Guoping Feng elected to American Academy of Arts and Sciences

Four MIT faculty members are among more than 200 leaders from academia, business, public affairs, the humanities, and the arts elected to the American Academy of Arts and Sciences, the academy announced today.

One of the nation’s most prestigious honorary societies, the academy is also a leading center for independent policy research. Members contribute to academy publications, as well as studies of science and technology policy, energy and global security, social policy and American institutions, the humanities and culture, and education.

Those elected from MIT this year are:

  • Dimitri A. Antoniadis, Ray and Maria Stata Professor of Electrical Engineering;
  • Anantha P. Chandrakasan, dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science;
  • Guoping Feng, the James W. (1963) and Patricia T. Poitras Professor of Brain and Cognitive Sciences; and
  • David R. Karger, professor of electrical engineering.

“We are pleased to recognize the excellence of our new members, celebrate their compelling accomplishments, and invite them to join the academy and contribute to its work,” said David W. Oxtoby, president of the American Academy of Arts and Sciences. “With the election of these members, the academy upholds the ideals of research and scholarship, creativity and imagination, intellectual exchange and civil discourse, and the relentless pursuit of knowledge in all its forms.”

The new class will be inducted at a ceremony in October in Cambridge, Massachusetts.

Since its founding in 1780, the academy has elected leading “thinkers and doers” from each generation, including George Washington and Benjamin Franklin in the 18th century, Maria Mitchell and Daniel Webster in the 19th century, and Toni Morrison and Albert Einstein in the 20th century. The current membership includes more than 200 Nobel laureates and 100 Pulitzer Prize winners.

How do neurons communicate (so quickly)?

Neurons are the most fundamental unit of the nervous system, and yet, researchers are just beginning to understand how they perform the complex computations that underlie our behavior. We asked Boaz Barak, previously a postdoc in Guoping Feng’s lab at the McGovern Institute and now Senior Lecturer at the School of Psychological Sciences and Sagol School of Neuroscience at Tel Aviv University, to unpack the basics of neuron communication for us.

“Neurons communicate with each other through electrical and chemical signals,” explains Barak. “The electrical signal, or action potential, runs from the cell body area to the axon terminals, through a thin fiber called axon. Some of these axons can be very long and most of them are very short. The electrical signal that runs along the axon is based on ion movement. The speed of the signal transmission is influenced by an insulating layer called myelin,” he explains.

Myelin is a fatty layer formed, in the vertebrate central nervous system, by concentric wrapping of oligodendrocyte cell processes around axons. The term “myelin” was coined in 1854 by Virchow (whose penchant for Greek and for naming new structures also led to the terms amyloid, leukemia, and chromatin). In more modern images, the myelin sheath is beautifully visible as concentric spirals surrounding the “tube” of the axon itself. Neurons in the peripheral nervous system are also myelinated, but the cells responsible for myelination are Schwann cells, rather than oligodendrocytes.

“Neurons communicate with each other through electrical and chemical signals,” explains Boaz Barak.

“Myelin’s main purpose is to insulate the neuron’s axon,” Barak says. “It speeds up conductivity and the transmission of electrical impulses. Myelin promotes fast transmission of electrical signals mainly by affecting two factors: 1) increasing electrical resistance, or reducing leakage of the electrical signal and ions along the axon, “trapping” them inside the axon and 2) decreasing membrane capacitance by increasing the distance between conducting materials inside the axon (intracellular fluids) and outside of it (extracellular fluids).”

Adjacent sections of axon in a given neuron are each surrounded by a distinct myelin sheath. Unmyelinated gaps between adjacent ensheathed regions of the axon are called Nodes of Ranvier, and are critical to fast transmission of action potentials, in what is termed “saltatory conduction.” A useful analogy is that if the axon itself is like an electrical wire, myelin is like insulation that surrounds it, speeding up impulse propagation, and overcoming the decrease in action potential size that would occur during transmission along a naked axon due to electrical signal leakage, how the myelin sheath promotes fast transmission that allows neurons to transmit information long distances in a timely fashion in the vertebrate nervous system.

Myelin seems to be critical to healthy functioning of the nervous system; in fact, disruptions in the myelin sheath have been linked to a variety of disorders.

Former McGovern postdoc, Boaz Barak. Photo: Justin Knight

“Abnormal myelination can arise from abnormal development caused by genetic alterations,” Barak explains further. “Demyelination can even occur, due to an autoimmune response, trauma, and other causes. In neurological conditions in which myelin properties are abnormal, as in the case of lesions or plaques, signal transmission can be affected. For example, defects in myelin can lead to lack of neuronal communication, as there may be a delay or reduction in transmission of electrical and chemical signals. Also, in cases of abnormal myelination, it is possible that the synchronicity of brain region activity might be affected, for example, leading to improper actions and behaviors.”

