Editas Medicine to develop new class of genome editing therapeutics

Editas Medicine, a transformative genome editing company, today announced it has secured a $43 million Series A financing led by Flagship Ventures, Polaris Partners and Third Rock Ventures with participation from Partners Innovation Fund. Following an explosion of high profile publications on CRISPR/Cas9 and TALENs, genome editing has emerged as one of the most exciting new areas of scientific research. These recent advances have made it possible to modify, in a targeted way, almost any gene in the human body with the ability to directly turn on, turn off or edit disease-causing genes. Editas’ mission is to translate its genome editing technology into a novel class of human therapeutics that enable precise and corrective molecular modification to treat the underlying cause of a broad range of diseases at the genetic level.

“Editas is exclusively positioned to leverage the very latest in genome editing to develop life-changing medicines for patients,” said Kevin Bitterman, Ph.D., interim president, Editas Medicine and principal, Polaris Partners. “Our suite of foundational intellectual property, combined with the proprietary know-how of our founding team and our financial resources, will enable us to rapidly translate these groundbreaking discoveries into important medicines.”

Leading Foundational Science & Team

The company’s five founders have published much of the foundational work that has elevated genome editing technology to a level where it can now be optimized and developed for therapeutic use. Feng Zhang, Ph.D., core member of the Broad Institute, Investigator at the McGovern Institute for Brain Research and joint assistant professor in the Departments of Brain and Cognitive Sciences and Biological Engineering at Massachusetts Institute of Technology; George Church, Ph.D., founding core faculty member at the Wyss Institute for Biologically Inspired Engineering at Harvard University and Robert Winthrop professor of genetics at Harvard Medical School; and Jennifer Doudna, Ph.D., Howard Hughes Medical Institute investigator and professor of biochemistry, biophysics and structural biology at the University of California, Berkeley, are eminent academic leaders who described and invented key elements of the CRISPR/Cas technology. Keith Joung, M.D., Ph.D., associate chief of pathology for research and associate pathologist at Massachusetts General Hospital and associate professor of pathology at Harvard Medical School, is a pioneer in the development and translation of genome editing technologies. David Liu, Ph.D., Howard Hughes Medical Institute investigator and professor of chemistry and chemical biology at Harvard University, is a renowned protein evolution and engineering biologist.

The company has generated substantial patent filings and has access to intellectual property covering foundational genome editing technologies, as well as essential advancements and enablements that will uniquely allow the company to translate early findings into viable human therapeutic products.

Dr. Zhang commented, “Advances in genome editing have opened the door for an entirely new and promising approach to treating disease by correcting causative errors directly in a patient’s genome. Editas is optimizing and refining existing genome editing technology to create a versatile platform for the development of potential human therapeutics.”

Genome Editing

CRISPR (clustered, regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) and TALENs (transcription activator-like effector nucleases) comprise novel gene editing methods that overcome the challenges associated with previous technologies. Early published research on CRISPR/Cas9, coupled with a growing body of work on TALENs, suggests the potential to pursue therapeutic indications that have previously been intractable to traditional gene therapy, gene knock-down or other genome modification techniques. The CRISPR/Cas9 system, the most recent and exciting approach to emerge, acts by a mechanism in which the Cas9 protein binds to specific RNA molecules. The RNA molecules then guide the Cas9 complex to the exact location in the genome that requires repair. CRISPR/Cas9 uniquely enables highly efficient knock-out, knock-down or selective editing of defective genes in the context of their natural promoters, unlocking the ability to treat the root cause of a broad range of diseases.

“Editas is poised to bring genome editing to fruition as a new therapeutic modality, essentially debugging errors in the human software that cause disease,” said Alexis Borisy, director, Editas Medicine and partner, Third Rock Ventures. “Our CRISPR/Cas9 technology is favorably differentiated due to its ability to pursue almost the entire genome, allowing broad therapeutic application and the targeting of defective genes in a highly specific, selective and efficient manner.”

