Assessing connections in the brain’s reading network

When we read, information zips between language processing centers in different parts of the brain, traveling along neural highways in the white matter. This coordinated activity allows us to decipher words and comprehend their meaning. Many neuroscientists suspect that variations in white matter may underlie differences in reading ability, and hope that by determining which white matter tracts are involved, they will be able to guide the development of more effective interventions for children who struggle with reading skills.

In a January 14, 2022, online publication in the journal NeuroImage, scientists at MIT’s McGovern Institute report on the largest brain imaging study to date to evaluate the relationship between white matter structure and reading ability. Their findings suggest that if white matter deficiencies are a significant cause of reading disability, new strategies will be needed to pin them down.

White matter is composed of bundles of insulated nerve fibers. It can be thought of as the internet of the brain, says senior author John Gabrieli, the Grover Hermann Professor of Health Sciences and Technology at MIT. “It’s the connectivity: the way that the brain communicates at some distance to orchestrate higher-level thoughts, and abilities like reading,” explains Gabrieli, who is also a professor of brain and cognitive sciences and an investigator at the McGovern Institute.

The left inferior cerebellar peduncle, a white matter tract that connects the cerebellum to the brainstem and spinal cord. Image: Steven Meisler

Long-distance connections

To visualize white matter and study its structure, neuroscientists use an imaging technique called diffusion-weighted imaging (DWI). Images are collected in an MRI scanner by tracking the movements of water molecules in the brain. A key measure used to interpret these images is fractional anisotropy (FA), which varies with many physical features of nerve fibers, such as their density, diameter, and degree of insulation. Although FA does not measure any of these properties directly, it is considered an indicator of structural integrity within white matter tracts.

Several studies have found the FA of one or more white matter tracts to be lower in children with low reading scores or dyslexia than in children with stronger reading abilities. But those studies are small—usually involving only a few dozen children—and their findings are inconsistent. So it has been difficult to attribute reading problems to poor connections between specific parts of the brain.

Hoping to glean more conclusive results, Gabrieli and Steven Meisler, a graduate student in the Harvard Program in Speech and Hearing Bioscience and Technology who is completing his doctoral work in the Gabrieli lab, turned to a large collection of high-quality brain images available through the Child Mind Institute’s Healthy Brain Network. Using DWI images collected from 686 children and state-of-the-art methods of analysis, they assessed the FA of 20 white matter tracts that are thought to be important for reading.

The children represented in the dataset had diverse reading abilities, but surprisingly, when they compared children with and without reading disability, Meisler and Gabrieli found no significant differences in the FA of any of the 20 tracts. Nor did they find any correlation between white matter FA and children’s overall reading scores.

More detailed analysis did link reading ability to the FA of two particular white matter tracts. The researchers only detected the correlation when they narrowed their analysis to children older than eight, who are usually reading to learn, rather than learning to read. Within this group, they found two white matter tracts whose FA was lower in children who struggled with a specific reading skill: reading “pseudowords.” The ability to read nonsense words is used to assess knowledge of the relationship between letters and sounds, since real words can be recognized instead through experience and memory.

The right superior longitudinal fasciculus, a white matter tract that connects frontal brain regions to parietal areas. The research team found that fractional anisotropy (FA) of the right superior longitudinal fasciculus and the left inferior cerebellar peduncles (shown above) correlated positively with pseudoword reading ability among children ages 9 and older. Image: Steven Meisler

The first of these tracts connects language processing centers in the frontal and parietal brain regions. The other contains fibers that connect that the brainstem with the cerebellum, and may help control the eye movements needed to see and track words. The FA differences that Meisler and Gabrieli linked to reading scores were small, and it’s not yet clear what they mean. Since less cohesive structure in these two tracts was linked to lower pseudoword-reading scores only in older children, it may be a consequence of living with a reading disability rather than a cause, Meisler says.

The findings don’t rule out a role for white matter structure in reading disability, but they do suggest that researchers will need a different approach to find relevant features. “Our results suggest that FA does not relate to reading abilities as much as previously thought,” Meisler says. In future studies, he says, researchers will likely need to take advantage of more advanced methods of image analysis to assess features that more directly reflect white matter’s ability to serve as a conduit of information.

