Ten researchers from MIT and Broad receive NIH Director’s Awards
Awards support high-risk, high-impact biomedical research.
The High-Risk, High-Reward Research (HRHR) program, supported by the National Institutes of Health (NIH) Common Fund, has awarded 86 grants to scientists with unconventional approaches to major challenges in biomedical and behavioral research. Ten of the awardees are affiliated with MIT and the Broad Institute of MIT and Harvard.
The NIH typically supports research projects, not individual scientists, but the HRHR program identifies specific researchers with innovative ideas to address gaps in biomedical research. The program issues four types of awards annually — the Pioneer Award, the New Innovator Award, the Transformative Research Award and the Early Independence Award — to “high-caliber investigators whose ideas stretch the boundaries of our scientific knowledge.”
Four researchers who are affiliated with either MIT or the Broad Institute received this year’s New Innovator Awards, which support “unusually innovative research” from early career investigators. They are:
- Paul Blainey, an MIT assistant professor of biological engineering and a core member of the Broad Institute, is an expert in microanalysis systems for studies of individual molecules and cells. The award will fund the establishment a new technology that enables advanced readout from living cells.
- Kevin Esvelt, an associate professor of media arts and sciences at MIT’s Media Lab, invents new ways to study and influence the evolution of ecosystems. Esvelt plans to use the NIH grant to develop powerful “daisy drive” systems for more precise genetic alterations of wild organisms. Such an intervention has the potential to serve as a powerful weapon against malaria, Zika, Lyme disease, and many other infectious diseases.
- Evan Macosko is an associate member of the Broad Institute who develops molecular techniques to more deeply understand the function of cellular specialization in the nervous system. Macosko’s award will fund a novel technology, Slide-seq, which enables genome-wide expression analysis of brain tissue sections at single-cell resolution.
- Gabriela Schlau-Cohen, an MIT assistant professor of chemistry, combines tools from chemistry, optics, biology, and microscopy to develop new approaches to study the dynamics of biological systems. Her award will be used to fund the development of a new nanometer-distance assay that directly accesses protein motion with unprecedented spatiotemporal resolution under physiological conditions.
Recipients of the Early Independence Award include three Broad Institute Fellows. The award recognizes “exceptional junior scientists” with an opportunity to skip traditional postdoctoral training and move immediately into independent research positions.
- Ahmed Badran is a Broad Institute Fellow who studies the function of ribosomes and the control of protein synthesis. Ribosomes are important targets for antibiotics, and the NIH award will support the development of a new technology platform for probing ribosome function within living cells.
- Fei Chen, a Broad Institute Fellow who is also a research affiliate at MIT’s McGovern Institute for Brain Research, has pioneered novel molecular and microscopy tools to illuminate biological pathways and function. He will use one of these tools, expansion microscopy, to explore the molecular basis of glioblastomas, an aggressive form of brain cancer.
- Hilary Finucane, a Broad Institute Fellow who recently received her PhD from MIT’s Department of Mathematics, develops computational methods for analyzing biological data. She plans to develop methods to analyze large-scale genomic data to identify disease-relevant cell types and tissues, a necessary first step for understanding molecular mechanisms of disease.
Among the recipients of the NIH’s Pioneer Awards are Kay Tye, an assistant professor of brain and cognitive sciences at MIT and a member of MIT’s Picower Institute for Learning and Memory, and Feng Zhang, the James and Patricia Poitras ’63 Professor in Neuroscience, an associate professor of brain and cognitive sciences and biological engineering at MIT, a core member of the Broad Institute, and an investigator at MIT’s McGovern Institute for Brain Research. Recipients of this award are challenged to pursue “groundbreaking, high-impact approaches to a broad area of biomedical or behavioral science. Tye, who studies the brain mechanisms underlying emotion and behavior, will use her award to look at the neural representation of social homeostasis and social rank. Zhang, who pioneered the gene-editing technology known as CRISPR, plans to develop a suite of tools designed to achieve precise genome surgery for repairing disease-causing changes in DNA.
Ed Boyden, an associate professor of brain and cognitive sciences and biological engineering at MIT, and a member of MIT’s Media Lab and McGovern Institute for Brain Research, is a recipient of the Transformative Research Award. This award promotes “cross-cutting, interdisciplinary approaches that could potentially create or challenge existing paradigms.” Boyden, who develops new strategies for understanding and engineering brain circuits, will use the grant to develop high-speed 3-D imaging of neural activity.
This year, the NIH issued a total of 12 Pioneer Awards, 55 New Innovator Awards, 8 Transformative Research Awards, and 11 Early Independence Awards. The awards total $263 million and represent contributions from the NIH Common Fund; National Institute of General Medical Sciences; National Institute of Mental Health; National Center for Complementary and Integrative Health; and National Institute of Dental and Craniofacial Research.
“I continually point to this program as an example of the creative and revolutionary research NIH supports,” said NIH Director Francis S. Collins. “The quality of the investigators and the impact their research has on the biomedical field is extraordinary.”