Researchers are still working to fully understand the role of myelin in disorders. Myelin has a long history of being evasive though, with its origins in the central nervous system being unclear for many years. For a period of time, the origin of myelin was thought to be the axon itself, and it was only after initial discovery (by Robertson, 1899), re-discovery (Del Rio-Hortega, 1919), and skepticism followed by eventual confirmation, that the role of oligodendrocytes in forming myelin became clear. With modern imaging and genetic tools, we should be able to increasingly understand its role in the healthy, as well as a compromised, nervous system.

Do you have a question for The Brain? Ask it here.

2019 Scolnick Prize Awarded to Richard Huganir

The McGovern Institute announced today that the winner of the 2019 Edward M. Scolnick Prize in Neuroscience is Rick Huganir, the Bloomberg Distinguished Professor of Neuroscience and Psychological and Brain Sciences at the Johns Hopkins University School of Medicine. Huganir is being recognized for his role in understanding the molecular and biochemical underpinnings of “synaptic plasticity,” changes at synapses that are key to learning and memory formation. The Scolnick Prize is awarded annually by the McGovern Institute to recognize outstanding advances in any field of neuroscience.

“Rick Huganir has made a huge impact on our understanding of how neurons communicate with one another, and the award honors him for this ground-breaking research”, says Robert Desimone, director of the McGovern Institute and the chair of the committee.

“He conducts basic research on the synapses between neurons but his work has important implications for our understanding of many brain disorders that impair synaptic function.”

As the past president of the Society for Neuroscience, the world’s largest organization of researchers that study the brain and nervous system, Huganir is well-known in the global neuroscience community. He also directs the Kavli Neuroscience Discovery Institute and serves as director of the Solomon H. Snyder Department of Neuroscience at Johns Hopkins University School of Medicine and co-director of the Johns Hopkins Brain Science Institute.

From the beginning of his research career, Huganir was interested in neurotransmitter receptors, key to signaling at the synapse. He conducted his thesis work in the laboratory of Efraim Racker at Cornell University, where he first reconstituted one of these receptors, the nicotinic acetylcholine receptor, allowing its biochemical characterization. He went on to become a postdoctoral fellow in Paul Greengard’s lab at The Rockefeller University in New York. During this time, he made the first functional demonstration that phosphorylation, a reversible chemical modification, affects neurotransmitter receptor activity. Phosphorylation was shown to regulate desensitization, the process by which neurotransmitter receptors stop reacting during prolonged exposure to the neurotransmitter.

Upon arriving at Johns Hopkins University, Huganir broadened this concept, finding that the properties and functions of other key receptors and channels, including the GABAA, AMPA, and kainite receptors, could be controlled through phosphorylation. By understanding the sites of phosphorylation and the effects of this modification, Huganir was laying the foundation for the next major steps from his lab: showing that these modifications affect the strength of synaptic connections and transmission, i.e. synaptic plasticity, and in turn, behavior and memory. Huganir also uncovered proteins that interact with neurotransmitter receptors and influence synaptic transmission and plasticity, thus uncovering another layer of molecular regulation. He went on to define how these accessory factors have such influence, showing that they impact the subcellular targeting and cycling of neurotransmitter receptors to and from the synaptic membrane. These mechanisms influence the formation of, for example, fear memory, as well as its erasure. Indeed, Huganir found that a specific type of AMPA receptor is added to synapses in the amygdala after a traumatic event, and that specific removal results in fear erasure in a mouse model.

Among many awards and honors, Huganir received the Young Investigator Award and the Julius Axelrod Award of the Society for Neuroscience. He was also elected to the American Academy of Arts and Sciences, the US National Academy of Sciences, and the Institute of Medicine. He is also a fellow of the American Association for the Advancement of Science.

The Scolnick Prize was first awarded in 2004, and was established by Merck in honor of Edward M. Scolnick who was President of Merck Research Laboratories for 17 years. Scolnick is currently a core investigator at the Broad Institute, and chief scientist emeritus of the Stanley Center for Psychiatric Research at Broad Institute.

Huganir will deliver the Scolnick Prize lecture at the McGovern Institute on May 8, 2019 at 4:00pm in the Singleton Auditorium of MIT’s Brain and Cognitive Sciences Complex (Bldg 46-3002), 43 Vassar Street in Cambridge. The event is free and open to the public.