National Academy of Sciences honors cognitive neuroscientist Nancy Kanwisher

MIT neuroscientist and McGovern Investigator Nancy Kanwisher. Photo: Jussi Puikkonen/KNAW

The National Academy of Sciences (NAS) has announced today that Nancy Kanwisher, the Walter A. Rosenblith Professor of Cognitive Neuroscience in MIT’s Department of Brain and Cognitive Sciences, has received the 2022 NAS Award in the Neurosciences for her “pioneering research into the functional organization of the human brain.” The $25,000 prize, established by the Fidia Research Foundation, is presented every three years to recognize “extraordinary contributions to the neuroscience fields.”

“I am deeply honored to receive this award from the NAS,” says Kanwisher, who is also an investigator in MIT’s McGovern Institute and a member of the Center for Brains, Minds and Machines. “It has been a profound privilege, and a total blast, to watch the human brain in action as these data began to reveal an initial picture of the organization of the human mind. But the biggest joy has been the opportunity to work with the incredible group of talented young scientists who actually did the work that this award recognizes.”

A window into the mind

Kanwisher is best known for her landmark insights into how humans recognize and process faces. Psychology had long-suggested that recognizing a face might be distinct from general object recognition. But Kanwisher galvanized the field in 1997 with her seminal discovery that the human brain contains a small region specialized to respond only to faces. The region, which Kanwisher termed the fusiform face area (FFA), became activated when subjects viewed images of faces in an MRI scanner, but not when they looked at scrambled faces or control stimuli.

Since her 1997 discovery (now the most highly cited manuscript in its area), Kanwisher and her students have applied similar methods to find brain specializations for the recognition of scenes, the mental states of others, language, and music. Taken together, her research provides a compelling glimpse into the architecture of the brain, and, ultimately, what makes us human.

“Nancy’s work over the past two decades has argued that many aspects of human cognition are supported by specialized neural circuitry, a conclusion that stands in contrast to our subjective sense of a singular mental experience,” says McGovern Institute Director Robert Desimone. “She has made profound contributions to the psychological and cognitive sciences and I am delighted that the National Academy of Sciences has recognized her outstanding achievements.”

One-in-a-million mentor

Beyond the lab, Kanwisher has a reputation as a tireless communicator and mentor who is actively engaged in the policy implications of brain research. The statistics speak for themselves: her 2014 TED talk, “A Neural portrait of the human mind” has been viewed over a million times online and her introductory MIT OCW course on the human brain has generated more than nine million views on YouTube.

Nancy Kanwisher works with researchers from her lab in MIT’s Martinos Imaging Center. Photo: Kris Brewer

Kanwisher also has an exceptional track record in training women scientists who have gone on to successful independent research careers, in many cases becoming prominent figures in their own right.

“Nancy is the one-in-a-million mentor, who is always skeptical of your ideas and your arguments, but immensely confident of your worth,” says Rebecca Saxe, John W. Jarve (1978) Professor of Brain and Cognitive Sciences, investigator at the McGovern Institute, and associate dean of MIT’s School of Science. Saxe was a graduate student in Kanwisher’s lab where she earned her PhD in cognitive neuroscience in 2003. “She has such authentic curiosity,” Saxe adds. “It’s infectious and sustaining. Working with Nancy was a constant reminder of why I wanted to be a scientist.”

The NAS will present Kanwisher with the award during its annual meeting on May 1, 2022 in Washington, DC. The event will be webcast live. Kanwisher plans to direct her prize funds to the non-profit organization Malengo, established by a former student and which provides quality undergraduate education to individuals who would otherwise not be able to afford it.

The craving state

This story originally appeared in the Winter 2022 issue of BrainScan.

***

For people struggling with substance use disorders — and there are about 35 million of them worldwide — treatment options are limited. Even among those who seek help, relapse is common. In the United States, an epidemic of opioid addiction has been declared a public health emergency.

A 2019 survey found that 1.6 million people nationwide had an opioid use disorder, and the crisis has surged since the start of the COVID-19 pandemic. The Centers for Disease Control and Prevention estimates that more than 100,000 people died of drug overdose between April 2020 and April 2021 — nearly 30 percent more overdose deaths than occurred during the same period the previous year.

In the United States, an epidemic of opioid addiction has been declared a public health emergency.

A deeper understanding of what addiction does to the brain and body is urgently needed to pave the way to interventions that reliably release affected individuals from its grip. At the McGovern Institute, researchers are turning their attention to addiction’s driving force: the deep, recurring craving that makes people prioritize drug use over all other wants and needs.

McGovern Institute co-founder, Lore Harp McGovern.

