New gift expands mental illness studies at Poitras Center for Psychiatric Disorders Research

One in every eight people—970 million globally—live with mental illness, according to the World Health Organization, with depression and anxiety being the most common mental health conditions worldwide. Existing therapies for complex psychiatric disorders like depression, anxiety, and schizophrenia have limitations, and federal funding to address these shortcomings is growing increasingly uncertain.

Jim and Pat Poitras
James and Patricia Poitras at an event co-hosted by the McGovern Institute and Autism Speaks. Photo: Justin Knight

Patricia and James Poitras ’63 have committed $8 million to the Poitras Center for Psychiatric Disorders Research to launch pioneering research initiatives aimed at uncovering the brain basis of major mental illness and accelerating the development of novel treatments.

“Federal funding rarely supports the kind of bold, early-stage research that has the potential to transform our understanding of psychiatric illness. Pat and I want to help fill that gap—giving researchers the freedom to follow their most promising leads, even when the path forward isn’t guaranteed,” says James Poitras, who is chair of the McGovern Institute Board.

Their latest gift builds upon their legacy of philanthropic support for psychiatric disorders research at MIT, which now exceeds $46 million.

“With deep gratitude for Jim and Pat’s visionary support, we are eager to launch a bold set of studies aimed at unraveling the neural and cognitive underpinnings of major mental illnesses,” says Robert Desimone, director of the McGovern Institute, home to the Poitras Center. “Together, these projects represent a powerful step toward transforming how we understand and treat mental illness.”

A legacy of support

Soon after joining the McGovern Institute Leadership Board in 2006, the Poitrases made a $20 million commitment to establish the Poitras Center for Psychiatric Disorders Research at MIT. The center’s goal, to improve human health by addressing the root causes of complex psychiatric disorders, is deeply personal to them both.

“We had decided many years ago that our philanthropic efforts would be directed towards psychiatric research. We could not have imagined then that this perfect synergy between research at MIT’s McGovern Institute and our own philanthropic goals would develop,” recalls Patricia.

The center supports research at the McGovern Institute and collaborative projects with institutions such as the Broad Institute, McLean Hospital, Mass General Brigham and other clinical research centers. Since its establishment in 2007, the center has enabled advances in psychiatric research including the development of a machine learning “risk calculator” for bipolar disorder, the use of brain imaging to predict treatment outcomes for anxiety, and studies demonstrating that mindfulness can improve mental health in adolescents.

A scientist speaks at a podium with an image of DNA on the wall behind him.
Feng Zhang, the James and Patricia Poitras Professor of Neuroscience at MIT, delivers a lecture at the Poitras Center’s 10th anniversary celebration in 2017. Photo: Justin Knight

For the past decade, the Poitrases have also fueled breakthroughs in McGovern Investigator Feng Zhang’s lab, backing the invention of powerful CRISPR systems and other molecular tools that are transforming biology and medicine. Their support has enabled the Zhang team to engineer new delivery vehicles for gene therapy, including vehicles capable of carrying genetic payloads that were once out of reach. The lab has also advanced innovative RNA-guided gene engineering tools such as NovaIscB, published in Nature Biotechnology in May 2025. These revolutionary genome editing and delivery technologies hold promise for the next generation of therapies needed for serious psychiatric illness.

In addition to fueling research in the center, the Poitras family has gifted two endowed professorships—the James and Patricia Poitras Professor of Neuroscience at MIT, currently held by Feng Zhang, and the James W. (1963) and Patricia T. Poitras Professor of Brain and Cognitive Sciences at MIT, held by Guoping Feng—and an annual postdoctoral fellowship at the McGovern Institute.

New initiatives at the Poitras Center

The Poitras family’s latest commitment to the Poitras Center will launch an ambitious set of new projects that bring together neuroscientists, clinicians, and computational experts to probe underpinnings of complex psychiatric disorders including schizophrenia, anxiety, and depression. These efforts reflect the center’s core mission: to speed scientific discovery and therapeutic innovation in the field of psychiatric brain disorders research.

McGovern cognitive neuroscientists Evelina Fedorenko PhD ‘07 and Nancy Kanwisher ’80, PhD ’86, the Walter A. Rosenblith Professor of Cognitive Neuroscience—in collaboration with psychiatrist Ann Shinn of McLean Hospital—will explore how altered inner speech and reasoning contribute to the symptoms of schizophrenia. They will collect functional MRI data from individuals diagnosed with schizophrenia and matched controls as they perform reasoning tasks. The goal is to identify the brain activity patterns that underlie impaired reasoning in schizophrenia, a core cognitive disruption in the disorder.

