula-
tions of neurons or were mixed across the pop-
ulation. Consistent with numerous recent studies
in various higher cortical areas (35, 61–65), this
analysis indicated that X̂ S and Xy=n were mixed
across the population (fig. S9). Therefore, we
used a recently developed targeted dimensionality
reduction technique (63) that allowed us to tease
apart signals encoding X̂ S and Xy=n indepen-
dently across the population (see methods).
We found a strong representation of X̂ S in

ACC population activity (Fig. 4A, top). We quan-
tified the sensitivity of ACC to X̂ S by measur-
ing the slope of the regression line relating X̂ S

to ACC population activity associated with X̂ S

based on firing rates 200 to 400 ms after
feedback (Fig. 4A, bottom). The regression slope
was significantly positive (* indicates significance

at P < 0.05) for both animals independent of
the binary choice about rule switch {monkey K:
0.809*, confidence interval (CI): [0.533, 1.085]
when Xy=n ¼ 1 and 1.098*, CI: [0.844, 1.351] when
Xy=n ¼ 0; monkey I: 0.532*, CI: [0.475, 0.589]
when Xy=n ¼ 1 and 0.884*, CI: [0.729, 1.038]
when Xy=n ¼ 0}. This observation suggests that
ACC either computed or received inputs that
encode X̂ S.
ACC also had a clear representation of Xy=n,

as evidenced by the convergence of the popula-
tion activity associated with Xy=n on to one of
two distinct states depending on whether the
animal would switch in the next trial or not
(Fig. 4B, top). We used linear regression to quan-
tify the degree to which ACC responses 200 to
400 ms after feedback were modulated by Xy=n

(Fig. 4B, bottom). The baseline for the regres-
sion was significantly larger when the animal
switched in the next trial (monkey K: 2.408*, CI:
[1.977, 2.840]; monkey I: 1.325*, CI: [0.993, 1.657])
compared with when it did not (monkey K:
0.707*, CI: [0.514, 0.900]; monkey I: 0.788*, CI:
[0.627, 0.950]).
All the analyses relating ACC activity to X̂ S and

Xy=n were performed on cross-validated data and
were not the result of an overfitted regression
model. Moreover, the encoding of X̂ S andXy=n in
ACC was robust to various nuisance parameters
(fig. S10), including saccade direction and re-
sponse type (Pro versus Anti). These results pro-
vided evidence in support of the hypothesis
that ACCmay be responsible for converting the
cumulative switch evidence, X̂ S , to the binary
decision to switch, Xy=n . (Figs. S11 and S12
show the results of the same analysis for DMFC
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Fig. 3. Retrospective and prospective computations in DMFC and
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the time course of selectivity to error versus reward averaged across
neurons with significant error-modulated activity. The brown trace shows
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(A) for ACC neurons. (C) Modulation of spiking activity in example ACC
neurons due to weak electrical microstimulation of DMFC. DMFC micro-
stimulation early during ITI (pink-shaded region, 50 to 150 ms) was
followed by an increase in the firing rate of ACC neurons (red) compared
with no stimulation (black). (D) Modulation of ACC activity due to DMFC

microstimulation during the inferred and instructed rule experiments. For
each ACC neuron, we computed a microstimulation modulation index
quantifying the relative increase in firing rate as a result of micro-
stimulation. Denoting the firing rate in the stimulated and nonsimulated
trials by r1 and r2 (measured by a sliding window of 150 ms), respectively,
the modulation index was computed as (r1 − r2)/(r1 + r2). The averaged
modulation index was then computed across neurons before and after the
stimulation window separately for the inferred (green) and instructed
(yellow) rule experiments. Stimulation sensitivity index was significantly
increased within 150 to 300 ms relative to feedback in the inferred rule
experiment, but not for the instructed rule experiment (Wilcoxon rank sum
test, P < 0.01). In (A), (B), and (D), error bars indicate SEM.
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and ACC, respectively, separately for the two
animals.)
As a final test for our hypothesis, we used