“When you are in that state, then it seems nothing else matters,” says McGovern Investigator Fan Wang. “At that moment, you can discard everything: your relationship, your house, your job, everything. You only want the drug.”

With a new addiction initiative catalyzed by generous gifts from Institute co-founder Lore Harp McGovern and others, McGovern scientists with diverse expertise have come together to begin clarifying the neurobiology that underlies the craving state. They plan to dissect the neural transformations associated with craving at every level — from the drug-induced chemical changes that alter neuronal connections and activity to how these modifications impact signaling brain-wide. Ultimately, the McGovern team hopes not just to understand the craving state, but to find a way to relieve it — for good.

“If we can understand the craving state and correct it, or at least relieve a little bit of the pressure,” explains Wang, who will help lead the addiction initiative, “then maybe we can at least give people a chance to use their top-down control to not take the drug.”

The craving cycle

For individuals suffering from substance use disorders, craving fuels a cyclical pattern of escalating drug use. Following the euphoria induced by a drug like heroin or cocaine, depression sets in, accompanied by a drug craving motivated by the desire to relieve that suffering. And as addiction progresses, the peaks and valleys of this cycle dip lower: the pleasant feelings evoked by the drug become weaker, while the negative effects a person experiences in its absence worsen. The craving remains, and increasing use of the drug are required to relieve it.

By the time addiction sets in, the brain has been altered in ways that go beyond a drug’s immediate effects on neural signaling.

These insidious changes leave individuals susceptible to craving — and the vulnerable state endures. Long after the physical effects of withdrawal have subsided, people with substance use disorders can find their craving returns, triggered by exposure to a small amount of the drug, physical or social cues associated with previous drug use, or stress. So researchers will need to determine not only how different parts of the brain interact with one another during craving and how individual cells and the molecules within them are affected by the craving state — but also how things change as addiction develops and progresses.

Circuits, chemistry and connectivity

One clear starting point is the circuitry the brain uses to control motivation. Thanks in part to decades of research in the lab of McGovern Investigator Ann Graybiel, neuroscientists know a great deal about how these circuits learn which actions lead to pleasure and which lead to pain, and how they use that information to establish habits and evaluate the costs and benefits of complex decisions.

Graybiel’s work has shown that drugs of abuse strongly activate dopamine-responsive neurons in a part of the brain called the striatum, whose signals promote habit formation. By increasing the amount of dopamine that neurons release, these drugs motivate users to prioritize repeated drug use over other kinds of rewards, and to choose the drug in spite of pain or other negative effects. Her group continues to investigate the naturally occurring molecules that control these circuits, as well as how they are hijacked by drugs of abuse.

Distribution of opioid receptors targeted by morphine (shown in blue) in two regions in the dorsal striatum and nucleus accumbens of the mouse brain. Image: Ann Graybiel

In Fan Wang’s lab, work investigating the neural circuits that mediate the perception of physical pain has led her team to question the role of emotional pain in craving. As they investigated the source of pain sensations in the brain, they identified neurons in an emotion-regulating center called the central amygdala that appear to suppress physical pain in animals. Now, Wang wants to know whether it might be possible to modulate neurons involved in emotional pain to ameliorate the negative state that provokes drug craving.

These animal studies will be key to identifying the cellular and molecular changes that set the brain up for recurring cravings. And as McGovern scientists begin to investigate what happens in the brains of rodents that have been trained to self-administer addictive drugs like fentanyl or cocaine, they expect to encounter tremendous complexity.

McGovern Associate Investigator Polina Anikeeva, whose lab has pioneered new technologies that will help the team investigate the full spectrum of changes that underlie craving, says it will be important to consider impacts on the brain’s chemistry, firing patterns, and connectivity. To that end, multifunctional research probes developed in her lab will be critical to monitoring and manipulating neural circuits in animal models.

Imaging technology developed by investigator Ed Boyden will also enable nanoscale protein visualization brain-wide. An important goal will be to identify a neural signature of the craving state. With such a signal, researchers can begin to explore how to shut off that craving — possibly by directly modulating neural signaling.

Targeted treatments

“One of the reasons to study craving is because it’s a natural treatment point,” says McGovern Associate Investigator Alan Jasanoff. “And the dominant kind of approaches that people in our team think about are approaches that relate to neural circuits — to the specific connections between brain regions and how those could be changed.” The hope, he explains, is that it might be possible to identify a brain region whose activity is disrupted during the craving state, then use clinical brain stimulation methods to restore normal signaling — within that region, as well as in other connected parts of the brain.