Management and Board

In collaboration with its founders, Editas has assembled a leadership team and board of directors comprised of experienced investors and industry veterans with proven track records for building exceptional life sciences companies. In addition to Dr. Bitterman, the Editas leadership team includes Alexandra Glucksmann, Ph.D., interim chief operating officer and former founding employee and SVP of research and development at Cerulean Pharma; and Lou Tartaglia, Ph.D., interim chief scientific officer and partner, Third Rock Ventures.

The board of directors is composed of leaders from the Editas syndicate including Mr. Borisy; Douglas Cole, M.D., general partner, Flagship Ventures; and Terry McGuire, co-founder and general partner, Polaris Partners.

“The gene editing approaches on which Editas is based represent some of the most exciting and promising scientific breakthroughs in recent years, making it possible, for the first time, to correct the genomic defects responsible for a broad range of diseases,” said Dr. Cole. “The Editas syndicate has come together as a collaborative team dedicated to supporting and advancing the company’s revolutionary approach to improve patients’ lives. Our funds’ collective strength provides Editas the resources to translate this groundbreaking work into important therapeutics.”

About Flagship Ventures

Realizing entrepreneurial innovation is the mission of Flagship Ventures. The firm operates through two synergistic units: VentureLabs™ which invents and launches transformative companies, and Venture Capital, which finances and develops innovative, early-stage companies. Founded in 2000, and based in Cambridge, Massachusetts, Flagship Ventures manages over $900 million in capital. The Flagship team is active in three principal business sectors: therapeutics, health technologies and sustainability/clean technology. For more information, please visit www.flagshipventures.com.

About Polaris Partners

Founded in 1996, Polaris Partners has more than $3.5 billion in capital under management which we invest into a diverse portfolio of technology and healthcare companies throughout their lifecycles. From the earliest startup phases through the growth equity stages, Polaris Partners takes minority and majority positions alongside outstanding management teams to help grow industry leading companies like Ascend, Avila, Ironwood, Receptos, LogMeIn and Akamai. With offices in Boston, San Francisco and Dublin, Polaris partners with an unparalleled network of repeat CEOs, entrepreneurs, top scientists and emerging innovators who are positioned to make a significant impact in their fields and vastly improve the way in which we all live and work. The result: Hundreds of growing companies, thousands of jobs generated, and billions of dollars of value created. For more information, visit: www.polarispartners.com.

About Third Rock Ventures

Third Rock Ventures is a leading healthcare venture firm focused on investing and launching companies that make a difference in people’s lives. The Third Rock team has a unique vision for ideating and building transformative healthcare companies. Working closely with our strategic partners and entrepreneurs, Third Rock has an extensive track record for managing the value creation path to deliver exceptional performance. For more information, please visit the firm’s website at www.thirdrockventures.com.

About Partners Innovation Fund

The Partners Innovation Fund is the strategic venture fund for Partners HealthCare, founded by the Massachusetts General Hospital and Brigham and Women’s Hospital. The mission of the fund is to provide the necessary support to commercialize innovations in medical informatics, diagnostics, drugs and devices that emerge from the Partners HealthCare investigator community.

Feng Zhang named to Popular Science Brilliant 10

Popular Science magazine has named two MIT junior faculty members — Pedro Reis and Feng Zhang — to its 2013 Brilliant 10 list of young stars in science and technology. The list will appear in the magazine’s October issue.

Popular Science prides itself on revealing the innovations and ideas that are laying today’s groundwork for tomorrow’s breakthroughs, and the Brilliant 10 is one of the most exciting ways we do that,” says Jake Ward, editor-in-chief. “This collection of 10 brilliant young researchers is our chance to honor the most promising work — and the most hardworking people — in science and technology today. This year’s winners are particularly distinguished and I’m proud to welcome them all as members of the 2013 Brilliant 10.”