electrical microstimulation to perturb ACC dur-
ing the window of 200 to 400 ms in which the
sensitivity of the population activity to X̂ S and
Xy=n was evident (Fig. 4, A and B). We reasoned
that if the animals relied on ACC to decide when
to switch, perturbation of signals in ACC in this
window would interfere with this computation
and would result in a measurable difference in
the observed switch probability. Consistent with
this prediction, we found that switch probabilities
increased significantly in the random subset of
error trials after which ACCwas electrically stim-
ulated (Fig. 4C and fig. S13). This experiment
provided evidence that ACC plays a functional

role in making causal inferences about covert
rule switches. Although the effect of microstim-
ulationwas strong and significant in both animals,
in one animal the stimulation enhanced the
sensitivity of the animal to preceding errors,
as evidenced by an increase in slope (Fig. 4C,
bottom left), whereas in the other animal, the
effect was an overall increase the switch proba-
bility, evident as a change in baseline (Fig. 4C,
bottom right).
To ensure that this effect was indeed related to

ACC supporting the animal’s attempt to infer
covert rule switches, we additionally tested the
effect of ACC microstimulation in the instructed
rule experiment. Because switches in this control
experiment were instructed and not based on
cumulative switch evidence, we predicted that

ACC perturbation should have minimal effect
on the animal’s switch probability. Results of
this experiment supported our prediction. ACC
microstimulation in the instructed rule task
had nearly no effect on switch probability. It is
possible that the animals made inferences about
the rule in both tasks, but this inference was over-
ridden in the instructed task by the reliable visual
cue. The positive effect of microstimulation in the
inferred rule task coupled with the negative effect
in the instructed task further substantiated a cen-
tral role for ACC in making causal inferences
about errors in a hierarchical setting.

Discussion

Our results provide an understanding of the
computational principles and neurobiological

Sarafyazd et al., Science 364, eaav8911 (2019) 17 May 2019 6 of 9

A B

0 200 400 600
0

1

2

3

4

0 200 400 600
0

1

2

3

4

0 1 2 3

0

2

4

6

0 1 2 3

0

1

2

3

4

Time relative to feedback (ms) Time relative to feedback (ms)

S
en

si
tiv

ity
 to

 X
y/

n

C

Switch

No switch

Switch

No switch

Low High

0

0.5

1

P
r 

(S
w

)

* n.s. ** n.s.

No-
Stim Stim

No-
Stim Stim

No-
Stim Stim

No-
Stim Stim

Inferred Instructed Inferred Instructed

Monkey K Monkey I

Low High

ACC

0.5 1 1.5 2

0.2

0.4

0.6

0.8

P
r(

S
w

)

*
*

0.4 0.5 0.6

**
*

*

0.2

0.4

0.6

0.8

Fig. 4. Representation of switch evidence and causal manipulation of
switch behavior in ACC. (A) Encoding of the graded switch evidence (XS) by
population activity in ACC. Using targeted dimensionality reduction, we
identified the pattern of population activity in ACC that encoded XS,
inferred from the animals’ behavior.We then derived a sensitivity index (d′) to
quantify the distance between activity associated with different levels of XS

(low to high, shown in three colors) and activity associated with rewarded
trials (i.e., XS ¼ 0). The sensitivity is shown separately for trials that led
to a switch (filled symbols) and those that did not (open symbols).
The top plot shows sensitivity as a function of time, and the bottom plot
shows the response tuning to XS within a time window of 200 to 400 ms
after feedback (gray region in the top plot). Results for both panels
correspond to cross-validated data (see methods). (B) Encoding of the binary
switch variable (Xy=n) by population activity in ACC. Applying the same
analysis technique as in (A) revealed that ACC activity patterns that were