Three women wearing name tags smile for hte camera.
Patricia Poitras (center) with McGovern Investigators Nancy Kanwisher ’80, PhD ’86 (left) and Martha Constantine-Paton (right) at the Poitras Center’s 10th anniversary celebration in 2017. Photo: Justin Knight

A complementary line of investigation will focus on the role of inner speech—the “voice in our head” that shapes thought and self-awareness. The team will conduct a large-scale online behavioral study of neurotypical individuals to analyze how inner speech characteristics correlate with schizophrenia-spectrum traits. This will be followed by neuroimaging work comparing brain architecture among individuals with strong or weak inner voices and people with schizophrenia, with the aim of discovering neural markers linked to self-talk and disrupted cognition.

A different project led by McGovern neuroscientist Mark Harnett and 2024–2026 Poitras Center Postdoctoral Fellow Cynthia Rais focuses on how ketamine—an increasingly used antidepressant—alters brain circuits to produce rapid and sustained improvements in mood. Despite its clinical success, ketamine’s mechanisms of action remain poorly understood. The Harnett lab is using sophisticated tools to track how ketamine affects synaptic communication and large-scale brain network dynamics, particularly in models of treatment-resistant depression. By mapping these changes at both the cellular and systems levels, the team hopes to reveal how ketamine lifts mood so quickly—and inform the development of safer, longer-lasting antidepressants.

Guoping Feng is leveraging a new animal model of depression to uncover the brain circuits that drive major depressive disorder. The new animal model provides a powerful system for studying the intricacies of mood regulation. Feng’s team is using state-of-the-art molecular tools to identify the specific genes and cell types involved in this circuit, with the goal of developing targeted treatments that can fine-tune these emotional pathways.

“This is one of the most promising models we have for understanding depression at a mechanistic level,” says Feng, who is also associate director of the McGovern Institute. “It gives us a clear target for future therapies.”

Another novel approach to treating mood disorders comes from the lab of James DiCarlo, the Peter de Florez Professor of Neuroscience at MIT, who is exploring the brain’s visual-emotional interface as a therapeutic tool for anxiety. The amygdala, a key emotional center in the brain, is heavily influenced by visual input. DiCarlo’s lab is using advanced computational models to design visual scenes that may subtly shift emotional processing in the brain—essentially using sight to regulate mood. Unlike traditional therapies, this strategy could offer a noninvasive, drug-free option for individuals suffering from anxiety.

Together, these projects exemplify the kind of interdisciplinary, high-impact research that the Poitras Center was established to support.

“Mental illness affects not just individuals, but entire families who often struggle in silence and uncertainty,” adds Patricia. “Our hope is that Poitras Center scientists will continue to make important advancements and spark novel treatments for complex mental health disorders and most of all, give families living with these conditions a renewed sense of hope for the future.”

Learning from punishment

From toddlers’ timeouts to criminals’ prison sentences, punishment reinforces social norms, making it known that an offender has done something unacceptable. At least, that is usually the intent—but the strategy can backfire. When a punishment is perceived as too harsh, observers can be left with the impression that an authority figure is motivated by something other than justice.

It can be hard to predict what people will take away from a particular punishment, because everyone makes their own inferences not just about the acceptability of the act that led to the punishment, but also the legitimacy of the authority who imposed it. A new computational model developed by scientists at MIT’s McGovern Institute makes sense of these complicated cognitive processes, recreating the ways people learn from punishment and revealing how their reasoning is shaped by their prior beliefs.

Their work, reported August 4 in the journal PNAS, explains how a single punishment can send different messages to different people and even strengthen the opposing viewpoints of groups who hold different opinions about authorities or social norms.

Modeling punishment

“The key intuition in this model is the fact that you have to be evaluating simultaneously both the norm to be learned and the authority who’s punishing,” says McGovern Investigator and John W. Jarve Professor of Brain and Cognitive Sciences Rebecca Saxe, who led the research. “One really important consequence of that is even where nobody disagrees about the facts—everybody knows what action happened, who punished it, and what they did to punish it—different observers of the same situation could come to different conclusions.”

