Robert Desimone

Paying Attention

Our brains are constantly bombarded with sensory information. The ability to distinguish relevant information from irrelevant distractions is a critical skill, one that is impaired in many brain disorders. By studying the visual system of humans and animals, Robert Desimone has shown that when we attend to something specific, neurons in certain brain regions fire in unison – like a chorus rising above the noise – allowing the relevant information to be “heard” more efficiently by other regions of the brain.

James DiCarlo

Rapid Recognition

DiCarlo’s research goal is to reverse engineer the brain mechanisms that underlie human visual intelligence. He and his collaborators have revealed how population image transformations carried out by a deep stack of interconnected neocortical brain areas — called the primate ventral visual stream — are effortlessly able to extract object identity from visual images. His team uses a combination of large-scale neurophysiology, brain imaging, direct neural perturbation methods, and machine learning methods to build and test neurally-mechanistic computational models of the ventral visual stream and its support of cognition and behavior. Such an engineering-based understanding is likely to lead to new artificial vision and artificial intelligence approaches, new brain-machine interfaces to restore or augment lost senses, and a new foundation to ameliorate disorders of the mind.

Emilio Bizzi

Controlling Actions

A fundamental job of the brain is to produce actions. Emeritus Professor Emilio Bizzi examined how the brain handles the enormous complexity involved in making even the simplest movement. One of his key discoveries was that groups of muscles are activated synergistically by circuits of neurons in the spinal cord. He argued that these synergies represent fundamental building blocks for assembling repertoires of complex movements and might be used to restore limb movements compromised by stroke or muscle injury.

Polina Anikeeva

Probing the Mind

Polina Anikeeva designs, synthesizes, and fabricates optoelectronic and magnetic devices to advance fundamental understanding and treatment of disorders of the nervous system. Anikeeva’s lab designs probes that are compatible with delicate neural tissue, but match the signaling complexity of neural circuits. In addition, her group develops magnetic nanoparticles for non-invasive neural stimulation. Most recently, Anikeeva is exploring the pathways connecting the brain to other body organ systems with the goal of advancing therapies and predictive diagnostics to achieve healthy minds in healthy bodies.

Ed Boyden

Engineering Matter and Mind

Ed Boyden develops new tools for probing, analyzing, and engineering brain circuits. He uses a range of approaches, including synthetic biology, nanotechnology, chemistry, electrical engineering, and optics to develop tools capable of revealing fundamental mechanisms underlying complex brain processes.

Boyden may be best known for pioneering the development of optogenetics, a powerful method that enables neuronal activity to be controlled with light. He also led the team that invented expansion microscopy, in which a specimen is embedded in a gel that swells as it absorbs water, thereby expanding nanoscale features to a size where they can be seen using conventional microscopes. He is now seeking to systematically integrate these technologies to create detailed maps and models of brain circuitry.

Virtual Tour of Boyden Lab