Hugh Herr

Revolutionizing Bionics

Hugh Herr creates bionic limbs that emulate the function of natural limbs. In 2011, TIME magazine named him the “Leader of the Bionic Age” for his revolutionary work in the emerging field of biomechatronics, an emerging field that marries human physiology with electromechanics.

Herr, who lost both of his legs below the knee to a climbing accident in 1982, has dedicated his career to the creation of technologies that push the possibilities of prosthetics. As co-director of the K. Lisa Yang Center for Bionics, Herr seeks to develop neural and mechanical interfaces for human-machine communications; integrate these interfaces into novel bionic platforms; perform clinical trials to accelerate the deployment of bionic products by the private sector; and leverage novel and durable, but affordable, materials and manufacturing processes to ensure equitable access of the latest bionic technology to all impacted individuals, especially to those in developing countries.

Herr’s story has been told in the National Geographic film, Ascent: The Story of Hugh Herr as well as the PBS documentary, Augmented.

Nidhi Seethapathi

Science in Motion

The computational models that Seethapathi builds in her lab aim to predict how humans will move under different conditions. If a person is placed in an unfamiliar environment and asked to navigate a course under time pressure, what path will they take? How will they move their limbs, and what forces will they exert? How will their movements change as they become more comfortable on the terrain?

Seethapathi uses the principles of robotics to build models that answer these questions, then tests them by placing real people in the same scenarios and monitoring their movements. Currently, most of these tests take place in her lab, where subjects are often limited to simple tasks like walking on a treadmill. As she expands her models to predict more complex movements, she will begin monitoring people’s activity in the real world, over longer time periods than laboratory experiments typically allow. Ultimately, Seethapathi hopes her findings will inform the way doctors, therapists, and engineers help patients regain control over their movements after an injury or due to a movement disorder.

Fan Wang

Sensing the World

Why do we feel pain? What causes us to have intense cravings? How do we manage move so effortlessly through the world?

Fan Wang’s research focuses on the neural circuits governing the bidirectional interactions between the brain and body. She is specifically interested in the circuits that control the sensory and emotional aspects of pain and addiction, as well as the sensory and motor circuits that work together to execute behaviors such as eating, drinking, and moving. She has explored how anesthesia suppresses pain, how brain circuits generate rhythmic behaviors, how the brain coordinates speaking and breathing, and how drugs of abuse influence brain circuits that drive addiction. Wang’s lab deploys a range of techniques to gain traction in these studies, including genetic and viral methods, in vivo electrophysiology, in vivo imaging, and behavioral and autonomic response tracking. Her research has profound implications for real-world problems, including chronic pain and addiction.

Evelina Fedorenko

Exploring Language

Evelina (Ev) Fedorenko aims to understand how the language system works in the brain. Her lab is unpacking the internal architecture of the brain’s language system and exploring the relationship between language and various cognitive, perceptual, and motor systems. To do this, her lab employs a range of approaches – from brain imaging to computational modeling – and works with a diverse populations, including polyglots and individuals with atypical brains. Language is a quintessential human ability, but the function that language serves has been debated for centuries. Fedorenko argues that language serves is primarily as a tool for communication, contrary to a prominent view that language is essential for thinking.

Ultimately, this cutting-edge work is uncovering the computations and representations that fuel language processing in the brain.

Ila Fiete

Neural Coding and Dynamics

Ila Fiete builds tools and mathematical models to expand our knowledge of the brain’s computations. Specifically, her lab focuses on how the brain develops and reshapes its neural connections to perform high-level computations, like those involved in memory and learning. The Fiete lab applies cutting-edge theoretical and quantitative methods—wielding the vast capabilities of computational models, informed by mathematics, machine learning, and physics—digging deeper into how the brain represents and manipulates information. Through these strategies, Fiete hopes to shed new light onto the neural ensembles behind learning, integration of new information, inference-making, and spatial navigation.

Her lab’s findings are pushing the frontiers of neuroscience—while advancing the utility of computational tools in this space—and are building a more robust understanding of complex brain processes.

H. Robert Horvitz

Learning from Worms

Bob Horvitz studies the nematode worm Caenorhabditis elegans. Only 1 mm long and containing fewer than 1000 cells, C. elegans has been key to discovering fundamental biological mechanisms that are conserved across species. Horvitz has focused on the genetic control of animal development and behavior, and on the mechanisms that underlie neurodegenerative disease. By identifying mutations that affect C. elegans behavior, Horvitz has revealed much about the genetic control of many aspects of nervous system development and of brain function, including how neural circuits control specific behaviors and how behavior is modulated by experience and by the environment.

 

Josh McDermott

The Science of Hearing

Hearing enables us to make sense of our whereabouts, understand the emotional state of others, and enjoy musical experiences. Acoustic information relays vital cues about the world—yet much of the sophisticated brain system that decodes this information is poorly understood.

Josh McDermott’s research is in search of foundational principles of sound perception. Groundbreaking discoveries from the McDermott lab have clarified how people hear and process sounds. His research informs new treatments for those with hearing loss, and paves the way for machine systems that emulate the human ability to recognize and interpret sound. McDermott’s lab has also pioneered new approaches for understanding music perception. His lab deconstructs the neural ensembles that allow us to appreciate music, while also studying the often striking variation that can occur across cultures.

Virtual Tour of McDermott Lab

Rebecca Saxe

Mind Reading

How do we think about the thoughts of other people? How are some thoughts universal and others specific to a culture or an individual?

Rebecca Saxe is tackling these and other thorny questions surrounding human thought in adults, children, and infants. Leveraging behavioral testing, brain imaging, and computational modeling, her lab is focusing on a diverse set of research questions including what people learn from punishment, the role of generosity in social relationships, and the navigation and language abilities in toddlers. The team is also using computational models to deconstruct complex thought processes, such as how humans predict the emotions of others. This research not only expands the junction of sociology and neuroscience, but also unravels—and gives clarity to—the social threads that form the fabric of society.

Virtual Tour of Saxe Lab

Feng Zhang

Engineering Physiology

The primary focus of Feng Zhang’s work is to improve human health by discovering ways to modify cellular function and activity –  including the restoration of diseased, stressed, or aged cells to a more healthful state. His team is developing new molecular technologies to modify the cell’s genetic information, vehicles to deliver these tools into the correct cells, and larger-scale engineering to restore organ function. Zhang hopes to apply these approaches to neurodegenerative diseases, immune disorders, aging, and other disease states.

Alan Jasanoff

Next Generation Brain Imaging

One of the greatest challenges of modern neuroscience is to relate high-level operations of the brain and mind to well-defined biological processes that arise from molecules and cells. The Jasanoff lab is creating a suite of experimental approaches designed to achieve this by permitting brain-wide dynamics of neural signaling and plasticity to be imaged for the first time, with molecular specificity. These potentially transformative approaches use novel probes detectable by magnetic resonance imaging (MRI) and other noninvasive readouts. The probes afford qualitatively new ways to study healthy and pathological aspects of integrated brain function in mechanistically-informative detail, in animals and possibly also people.