To identify the right targets for such a treatment, it will be crucial to understand how the biology uncovered in laboratory animals reflects what’s happens in people with substance use disorders. Functional imaging in John Gabrieli’s lab can help bridge the gap between clinical and animal research by revealing patterns of brain activity associated with the craving state in both humans and rodents. A new technique developed in Jasanoff’s lab makes it possible to focus on the activity between specific regions of an animal’s brain. “By doing that, we hope to build up integrated models of how information passes around the brain in craving states, and of course also in control states where we’re not experiencing craving,” he explains.

In delving into the biology of the craving state, McGovern scientists are embarking on largely unexplored territory — and they do so with both optimism and urgency. “It’s hard to not appreciate just the size of the problem, and just how devastating addiction is,” says Anikeeva. “At this point, it just seems almost irresponsible to not work on it, especially when we do have the tools and we are interested in the general brain regions that are important for that problem. I would say that there’s almost a civic duty.”

Perfecting pitch perception

New research from MIT neuroscientists suggest that natural soundscapes have shaped our sense of hearing, optimizing it for the kinds of sounds we most often encounter.

Mark Saddler, graduate fellow of the K. Lisa Yang Integrative Computational Neuroscience Center. Photo: Caitlin Cunningham

In a study reported December 14 in the journal Nature Communications, researchers led by McGovern Institute Associate Investigator Josh McDermott used computational modeling to explore factors that influence how humans hear pitch. Their model’s pitch perception closely resembled that of humans—but only when it was trained using music, voices, or other naturalistic sounds.

Humans’ ability to recognize pitch—essentially, the rate at which a sound repeats—gives melody to music and nuance to spoken language. Although this is arguably the best-studied aspect of human hearing, researchers are still debating which factors determine the properties of pitch perception, and why it is more acute for some types of sounds than others. McDermott, who is also an associate professor in MIT’s Department of Brain and Cognitive Sciences and an investigator with the Center for Brains Minds and Machines (CBMM), is particularly interested in understanding how our nervous system perceives pitch because cochlear implants, which send electrical signals about sound to the brain in people with profound deafness, don’t replicate this aspect of human hearing very well.

“Cochlear implants can do a pretty good job of helping people understand speech, especially if they’re in a quiet environment. But they really don’t reproduce the percept of pitch very well,” says Mark Saddler, a CBMM graduate student who co-led the project and an inaugural graduate fellow of the K. Lisa Yang Integrative Computational Neuroscience Center. “One of the reasons it’s important to understand the detailed basis of pitch perception in people with normal hearing is to try to get better insights into how we would reproduce that artificially in a prosthesis.”

Artificial hearing

Pitch perception begins in the cochlea, the snail-shaped structure in the inner ear where vibrations from sounds are transformed into electrical signals and relayed to the brain via the auditory nerve. The cochlea’s structure and function help determine how and what we hear. And although it hasn’t been possible to test this idea experimentally, McDermott’s team suspected our “auditory diet” might shape our hearing as well.

To explore how both our ears and our environment influence pitch perception, McDermott, Saddler and research assistant Ray Gonzalez built a computer model called a deep neural network. Neural networks are a type of machine learning model widely used in automatic speech recognition and other artificial intelligence applications. Although the structure of an artificial neural network coarsely resembles the connectivity of neurons in the brain, the models used in engineering applications don’t actually hear the same way humans do—so the team developed a new model to reproduce human pitch perception. Their approach combined an artificial neural network with an existing model of the mammalian ear, uniting the power of machine learning with insights from biology. “These new machine learning models are really the first that can be trained to do complex auditory tasks and actually do them well, at human levels of performance,” Saddler explains.

The researchers trained the neural network to estimate pitch by asking it to identify the repetition rate of sounds in a training set. This gave them the flexibility to change the parameters under which pitch perception developed. They could manipulate the types of sound they presented to the model, as well as the properties of the ear that processed those sounds before passing them on to the neural network.

When the model was trained using sounds that are important to humans, like speech and music, it learned to estimate pitch much as humans do. “We very nicely replicated many characteristics of human perception…suggesting that it’s using similar cues from the sounds and the cochlear representation to do the task,” Saddler says.