 

 

Mapping the brain at high resolution

Researchers have developed a new way to image the brain with unprecedented resolution and speed. Using this approach, they can locate individual neurons, trace connections between them, and visualize organelles inside neurons, over large volumes of brain tissue.

The new technology combines a method for expanding brain tissue, making it possible to image at higher resolution, with a rapid 3-D microscopy technique known as lattice light-sheet microscopy. In a paper appearing in Science Jan. 17, the researchers showed that they could use these techniques to image the entire fruit fly brain, as well as large sections of the mouse brain, much faster than has previously been possible. The team includes researchers from MIT, the University of California at Berkeley, the Howard Hughes Medical Institute, and Harvard Medical School/Boston Children’s Hospital.

This technique allows researchers to map large-scale circuits within the brain while also offering unique insight into individual neurons’ functions, says Edward Boyden, the Y. Eva Tan Professor in Neurotechnology, an associate professor of biological engineering and of brain and cognitive sciences at MIT, and a member of MIT’s McGovern Institute for Brain Research, Media Lab, and Koch Institute for Integrative Cancer Research.

“A lot of problems in biology are multiscale,” Boyden says. “Using lattice light-sheet microscopy, along with the expansion microscopy process, we can now image at large scale without losing sight of the nanoscale configuration of biomolecules.”

Boyden is one of the study’s senior authors, along with Eric Betzig, a senior fellow at the Janelia Research Campus and a professor of physics and molecular and cell biology at UC Berkeley. The paper’s lead authors are MIT postdoc Ruixuan Gao, former MIT postdoc Shoh Asano, and Harvard Medical School Assistant Professor Srigokul Upadhyayula.

Large-scale imaging

In 2015, Boyden’s lab developed a way to generate very high-resolution images of brain tissue using an ordinary light microscope. Their technique relies on expanding tissue before imaging it, allowing them to image the tissue at a resolution of about 60 nanometers. Previously, this kind of imaging could be achieved only with very expensive high-resolution microscopes, known as super-resolution microscopes.

In the new study, Boyden teamed up with Betzig and his colleagues at HHMI’s Janelia Research Campus to combine expansion microscopy with lattice light-sheet microscopy. This technology, which Betzig developed several years ago, has some key traits that make it ideal to pair with expansion microscopy: It can image large samples rapidly, and it induces much less photodamage than other fluorescent microscopy techniques.

“The marrying of the lattice light-sheet microscope with expansion microscopy is essential to achieve the sensitivity, resolution, and scalability of the imaging that we’re doing,” Gao says.

Imaging expanded tissue samples generates huge amounts of data — up to tens of terabytes per sample — so the researchers also had to devise highly parallelized computational image-processing techniques that could break down the data into smaller chunks, analyze it, and stitch it back together into a coherent whole.

In the Science paper, the researchers demonstrated the power of their new technique by imaging layers of neurons in the somatosensory cortex of mice, after expanding the tissue volume fourfold. They focused on a type of neuron known as pyramidal cells, one of the most common excitatory neurons found in the nervous system. To locate synapses, or connections, between these neurons, they labeled proteins found in the presynaptic and postsynaptic regions of the cells. This also allowed them to compare the density of synapses in different parts of the cortex.

Using this technique, it is possible to analyze millions of synapses in just a few days.

“We counted clusters of postsynaptic markers across the cortex, and we saw differences in synaptic density in different layers of the cortex,” Gao says. “Using electron microscopy, this would have taken years to complete.”

The researchers also studied patterns of axon myelination in different neurons. Myelin is a fatty substance that insulates axons and whose disruption is a hallmark of multiple sclerosis. The researchers were able to compute the thickness of the myelin coating in different segments of axons, and they measured the gaps between stretches of myelin, which are important because they help conduct electrical signals. Previously, this kind of myelin tracing would have required months to years for human annotators to perform.

This technology can also be used to image tiny organelles inside neurons. In the new paper, the researchers identified mitochondria and lysosomes, and they also measured variations in the shapes of these organelles.

Circuit analysis

The researchers demonstrated that this technique could be used to analyze brain tissue from other organisms as well; they used it to image the entire brain of the fruit fly, which is the size of a poppy seed and contains about 100,000 neurons. In one set of experiments, they traced an olfactory circuit that extends across several brain regions, imaged all dopaminergic neurons, and counted all synapses across the brain. By comparing multiple animals, they also found differences in the numbers and arrangements of synaptic boutons within each animal’s olfactory circuit.