sensitive to Xy=n were organized in a binary fashion (i.e., switch versus no

switch) regardless of the value ofXS (cross-validated; see methods). (C) (Top)
The effect of ACC electrical microstimulation within the 200 to 400 ms
relative to feedback on switch probability [Pr(Sw)] in the inferred and
instructed task. Open circles represent individual sessions. Electrical stimu-
lation was applied on ~50% of error trials (red, Stim), and the effect of
Pr(Sw) was compared with the nonstimulated trials (black, No-Stim). In both
animals, ACC microstimulation led to an increased Pr(Sw) in the inferred
task (Wilcoxon rank sum test, *P < 0.05, **P < 0.01). By contrast, switches in
the instructed task did not increase after ACC microstimulation (n.s., not
significant, P > 0.05). For the instructed task, Pr(Sw) is only shown
for trials where the subjective switch was not cued. (Bottom) The effect of
ACC stimulation in the inferred rule experiment on Pr(Sw) as a function
of XS of 1B-Er trials (Wilcoxon rank sum test, *P < 0.05, **P < 0.01). In (A) to
(C), error bars indicate SEM.
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underpinnings of adaptive decision-making
when the agent has to reason about errors in
the presence of multiple hierarchically organized
sources of uncertainty. In terms of behavior, we
were able to establish that macaque monkeys
are capable of implementing a causal inference
strategy with a level of sophistication that is
comparable to humans (3). Bothmonkeys treated
each negative outcome as evidence for a covert
rule switch but did so rationally by taking into
account that (i) errors after easy trials (i.e., higher
expectation of reward) were more likely due to a
rule switch than a timing error and (ii) repeated
errors provided stronger evidence for a rule
switch. In terms of neurobiology, we found that
the animals’behaviorwas supportedbydistributed
and hierarchically organized neural circuits in
the frontal cortex (45, 66). Specifically, we found
that DMFC and ACC, two areas that have been
implicated in error monitoring (18, 26, 67–73)
and the control of adaptive behavior (5, 28–36),
carried signals relevant for causal inference. ACC,
however, seemed to function downstream of
DMFC and played a direct role in integrating
evidence and computing whether and when
to attribute failures to a covert rule switch.
Both DMFC and ACC were modulated retro-

spectively by the outcome of the low-level de-
cisions, which is consistent with previous findings
that suggest a role for these areas in performance
monitoring (18–21, 23, 25). In other words, both
areas had a representation of switch evidence.
However, the hierarchical nature of our task
allowed us to uncover a distinct and longer la-
tency form of modulation in ACC that was pre-
dictive of the animal’s subsequent switch behavior.
This result, coupled with an experiment involving
simultaneous DMFC perturbation and ACC re-
cording, enabled us to reveal the sequential na-
ture of computations in DMFC and ACC and
provided a coherent explanation of their distinct
functional link to behavior, their different acti-
vation latencies, and their circuit-level interac-
tions. In particular, our results suggest that the
long latency signals in ACC result from an in-
tegration of early error-related modulations in
DMFC, much like what is seen in well-established
first-order perceptual decision-making tasks be-
tween sensory and higher-order association and
premotor areas (74–81). An important outstand-
ing question that our study motivates is the
problem of maintaining a desired behavioral
strategy between switches, which may involve
other brain areas such as the dorsolateral pre-
frontal cortex (82–88).
ACC is modulated by reward history (23, 89)

and reward expectations (24) and is linked to
reward-dependent control of adaptive behavior
in many situations, including movement selec-
tion (58, 90), decision-making under risk (33),
foraging (28), and regulation of exploration
versus exploitation (91). Our work extends the
role of ACC in adaptive control to the general
class of cognitive tasks that demand hierarchical
reasoning about errors. As we found in our work,
and others, in other behavioral settings (3, 16, 92),
reasoning about errors can be captured by a

model comprised of two key computational
variables: (i) a latent switch evidence variable
that accumulates confidence-dependent error
information and (ii) a latent threshold that con-
trols a binary decision to switch depending on
the strength of the cumulative switch evidence.
We found that ACC harbors distinct activity pat-
terns associated with both the cumulative switch
evidence and the binary decision to switch that
were mixed at the level of single neurons but
dissociated across the population. Moreover, we
found that perturbation of ACC interfered with
the animal’s rationality during causal reasoning
about errors. Together, these results suggest that
ACC uses graded evidence derived from errors in
low-level processes in a decision hierarchy to
select between longer-term behavioral strategies
associated with higher levels of the hierarchy.