But when the model was trained using more artificial sounds or in the absence of any background noise, its behavior was very different. For example, Saddler says, “If you optimize for this idealized world where there’s never any competing sources of noise, you can learn a pitch strategy that seems to be very different from that of humans, which suggests that perhaps the human pitch system was really optimized to deal with cases where sometimes noise is obscuring parts of the sound.”

The team also found the timing of nerve signals initiated in the cochlea to be critical to pitch perception. In a healthy cochlea, McDermott explains, nerve cells fire precisely in time with the sound vibrations that reach the inner ear. When the researchers skewed this relationship in their model, so that the timing of nerve signals was less tightly correlated to vibrations produced by incoming sounds, pitch perception deviated from normal human hearing. 

McDermott says it will be important to take this into account as researchers work to develop better cochlear implants. “It does very much suggest that for cochlear implants to produce normal pitch perception, there needs to be a way to reproduce the fine-grained timing information in the auditory nerve,” he says. “Right now, they don’t do that, and there are technical challenges to making that happen—but the modeling results really pretty clearly suggest that’s what you’ve got to do.”

MIT response to Wall Street Journal opinion essay

Following is an open statement in response to “Is MIT’s Research Helping the Chinese Military?”, an opinion essay by Michelle Bethel posted by the Wall Street Journal on Dec. 10, 2021. This statement is jointly from Prof. Robert Desimone, director of the McGovern Institute for Brain Research at MIT, Prof. Nergis Mavalvala, dean of MIT’s School of Science, and Prof. Maria T. Zuber, vice president for research at MIT.  

Ms. Bethel is absolutely right that research relationships with institutions in China require the most serious care and consideration. MIT brings a thorough and rigorous approach to these matters.

First let us be clear about the work of the MIT McGovern Institute for Brain Research. Of the dozens of research projects currently under way at the McGovern Institute, there is one active research collaboration with China. It involves better identifying and ultimately developing treatments for severe forms of autism or neurological disorders that often render individuals unable to speak and frequently require lifelong care. That project was thoroughly vetted and approved by the U.S. National Institutes of Health in 2019. MIT receives no funding from China for this research, and all findings will be published in peer-reviewed journals, meaning that they are open to medical researchers anywhere in the world. This is the collaboration with the Shenzhen Institute of Advanced Technology that Ms. Bethel referenced in vague terms.

This does not eliminate general concerns about how research may be conducted or used, however. That’s why MIT has strong processes for evaluating and managing the risks of research involving countries, including China, whose behavior affects U.S. national and economic security. Every proposed engagement that involves an organization or funding source from China, once it has been evaluated for compliance with U.S. law and regulation, is further reviewed by committees of senior administrators to consider risks related to national security, economic competitiveness, and civil and human rights. Projects have been variously turned down, modified, or approved under this process.

Ms. Bethel raises important points with respect to U.S.-China relations – but not with respect to the work of the McGovern Institute. We regret that Ms. Bethel felt it necessary to step away from the McGovern, but we respect her views and continue in conversation with her. We note that two other members of the McGovern family, including the McGovern Institute’s co-founder and another daughter, continue to proudly serve on the McGovern board. We are grateful to all three family members.

McGovern Institute Director receives highest honor from the Society for Neuroscience

The Society for Neuroscience will present its highest honor, the Ralph W. Gerard Prize in Neuroscience, to McGovern Institute Director Robert Desimone at its annual meeting today.

The Gerard Prize is named for neuroscientist Ralph W. Gerard who helped establish the Society for Neuroscience, and honors “outstanding scientists who have made significant contributions to neuroscience throughout their careers.” Desimone will share the $30,000 prize with Vanderbilt University neuroscientist Jon Kaas.

Desimone is being recognized for his career contributions to understanding cortical function in the visual system. His seminal work on attention spans decades, including the discovery of a neural basis for covert attention in the temporal cortex and the creation of the biased competition model, suggesting that attention is biased towards material relevant to the task. More recent work revealed how synchronized brain rhythms help enhance visual processing. Desimone also helped discover both face cells and neural populations that identify objects even when the size or location of the object changes. His long list of contributions includes mapping the extrastriate visual cortex, publishing the first report of columns for motion processing outside the primary visual cortex, and discovering how the temporal cortex retains memories. Desimone’s work has moved the field from broad strokes of input and output to a more nuanced understanding of cortical function that allows the brain to make sense of the environment.

At its annual meeting, beginning today, the Society will honor Desimone and other leading researchers who have made significant contributions to neuroscience — including the understanding of cognitive processes, drug addiction, neuropharmacology, and theoretical models — with this year’s Outstanding Achievement Awards.