Pedro Reis, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering and Mechanical Engineering, studies the mechanics of slender structures, with a particular focus on devising new ways of turning mechanical failure into functionality.

Over the past few years, Reis, 35, has published a number of eclectic and impactful papers in prominent journals. In 2009 he reported on the delamination of thin films adhered to soft foundations, which is relevant for stretchable electronics. He explained why adhesive films tear into triangular shapes, a problem that applies to both the everyday peeling of adhesive tape from a roll and the manufacturing of tapered graphene nanoribbons. Motivated by the closing of aquatic flowers, he recently discovered a new mechanism for passively pipetting liquids using a petal-shaped object. And last year inspired by a toy, Reis introduced the Buckliball, a new class of structures that uses buckling to provide origami-like folding capabilities to curved structures with potential uses for encapsulation and soft robotics.

In other work undertaken just for fun, Reis and colleagues reported in 2010 that when cats lap fluids (milk or water, for example), they take advantage of a perfect balance between gravity and inertia.

Feng Zhang, 31, is the W.M. Keck Career Development Professor in Biomedical Engineering, an assistant professor in the department of Brain and Cognitive Sciences, a member of the McGovern Institute for Brain Research and a core member of the Broad Institute. He received the award for his work on genome editing. Earlier this year he reported a powerful new way to make targeted mutations in genomic DNA, based on a bacterial system known as CRISPR. The new method will greatly accelerate the development of animal models of human genetic diseases, and may eventually make it possible to correct genetic mutations in patients. Zhang, a pioneer in optogenetics, has also recently invented a new method for controlling gene expression with light, in which light-sensitive plant proteins are engineered to create an “optical switch” that can turn other genes on or off at will.

This is the 12th annual Brilliant 10 list. Ten MIT researchers were included on previous lists.

Genome editing becomes more accurate

Earlier this year, MIT researchers developed a way to easily and efficiently edit the genomes of living cells. Now, the researchers have discovered key factors that influence the accuracy of the system, an important step toward making it safer for potential use in humans, says Feng Zhang, leader of the research team.

With this technology, scientists can deliver or disrupt multiple genes at once, raising the possibility of treating human disease by targeting malfunctioning genes. To help with that process, Zhang’s team, led by graduate students Patrick Hsu and David Scott, has now created a computer model that can identify the best genetic sequences to target a given gene.

“Using this, you will be able to identify ways to target almost every gene. Within every gene, there are hundreds of locations that can be edited, and this will help researchers narrow down which ones are better than others,” says Zhang, an assistant professor of brain and cognitive sciences at MIT and senior author of a paper describing the new model, appearing in the July 21 online edition of Nature Biotechnology.

The genome-editing system, known as CRISPR, exploits a protein-RNA complex that bacteria use to defend themselves from infection. The complex includes short RNA sequences bound to an enzyme called Cas9, which slices DNA. These RNA sequences are designed to target specific locations in the genome; when they encounter a match, Cas9 cuts the DNA.

This approach can be used either to disrupt the function of a gene or to replace it with a new one. To replace the gene, the researchers must also add a DNA template for the new gene, which would be copied into the genome after the DNA is cut.

This technique offers a much faster and more efficient way to create transgenic mice, which are often used to study human disease. Current methods for creating such mice require adding small pieces of DNA to mouse embryonic cells. However, the process is inefficient and time-consuming.

With CRISPR, many genes are edited at once, and the entire process can be done in three weeks, says Zhang, who is the W. M. Keck Career Development Professor in Biomedical Engineering at MIT and a core member of the Broad Institute and MIT’s McGovern Institute for Brain Research. The system can also be used to create genetically modified cell lines for lab experiments much more efficiently.

Fine-tuning

Since Zhang and his colleagues first described the original system in January, more than 2,000 labs around the world have started using the system to generate their own genetically modified cell lines or animals. In the new paper, the researchers describe improvements in both the efficiency and accuracy of gene editing.