Materials and methods

All experimental procedures conformed to the
guidelines of the National Institutes of Health
and were approved by the Committee of Animal
Care at theMassachusetts Institute of Technology.
Experiments involved two awake, behaving mon-
keys (species: Macaca mulatta; ID: K and I;
weight: 7.5 and 10.5 kg; age: 4 and 5 years old,
respectively). Animals were head-restrained
and seated comfortably in a dark and quiet room
and viewed stimuli on an Acer H236HL LCD
monitor (23 inch; refresh rate: 60 Hz; resolution:
1920 by 1080). All reported stimulus presentation
times had to be rounded to a multiple of the
frame duration (16.67 ms). Eye movements were
registered by an infrared camera and sampled at
1 kHz (Eyelink 1000, SR Research Ltd., Ontario,
Canada). The MWorks software package (http://
mworks-project.org) was used to present stimuli
and to register eye position. A photodiode was
used for registering the timing of events during
stimulus presentation.
Neurophysiology recordings were made by

24- or 36-channel laminar probes with 100-mm
interelectrode spacing (V-probe, Plexon Inc.)
through a biocompatible cranial implant whose
position was determined by stereotaxic co-
ordinates and structural MRI scan of the two
animals. Extracellular signals were bandpass
filtered (300 Hz to 6 kHz) and digitized (sam-
pling rate: 30 kHz; resolution: 16 bit) using a
digital Intan headstage (Intan Technologies,
http://intantech.com/), and the data were col-
lected using the OpenEphys system (www.open-
ephys.org/). Single or multi-unit action potential
waveforms were detected and sorted offline
using MKsort (https://github.com/ripple-neuro/
mksort). Analysis of both behavioral and spiking
data was performed using customMATLAB code
(Mathworks, MA).

Electrophysiology

We recorded neural activity in (i) DMFC, com-
prising supplementary eye field, dorsal supple-
mentary motor area (i.e., excluding the medial
bank), and presupplementary motor area; and
(ii) ACC. Recording sites and number of sessions
and trials are reported in table S3.

ACC electrical microstimulation
On a random 50% of error trials, we stimulated
ACC in a 200- to 400-ms time window after the
saccade reached to target.We generated biphasic
current pulses (amplitude: 40 to 60 mm peak-to-
peak; pulse duration: 300 ms; frequency: 200 Hz;
total stimulation duration: 200ms) using a com-
mercial stimulator (CereStim 96, BlackrockMicro-
systems) and injected current using a custom
bipolar systemwith two tungstenmicroelectrodes
(10 to 50 kilohm, Microprobes), one serving as a
current source and another as a dedicated return.
To cover the region of interest in ACC, we placed
the current source just below the border of gray-
white matter in ACC margin and the return elec-
trode, ~3 mm above and ~2 mm lateral to the
source electrode. The number of stimulation
sessions and trials are reported in table S1. To
have an appropriate control for these stimula-
tion experiments, both the inferred and instructed
experiments were tested on every stimulation
session.

Simultaneous electrical
microstimulation of DMFC and recording
in ACC

In a random 50% of error trials, we stimulated
DMFC in a 50- to 150-ms time window after the
saccade reached to target and recorded the effect
of stimulation on ACC afterward. We injected
current (amplitude: 20 to 30 mm peak-to-peak;
pulse duration: 300 ms; frequency: 200 Hz; total
stimulation duration: 100ms) through a tungsten
electrode placed ~2 mm deep just below the
border of gray-white matter in DMFC and used
a guide tube piercing the dura as the return,
while recording simultaneously with a separate
V-probe. The stimulation current was weak to
make sure the behavior would not change. This
was particularly important because stimulation
of DMFC could evoke saccades (e.g., around sup-
plementary eye fields), and such explicit change
in behavior would complicate the interpretation
of any observed changes in ACC activity. The
number of stimulation sessions and trials are
reported in table S3. To have an appropriate
control for these stimulation experiments, both
the inferred and instructed experiments were
tested on every stimulation session.
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