“The Society is honored to recognize this year’s awardees, whose groundbreaking research has revolutionized our understanding of the brain, from the level of the synapse to the structure and function of the cortex, shedding light on how vision, memory, perception of touch and pain, and drug
addiction are organized in the brain,” SfN President Barry Everitt, said. “This exceptional group of neuroscientists has made fundamental discoveries, paved the way for new therapeutic approaches, and introduced new tools that will lay the foundation for decades of research to come.”

A connectome for cognition

The lateral prefrontal cortex is a particularly well-connected part of the brain. Neurons there communicate with processing centers throughout the rest of the brain, gathering information and sending commands to implement executive control over behavior. Now, scientists at MIT’s McGovern Institute have mapped these connections and revealed an unexpected order within them: The lateral prefrontal cortex, they’ve found, contains maps of other major parts of the brain’s cortex.

The researchers, led by postdoctoral researcher Rui Xu and McGovern Institute Director Robert Desimone, report that the lateral prefrontal cortex contains a set of maps that represent the major processing centers in the other parts of the cortex, including the temporal and parietal lobes. Their organization likely supports the lateral prefrontal cortex’s roles managing complex functions such as attention and working memory, which require integrating information from multiple sources and coordinating activity elsewhere in the brain. The findings are published November 4, 2021, in the journal Neuron.

Topographic maps

The layout of the maps, which allows certain regions of the lateral prefrontal cortex to directly interact with multiple areas across the brain, indicates that this part of the brain is particularly well positioned for its role. “This function of integrating and then sending back control signals to appropriate levels in the processing hierarchies of the brain is clearly one of the reasons that prefrontal cortex is so important for cognition and executive control,” says Desimone.

In many parts of the brain, neurons’ physical organization has been found to reflect the information represented there. For example, individual neurons’ positions within the visual cortex mirror the layout of the cells in the retina from which they receive input, such that the spatial pattern of neuronal activity in this part of the brain provides an approximate view of the image seen by the eyes. For example, if you fixate on the first letter of a word, the next letters in the word will map to sequential locations in the visual cortex. Likewise, the arm and hand are mapped to adjacent locations in the somatic cortex, where the brain receives sensory information from the skin.

Topographic maps such as these, which have been found primarily in brain regions involved in sensory and motor processing, offer clues about how information is stored and processed in the brain. Neuroscientists have hoped that topographic maps within the lateral prefrontal cortex will provide insight into the complex cognitive processes that are carried out there—but such maps have been elusive.

Previous anatomical studies had given little indication how different parts of the brain communicate preferentially to specific locations within the prefrontal cortex to give rise to regional specialization of cognitive functions. Recently, however, the Desimone lab identified two areas within the lateral prefrontal cortex of monkeys with specific roles in focusing an animal’s visual attention. Knowing that some spots within the lateral prefrontal cortex were wired for specific functions, they wondered if others were, too. They decided they needed a detailed map of the connections emanating from this part of the brain, and devised a plan to plot connectivity from hundreds of points within the lateral prefrontal cortex.

Cortical connectome

To generate a wiring diagram, or connectome, Xu used functional MRI to monitor activity throughout a monkey’s brain as he stimulated specific points within its lateral prefrontal cortex. He moved systematically through the brain region, stimulating points spaced as close as one millimeter apart, and noting which parts of the brain lit up in response. Ultimately, the team collected data from about 100 sites for each of two monkeys.

As the data accumulated, clear patterns emerged. Different regions within the lateral prefrontal cortex formed orderly connections with each of five processing centers throughout the brain. Points within each of these maps connected to sites with the same relative positions in the distant processing centers. Because some parts of the lateral prefrontal cortex are wired to interact with more than one processing centers, these maps overlap, positioning the prefrontal cortex to integrate information from different sources.

The team found significant overlap, for example, between the maps of the temporal cortex, a part of the brain that uses visual information to recognize objects, and the parietal cortex, which computes the spatial relationships between objects. “It is mapping objects and space together in a way that would integrate the two systems,” explains Desimone. “And then on top of that, it has other maps of other brain systems that are partially overlapping with that—so they’re all sort of coming together.”

Desimone and Xu say the new connectome will help guide further investigations of how the prefrontal cortex orchestrates complex cognitive processes. “I think this really gives us a direction for the future, because we now need to understand the cognitive concepts that are mapped there,” Desimone says.

