Brain scans may help diagnose dyslexia

About 10 percent of the U.S. population suffers from dyslexia, a condition that makes learning to read difficult. Dyslexia is usually diagnosed around second grade, but the results of a new study from MIT could help identify those children before they even begin reading, so they can be given extra help earlier.

The study, done with researchers at Boston Children’s Hospital, found a correlation between poor pre-reading skills in kindergartners and the size of a brain structure that connects two language-processing areas.

Previous studies have shown that in adults with poor reading skills, this structure, known as the arcuate fasciculus, is smaller and less organized than in adults who read normally. However, it was unknown if these differences cause reading difficulties or result from lack of reading experience.

“We were very interested in looking at children prior to reading instruction and whether you would see these kinds of differences,” says John Gabrieli, the Grover M. Hermann Professor of Health Sciences and Technology, professor of brain and cognitive sciences and a member of MIT’s McGovern Institute for Brain Research.

Gabrieli and Nadine Gaab, an assistant professor of pediatrics at Boston Children’s Hospital, are the senior authors of a paper describing the results in the Aug. 14 issue of the Journal of Neuroscience. Lead authors of the paper are MIT postdocs Zeynep Saygin and Elizabeth Norton.

The path to reading

The new study is part of a larger effort involving approximately 1,000 children at schools throughout Massachusetts and Rhode Island. At the beginning of kindergarten, children whose parents give permission to participate are assessed for pre-reading skills, such as being able to put words together from sounds.

“From that, we’re able to provide — at the beginning of kindergarten — a snapshot of how that child’s pre-reading abilities look relative to others in their classroom or other peers, which is a real benefit to the child’s parents and teachers,” Norton says.

The researchers then invite a subset of the children to come to MIT for brain imaging. The Journal of Neuroscience study included 40 children who had their brains scanned using a technique known as diffusion-weighted imaging, which is based on magnetic resonance imaging (MRI).

This type of imaging reveals the size and organization of the brain’s white matter — bundles of nerves that carry information between brain regions. The researchers focused on three white-matter tracts associated with reading skill, all located on the left side of the brain: the arcuate fasciculus, the inferior longitudinal fasciculus (ILF) and the superior longitudinal fasciculus (SLF).

When comparing the brain scans and the results of several different types of pre-reading tests, the researchers found a correlation between the size and organization of the arcuate fasciculus and performance on tests of phonological awareness — the ability to identify and manipulate the sounds of language.

Phonological awareness can be measured by testing how well children can segment sounds, identify them in isolation, and rearrange them to make new words. Strong phonological skills have previously been linked with ease of learning to read. “The first step in reading is to match the printed letters with the sounds of letters that you know exist in the world,” Norton says.

The researchers also tested the children on two other skills that have been shown to predict reading ability — rapid naming, which is the ability to name a series of familiar objects as quickly as you can, and the ability to name letters. They did not find any correlation between these skills and the size or organization of the white-matter structures scanned in this study.

Early intervention

The left arcuate fasciculus connects Broca’s area, which is involved in speech production, and Wernicke’s area, which is involved in understanding written and spoken language. A larger and more organized arcuate fasciculus could aid in communication between those two regions, the researchers say.

Gabrieli points out that the structural differences found in the study don’t necessarily reflect genetic differences; environmental influences could also be involved. “At the moment when the children arrive at kindergarten, which is approximately when we scan them, we don’t know what factors lead to these brain differences,” he says.

The researchers plan to follow three waves of children as they progress to second grade and evaluate whether the brain measures they have identified predict poor reading skills.

“We don’t know yet how it plays out over time, and that’s the big question: Can we, through a combination of behavioral and brain measures, get a lot more accurate at seeing who will become a dyslexic child, with the hope that that would motivate aggressive interventions that would help these children right from the start, instead of waiting for them to fail?” Gabrieli says.

For at least some dyslexic children, offering extra training in phonological skills can help them improve their reading skills later on, studies have shown.

The research was funded by the National Institutes of Health, the Poitras Center for Affective Disorders Research, the Ellison Medical Foundation and the Halis Family Foundation.

Predicting how patients respond to therapy

Social anxiety is usually treated with either cognitive behavioral therapy or medications. However, it is currently impossible to predict which treatment will work best for a particular patient. The team of researchers from MIT, Boston University (BU) and Massachusetts General Hospital (MGH) found that the effectiveness of therapy could be predicted by measuring patients’ brain activity as they looked at photos of faces, before the therapy sessions began.

The findings, published this week in the Archives of General Psychiatry, may help doctors more accurately choose treatments for social anxiety disorder, which is estimated to affect around 15 million people in the United States.

“Our vision is that some of these measures might direct individuals to treatments that are more likely to work for them,” says John Gabrieli, the Grover M. Hermann Professor of Brain and Cognitive Sciences at MIT, a member of the McGovern Institute for Brain Research and senior author of the paper.

Lead authors of the paper are MIT postdoc Oliver Doehrmann and Satrajit Ghosh, a research scientist in the McGovern Institute.

Choosing treatments

Sufferers of social anxiety disorder experience intense fear in social situations, interfering with their ability to function in daily life. Cognitive behavioral therapy aims to change the thought and behavior patterns that lead to anxiety. For social anxiety disorder patients, that might include learning to reverse the belief that others are watching or judging them.

The new paper is part of a larger study that MGH and BU recently ran on cognitive behavioral therapy for social anxiety, led by Mark Pollack, director of the Center for Anxiety and Traumatic Stress Disorders at MGH, and Stefan Hofmann, director of the Social Anxiety Program at BU.

“This was a chance to ask if these brain measures, taken before treatment, would be informative in ways above and beyond what physicians can measure now, and determine who would be responsive to this treatment,” Gabrieli says.

Currently doctors might choose a treatment based on factors such as ease of taking pills versus going to therapy, the possibility of drug side effects, or what the patients’ insurance will cover. “From a science perspective there’s very little evidence about which treatment is optimal for a person,” Gabrieli says.

The researchers used functional magnetic resonance imaging (fMRI) to image the brains of patients before and after treatment. There have been many imaging studies showing brain differences between healthy people and patients with neuropsychiatric disorders, but so far imaging has not been established as a way to predict patient response to particular treatments.

Measuring brain activity

In the new study, the researchers measured differences in brain activity as patients looked at images of angry or neutral faces. After 12 weeks of cognitive behavioral therapy, patients’ social anxiety levels were tested. The researchers found that patients who had shown a greater difference in activity in high-level visual processing areas during the face-response task showed the most improvement after therapy.

The findings are an important step towards improving doctors’ ability to choose the right treatment for psychiatric disorders, says Greg Siegle, associate professor of psychiatry at the University of Pittsburgh. “It’s really critical that somebody do this work, and they did it very well,” says Siegle, who was not part of the research team. “It moves the field forward, and brings psychology into more of a rigorous science, using neuroscience to distinguish between clinical cases that at first appear homogeneous.”

Gabrieli says it’s unclear why activity in brain regions involved with visual processing would be a good predictor of treatment outcome. One possibility is that patients who benefited more were those whose brains were already adept at segregating different types of experiences, Gabrieli says.

The researchers are now planning a follow-up study to investigate whether brain scans can predict differences in response between cognitive behavioral therapy and drug treatment.

“Right now, all by itself, we’re just giving somebody encouraging or discouraging news about the likely outcome of therapy,” Gabrieli says. “The really valuable thing would be if it turns out to be differentially sensitive to different treatment choices.”

The research was funded by the Poitras Center for Affective Disorders Research and the National Institute of Mental Health.