In future work, Boyden envisions that this technique could be used to trace circuits that control memory formation and recall, to study how sensory input leads to a specific behavior, or to analyze how emotions are coupled to decision-making.

“These are all questions at a scale that you can’t answer with classical technologies,” he says.

The system could also have applications beyond neuroscience, Boyden says. His lab is planning to work with other researchers to study how HIV evades the immune system, and the technology could also be adapted to study how cancer cells interact with surrounding cells, including immune cells.

The research was funded by John Doerr, K. Lisa Yang and Y. Eva Tan, the Open Philanthropy Project, the National Institutes of Health, the Howard Hughes Medical Institute, the HHMI-Simons Faculty Scholars Program, the U.S. Army Research Laboratory and Army Research Office, the US-Israel Binational Science Foundation, Biogen, and Ionis Pharmaceuticals.

H. Robert Horvitz

Learning from Worms

Bob Horvitz studies the nematode worm Caenorhabditis elegans. Only 1 mm long and containing fewer than 1000 cells, C. elegans has been key to discovering fundamental biological mechanisms that are conserved across species. Horvitz has focused on the genetic control of animal development and behavior, and on the mechanisms that underlie neurodegenerative disease. By identifying mutations that affect C. elegans behavior, Horvitz has revealed much about the genetic control of many aspects of nervous system development and of brain function, including how neural circuits control specific behaviors and how behavior is modulated by experience and by the environment.

 

Feng Zhang

Engineering Physiology

The primary focus of Feng Zhang’s work is to improve human health by discovering ways to modify cellular function and activity –  including the restoration of diseased, stressed, or aged cells to a more healthful state. His team is developing new molecular technologies to modify the cell’s genetic information, vehicles to deliver these tools into the correct cells, and larger-scale engineering to restore organ function. Zhang hopes to apply these approaches to neurodegenerative diseases, immune disorders, aging, and other disease states.

Alan Jasanoff

Next Generation Brain Imaging

One of the greatest challenges of modern neuroscience is to relate high-level operations of the brain and mind to well-defined biological processes that arise from molecules and cells. The Jasanoff lab is creating a suite of experimental approaches designed to achieve this by permitting brain-wide dynamics of neural signaling and plasticity to be imaged for the first time, with molecular specificity. These potentially transformative approaches use novel probes detectable by magnetic resonance imaging (MRI) and other noninvasive readouts. The probes afford qualitatively new ways to study healthy and pathological aspects of integrated brain function in mechanistically-informative detail, in animals and possibly also people.

Guoping Feng

Listening to Synapses

Guoping Feng is interested in how synapses — the connections between neurons — contribute to neurodevelopmental and psychiatric diseases, including autism spectrum disorder (ASD) and schizophrenia. He leads research that uses molecular genetics combined with behavioral and electrophysiological methods to study the components of the synapse.

Feng is perhaps best known for pioneering a gene-based therapy that could reverse a severe form of autism that is caused by a single mutation in the SHANK3 gene. After genetically engineering the SHANK3 mutation in animal models using CRISPR-based technology, Feng’s gene-correction therapy greatly reduced SHANK3 symptoms, restoring the animals’ cognitive, behavioral, and motor functions.

Additionally, the lab has leveraged genetic technologies to help map the cellular diversity in the brain—a valuable tool in neuroscience research. Through understanding the molecular, cellular, and circuit changes underlying brain diseases and disorders, the Feng lab hopes to eventually inform new and more effective treatments for neurodevelopmental and psychiatric disorders.

Ann Graybiel

Probing the Deep Brain

Ann Graybiel studies the basal ganglia, forebrain structures that are profoundly important for normal brain function. Dysfunction in these regions is implicated in neurologic and neuropsychiatric disorders ranging from Parkinson’s disease and Huntington’s disease to obsessive-compulsive disorder, anxiety and depression, and addiction. Graybiel’s laboratory is uncovering circuits underlying both the neural deficits related to these disorders, as well as the role that the basal ganglia play in guiding normal learning, motivation, and behavior.

Mark Harnett

Listening to Neurons

Mark Harnett studies how the biophysical features of individual neurons, including ion channels, receptors, and membrane electrical properties, endow neural circuits with the ability to process information and perform the complex computations that underlie behavior. As part of this work, the Harnett lab was the first to describe the physiological properties of human dendrites, the elaborate tree-like structures through which neurons receive the vast majority of their synaptic inputs. Harnett also examines how computations are instantiated in neural circuits to produce complex behaviors such as spatial navigation.

Virtual Tour of Harnett Lab