Already, they say, the connectome offers encouragement that a deeper understanding of complex cognition is within reach. “This topographic connectivity gives the lateral prefrontal some specific advantage to serve its function,” says Xu. “This suggests that lateral prefrontal cortex has a fine organization, just like the more studied parts of the brain, so the approaches that have been used to study these other regions may also benefit the studies of high-level cognition.”

Data transformed

With the tools of modern neuroscience, data accumulates quickly. Recording devices listen in on the electrical conversations between neurons, picking up the voices of hundreds of cells at a time. Microscopes zoom in to illuminate the brain’s circuitry, capturing thousands of images of cells’ elaborately branched paths. Functional MRIs detect changes in blood flow to map activity within a person’s brain, generating a complete picture by compiling hundreds of scans.

“When I entered neuroscience about 20 years ago, data were extremely precious, and ideas, as the expression went, were cheap. That’s no longer true,” says McGovern Associate Investigator Ila Fiete. “We have an embarrassment of wealth in the data but lack sufficient conceptual and mathematical scaffolds to understand it.”

Fiete will lead the McGovern Institute’s new K. Lisa Yang Integrative Computational Neuroscience (ICoN) Center, whose scientists will create mathematical models and other computational tools to confront the current deluge of data and advance our understanding of the brain and mental health. The center, funded by a $24 million donation from philanthropist Lisa Yang, will take a uniquely collaborative approach to computational neuroscience, integrating data from MIT labs to explain brain function at every level, from the molecular to the behavioral.

“Driven by technologies that generate massive amounts of data, we are entering a new era of translational neuroscience research,” says Yang, whose philanthropic investment in MIT research now exceeds $130 million. “I am confident that the multidisciplinary expertise convened by this center will revolutionize how we synthesize this data and ultimately understand the brain in health and disease.”

Data integration

Fiete says computation is particularly crucial to neuroscience because the brain is so staggeringly complex. Its billions of neurons, which are themselves complicated and diverse, interact with one other through trillions of connections.

“Conceptually, it’s clear that all these interactions are going to lead to pretty complex things. And these are not going to be things that we can explain in stories that we tell,” Fiete says. “We really will need mathematical models. They will allow us to ask about what changes when we perturb one or several components — greatly accelerating the rate of discovery relative to doing those experiments in real brains.”

By representing the interactions between the components of a neural circuit, a model gives researchers the power to explore those interactions, manipulate them, and predict the circuit’s behavior under different conditions.

“You can observe these neurons in the same way that you would observe real neurons. But you can do even more, because you have access to all the neurons and you have access to all the connections and everything in the network,” explains computational neuroscientist and McGovern Associate Investigator Guangyu Robert Yang (no relation to Lisa Yang), who joined MIT as a junior faculty member in July 2021.

Many neuroscience models represent specific functions or parts of the brain. But with advances in computation and machine learning, along with the widespread availability of experimental data with which to test and refine models, “there’s no reason that we should be limited to that,” he says.

Robert Yang’s team at the McGovern Institute is working to develop models that integrate multiple brain areas and functions. “The brain is not just about vision, just about cognition, just about motor control,” he says. “It’s about all of these things. And all these areas, they talk to one another.” Likewise, he notes, it’s impossible to separate the molecules in the brain from their effects on behavior – although those aspects of neuroscience have traditionally been studied independently, by researchers with vastly different expertise.

The ICoN Center will eliminate the divides, bringing together neuroscientists and software engineers to deal with all types of data about the brain. To foster interdisciplinary collaboration, every postdoctoral fellow and engineer at the center will work with multiple faculty mentors. Working in three closely interacting scientific cores, fellows will develop computational technologies for analyzing molecular data, neural circuits, and behavior, such as tools to identify pat-terns in neural recordings or automate the analysis of human behavior to aid psychiatric diagnoses. These technologies will also help researchers model neural circuits, ultimately transforming data into knowledge and understanding.

“Lisa is focused on helping the scientific community realize its goals in translational research,” says Nergis Mavalvala, dean of the School of Science and the Curtis and Kathleen Marble Professor of Astrophysics. “With her generous support, we can accelerate the pace of research by connecting the data to the delivery of tangible results.”