To modify genes using this system, an RNA “guide strand” complementary to a 20-base-pair sequence of targeted DNA is delivered to cells. After the RNA strand binds to the target DNA, it recruits the Cas9 enzyme, which snips the DNA in the correct location.

The researchers discovered they could minimize the chances of the Cas9-RNA complex accidentally cleaving the wrong site by making sure the target sequence is not too similar to other sequences found in the genome. They found that if an off-target sequence differs from the target sequence by three or fewer base pairs, the editing complex will likely also cleave that sequence, which could have deleterious effects for the cell.

The team’s new computer model can search any sequence within the mouse or human genome and identify 20-base-pair sequences within that region that have the least overlap with sequences elsewhere in the genome.

Another way to improve targeting specificity is by adjusting the dosage of the guide RNA, the researchers found. In general, decreasing the amount of RNA delivered minimizes damage to off-target sites but has a much smaller effect on cleavage of the target sequence. For each sequence, the “sweet spot” with the best balance of high on-target effects and low off-target effects can be calculated, Zhang says.

“The real value of this paper is that it does a very comprehensive and systematic analysis to understand the causes of off-target effects. That analysis suggests a lot of possible ways to eliminate or reduce off-target effects,” says Michael Terns, a professor of biochemistry and molecular biology at the University of Georgia who was not part of the research team.

Zhang and his colleagues also optimized the structure of the RNA guide needed for efficient activation of Cas9. In the January paper describing the original system, the researchers found that two separate RNA strands working together — one that binds to the target DNA and another that recruits Cas9 — produced better results than when those two strands were fused together before delivery. However, in experiments reported in the new paper, the researchers found that they could boost the efficiency of the fused RNA strand by making the strand longer. These longer RNA guide strands include a hairpin structure that may stabilize the molecules and help them interact with Cas9, Zhang says.

Zhang’s team is now working on further improving the specificity of the system, and plans to start generating cell lines and animals that could be used to study how the brain develops and builds neural circuits. By disrupting genes known to be involved in those processes, they can learn more about how they work and how they are impaired in neurological disease.

The research was funded by a National Institutes of Health Director’s Pioneer Award; an NIH Transformative R01 grant; the Keck, McKnight, Damon Runyan, Searle Scholars, Klingenstein and Simons foundations; Bob Metcalfe; and Jane Pauley.

Controlling genes with light

Although human cells have an estimated 20,000 genes, only a fraction of those are turned on at any given time, depending on the cell’s needs — which can change by the minute or hour. To find out what those genes are doing, researchers need tools that can manipulate their status on similarly short timescales.

That is now possible, thanks to a new technology developed at MIT and the Broad Institute that can rapidly start or halt the expression of any gene of interest simply by shining light on the cells.

The work is based on a technique known as optogenetics, which uses proteins that change their function in response to light. In this case, the researchers adapted the light-sensitive proteins to either stimulate or suppress the expression of a specific target gene almost immediately after the light comes on.

“Cells have very dynamic gene expression happening on a fairly short timescale, but so far the methods that are used to perturb gene expression don’t even get close to those dynamics. To understand the functional impact of those gene-expression changes better, we have to be able to match the naturally occurring dynamics as closely as possible,” says Silvana Konermann, an MIT graduate student in brain and cognitive sciences.

The ability to precisely control the timing and duration of gene expression should make it much easier to figure out the roles of particular genes, especially those involved in learning and memory. The new system can also be used to study epigenetic modifications — chemical alterations of the proteins that surround DNA — which are also believed to play an important role in learning and memory.

Konermann and Mark Brigham, a graduate student at Harvard University, are the lead authors of a paper describing the technique in the July 22 online edition of Nature. The paper’s senior author is Feng Zhang, the W. M. Keck Career Development Professor in Biomedical Engineering at MIT and a core member of the Broad Institute and MIT’s McGovern Institute for Brain Research.