For example, she says, a child who is sent to timeout after biting a sibling might interpret the event differently than the parent. One might see the punishment as proportional and important, teaching the child not to bite. But if the biting, to the toddler, seemed a reasonable tactic in the midst of a squabble, the punishment might be seen as unfair, and the lesson will be lost.

People draw on their own knowledge and opinions when they evaluate these situations—but to study how the brain interprets punishment, Saxe and graduate student Setayesh Radkani wanted to take those personal ideas out of the equation. They needed a clear understanding of the beliefs that people held when they observed a punishment, so they could learn how different kinds of information altered their perceptions. So Radkani set up scenarios in imaginary villages where authorities punished individuals for actions that had no obvious analog in the real world.

Woman in red sweater smiling to camera
Graduate student Setayesh Radkani uses tools from psychology, cognitive neuroscience and machine learning to understand the social and moral mind. Photo: Caitlin Cunningham

Participants observed these scenarios in a series of experiments, with different information offered in each one. In some cases, for example, participants were told that the person being punished was either an ally or competitor of the authority, whereas in other cases, the authority’s possible bias was left ambiguous.

“That gives us a really controlled setup to vary prior beliefs,” Radkani explains. “We could ask what people learn from observing punitive decisions with different severities, in response to acts that vary in their level of wrongness, by authorities that vary in their level of different motives.”

For each scenario, participants were asked to evaluate four factors: how much the authority figure cared about justice; the selfishness of the authority; the authority’s bias for or against the individual being punished; and the wrongness of the punished act. The research team asked these questions when participants were first introduced to the hypothetical society, then tracked how their responses changed after they observed the punishment. Across the scenarios, participants’ initial beliefs about the authority and the wrongness of the act shaped the extent to which those beliefs shifted after they observed the punishment.

Radkani was able to replicate these nuanced interpretations using a cognitive model framed around an idea that Saxe’s team has long used to think about how people interpret the actions of others. That is, to make inferences about others’ intentions and beliefs, we assume that people choose actions that they expect will help them achieve their goals.

To apply that concept to the punishment scenarios, Radkani developed a model that evaluates the meaning of a punishment (an action aimed at achieving a goal of the authority) by considering the harm associated with that punishment; its costs or benefits to the authority; and its proportionality to the violation. By assessing these factors, along with prior beliefs about the authority and the punished act, the model was able to predict people’s responses to the hypothetical punishment scenarios, supporting the idea that people use a similar mental model. “You need to have them consider those things, or you can’t make sense of how people understand punishment when they observe it,” Saxe says.

Even though the team designed their experiments to preclude preconceived ideas about the people and actions in their imaginary villages, not everyone drew the same conclusions from the punishments they observed. Saxe’s group found that participants’ general attitudes toward authority influenced their interpretation of events. Those with more authoritarian attitudes—assessed through a standard survey—tended to judge punished acts as more wrong and authorities as more motivated by justice than other observers.

“If we differ from other people, there’s a knee-jerk tendency to say, ‘either they have different evidence from us, or they’re crazy,’” Saxe says. Instead, she says, “It’s part of the way humans think about each other’s actions.”

“When a group of people who start out with different prior beliefs get shared evidence, they will not end up necessarily with shared beliefs. That’s true even if everybody is behaving rationally,” says Saxe.

This way of thinking also means that the same action can simultaneously strengthen opposing viewpoints. The Saxe lab’s modeling and experiments showed that when those viewpoints shape individuals’ interpretations of future punishments, the groups’ opinions will continue to diverge. For instance, a punishment that seems too harsh to a group who suspects an authority is biased can make that group even more skeptical of the authority’s future actions. Meanwhile, people who see the same punishment as fair and the authority as just will be more likely to conclude that the authority figure’s future actions are also just. “You will get a vicious cycle of polarization, staying and actually spreading to new things,” says Radkani.

The researchers say their findings point toward strategies for communicating social norms through punishment. “It is exactly sensible in our model to do everything you can to make your action look like it’s coming out of a place of care for the long-term outcome of this individual, and that it’s proportional to the norm violation they did,” Saxe says. “That is your best shot at getting a punishment interpreted pedagogically, rather than as evidence that you’re a bully.”

Nevertheless, she says that won’t always be enough. “If the beliefs are strong the other way, it’s very hard to punish and still sustain a belief that you were motivated by justice.”

This study was funded, in part, by the Patrick J McGovern Foundation.