Shining light on genes

The new system consists of several components that interact with each other to control the copying of DNA into messenger RNA (mRNA), which carries genetic instructions to the rest of the cell. The first is a DNA-binding protein known as a transcription activator-like effector (TALE). TALEs are modular proteins that can be strung together in a customized way to bind any DNA sequence.

Fused to the TALE protein is a light-sensitive protein called CRY2 that is naturally found in Arabidopsis thaliana, a small flowering plant. When light hits CRY2, it changes shape and binds to its natural partner protein, known as CIB1. To take advantage of this, the researchers engineered a form of CIB1 that is fused to another protein that can either activate or suppress gene copying.

After the genes for these components are delivered to a cell, the TALE protein finds its target DNA and wraps around it. When light shines on the cells, the CRY2 protein binds to CIB1, which is floating in the cell. CIB1 brings along a gene activator, which initiates transcription, or the copying of DNA into mRNA. Alternatively, CIB1 could carry a repressor, which shuts off the process.

A single pulse of light is enough to stimulate the protein binding and initiate DNA copying.

The researchers found that pulses of light delivered every minute or so are the most effective way to achieve continuous transcription for the desired period of time. Within 30 minutes of light delivery, the researchers detected an uptick in the amount of mRNA being produced from the target gene. Once the pulses stop, the mRNA starts to degrade within about 30 minutes.

In this study, the researchers tried targeting nearly 30 different genes, both in neurons grown in the lab and in living animals. Depending on the gene targeted and how much it is normally expressed, the researchers were able to boost transcription by a factor of two to 200.




Epigenetic modifications



An important element of gene-expression control is epigenetic modification. One major class of epigenetic effectors is chemical modification of the proteins, known as histones, that anchor chromosomal DNA and control access to the underlying genes. The researchers showed that they can also alter these epigenetic modifications by fusing TALE proteins with histone modifiers.

Epigenetic modifications are thought to play a key role in learning and forming memories, but this has not been very well explored because there are no good ways to disrupt the modifications, short of blocking histone modification of the entire genome. The new technique offers a much more precise way to interfere with modifications of individual genes.

“We want to allow people to prove the causal role of specific epigenetic modifications in the genome,” Zhang says.

So far, the researchers have demonstrated that some of the histone effector domains can be tethered to light-sensitive proteins; they are now trying to expand the types of histone modifiers they can incorporate into the system.

“It would be really useful to expand the number of epigenetic marks that we can control. At the moment we have a successful set of histone modifications, but there are a good deal more of them that we and others are going to want to be able to use this technology for,” Brigham says.

The research was funded by a Hubert Schoemaker Fellowship; a National Institutes of Health Transformative R01 Award; an NIH Director’s Pioneer Award; the Keck, McKnight, Vallee, Damon Runyon, Searle Scholars, Klingenstein and Simons foundations; and Bob Metcalfe and Jane Pauley.

Editing the genome with high precision

Researchers at MIT, the Broad Institute and Rockefeller University have developed a new technique for precisely altering the genomes of living cells by adding or deleting genes. The researchers say the technology could offer an easy-to-use, less-expensive way to engineer organisms that produce biofuels; to design animal models to study human disease; and to develop new therapies, among other potential applications.

To create their new genome-editing technique, the researchers modified a set of bacterial proteins that normally defend against viral invaders. Using this system, scientists can alter several genome sites simultaneously and can achieve much greater control over where new genes are inserted, says Feng Zhang, an assistant professor of brain and cognitive sciences at MIT and leader of the research team.

“Anything that requires engineering of an organism to put in new genes or to modify what’s in the genome will be able to benefit from this,” says Zhang, who is a core member of the Broad Institute and MIT’s McGovern Institute for Brain Research.

Zhang and his colleagues describe the new technique in the Jan. 3 online edition of Science. Lead authors of the paper are graduate students Le Cong and Ann Ran.

Early efforts

The first genetically altered mice were created in the 1980s by adding small pieces of DNA to mouse embryonic cells. This method is now widely used to create transgenic mice for the study of human disease, but, because it inserts DNA randomly in the genome, researchers can target the newly delivered genes to replace existing ones.

In recent years, scientists have sought more precise ways to edit the genome. One such method, known as homologous recombination, involves delivering a piece of DNA that includes the gene of interest flanked by sequences that match the genome region where the gene is to be inserted. However, this technique’s success rate is very low because the natural recombination process is rare in normal cells.

More recently, biologists discovered that they could improve the efficiency of this process by adding enzymes called nucleases, which can cut DNA. Zinc fingers are commonly used to deliver the nuclease to a specific location, but zinc finger arrays can target every possible sequence of DNA, limiting their usefulness. Furthermore, assembling the proteins is a labor-intensive and expensive process.

Complexes known as transcription activator-like effector nucleases (TALENs) can also cut the genome in specific locations, but these complexes can also be expensive and difficult to assemble.

Precise targeting

The new system is much more user-friendly, Zhang says. Making use of naturally occurring bacterial protein-RNA systems that recognize and snip viral DNA, the researchers can create DNA-editing complexes that include a nuclease called Cas9 bound to short RNA sequences. These sequences are designed to target specific locations in the genome; when they encounter a match, Cas9 cuts the DNA.

This approach can be used either to disrupt the function of a gene or to replace it with a new one. To replace the gene, the researchers must also add a DNA template for the new gene, which would be copied into the genome after the DNA is cut.

Each of the RNA segments can target a different sequence. “That’s the beauty of this. You can easily program a nuclease to target one or more positions in the genome,” Zhang says.

The method is also very precise — if there is a single base-pair difference between the RNA targeting sequence and the genome sequence, Cas9 is not activated. This is not the case for zinc fingers or TALENs. The new system also appears to be more efficient than TALEN, and much less expensive.

The new system “is a significant advancement in the field of genome editing and, in its first iteration, already appears comparable in efficiency to what zinc finger nucleases and TALENs have to offer,” says Aron Geurts, an associate professor of physiology at the Medical College of Wisconsin. “Deciphering the ever-increasing data emerging on genetic variation as it relates to human health and disease will require this type of scalable and precise genome editing in model systems.”

The research team has deposited the necessary genetic components with a nonprofit called Addgene, making the components widely available to other researchers who want to use the system. The researchers have also created a website with tips and tools for using this new technique.

Engineering new therapies

Among other possible applications, this system could be used to design new therapies for diseases such as Huntington’s disease, which appears to be caused by a single abnormal gene. Clinical trials that use zinc finger nucleases to disable genes are now under way, and the new technology could offer a more efficient alternative.

The system might also be useful for treating HIV by removing patients’ lymphocytes and mutating the CCR5 receptor, through which the virus enters cells. After being put back in the patient, such cells would resist infection.

This approach could also make it easier to study human disease by inducing specific mutations in human stem cells. “Using this genome editing system, you can very systematically put in individual mutations and differentiate the stem cells into neurons or cardiomyocytes and see how the mutations alter the biology of the cells,” Zhang says.

In the Science study, the researchers tested the system in cells grown in the lab, but they plan to apply the new technology to study brain function and diseases.

The research was funded by the National Institute of Mental Health; the W.M. Keck Foundation; the McKnight Foundation; the Bill & Melinda Gates Foundation; the Damon Runyon Cancer Research Foundation; the Searle Scholars Program; and philanthropic support from MIT alumni Mike Boylan and Bob Metcalfe, as well as the newscaster Jane Pauley.

Optogenetics: A Light Switch for Neurons

This animation illustrates optogenetics — a radical new technology for controlling brain activity with light. Ed Boyden, the co-inventor of this technology, continues to develop new technologies for controlling brain activity.