Computational modeling

In its first five years, the ICoN Center will prioritize four areas of investigation: episodic memory and exploration, including functions like navigation and spatial memory; complex or stereotypical behavior, such as the perseverative behaviors associated with autism and obsessive-compulsive disorder; cognition and attention; and sleep. The goal, Fiete says, is to model the neuronal interactions that underlie these functions so that researchers can predict what will happen when something changes — when certain neurons become more active or when a genetic mutation is introduced, for example. When paired with experimental data from MIT labs, the center’s models will help explain not just how these circuits work, but also how they are altered by genes, the environment, aging, and disease.

These focus areas encompass circuits and behaviors often affected by psychiatric disorders and neurodegeneration, and models will give researchers new opportunities to explore their origins and potential treatment strategies. “I really think that the future of treating disorders of the mind is going to run through computational modeling,” says McGovern Associate Investigator Josh McDermott.

In McDermott’s lab, researchers are modeling the brain’s auditory circuits. “If we had a perfect model of the auditory system, we would be able to understand why when somebody loses their hearing, auditory abilities degrade in the very particular ways in which they degrade,” he says. Then, he says, that model could be used to optimize hearing aids by predicting how the brain would interpret sound altered in various ways by the device.

Similar opportunities will arise as researchers model other brain systems, McDermott says, noting that computational models help researchers grapple with a dauntingly vast realm of possibilities. “There’s lots of different ways the brain can be set up, and lots of different potential treatments, but there is a limit to the number of neuroscience or behavioral experiments you can run,” he says. “Doing experiments on a computational system is cheap, so you can explore the dynamics of the system in a very thorough way.”

The ICoN Center will speed the development of the computational tools that neuroscientists need, both for basic understanding of the brain and clinical advances. But Fiete hopes for a culture shift within neuroscience, as well. “There are a lot of brilliant students and postdocs who have skills that are mathematics and computational and modeling based,” she says. “I think once they know that there are these possibilities to collaborate to solve problems related to psychiatric disorders and how we think, they will see that this is an exciting place to apply their skills, and we can bring them in.”

New integrative computational neuroscience center established at MIT’s McGovern Institute

With the tools of modern neuroscience, researchers can peer into the brain with unprecedented accuracy. Recording devices listen in on the electrical conversations between neurons, picking up the voices of hundreds of cells at a time. Genetic tools allow us to focus on specific types of neurons based on their molecular signatures. Microscopes zoom in to illuminate the brain’s circuitry, capturing thousands of images of elaborately branched dendrites. Functional MRIs detect changes in blood flow to map activity within a person’s brain, generating a complete picture by compiling hundreds of scans.

This deluge of data provides insights into brain function and dynamics at different levels – molecules, cells, circuits, and behavior — but the insights often remain compartmentalized in separate research silos. An innovative new center at MIT’s McGovern Institute aims to leverage them into powerful revelations of the brain’s inner workings.

The K. Lisa Yang Integrative Computational Neuroscience (ICoN) Center will create advanced mathematical models and computational tools to synthesize the deluge of data across scales and advance our understanding of the brain and mental health.

The center, funded by a $24 million donation from philanthropist Lisa Yang and led by McGovern Institute Associate Investigator Ila Fiete, will take a collaborative approach to computational neuroscience, integrating cutting-edge modeling techniques and data from MIT labs to explain brain function at every level, from the molecular to the behavioral.

“Our goal is that sophisticated, truly integrated computational models of the brain will make it possible to identify how ‘control knobs’ such as genes, proteins, chemicals, and environment drive thoughts and behavior, and to make inroads toward urgent unmet needs in understanding and treating brain disorders,” says Fiete, who is also a brain and cognitive sciences professor at MIT.

“Driven by technologies that generate massive amounts of data, we are entering a new era of translational neuroscience research,” says Yang, whose philanthropic investment in MIT research now exceeds $130 million. “I am confident that the multidisciplinary expertise convened by the ICoN center will revolutionize how we synthesize this data and ultimately understand the brain in health and disease.”

Connecting the data

It is impossible to separate the molecules in the brain from their effects on behavior – although those aspects of neuroscience have traditionally been studied independently, by researchers with vastly different expertise. The ICoN Center will eliminate the divides, bringing together neuroscientists and software engineers to deal with all types of data about the brain.

“The center’s highly collaborative structure, which is essential for unifying multiple levels of understanding, will enable us to recruit talented young scientists eager to revolutionize the field of computational neuroscience,” says Robert Desimone, director of the McGovern Institute. “It is our hope that the ICoN Center’s unique research environment will truly demonstrate a new academic research structure that catalyzes bold, creative research.”

To foster interdisciplinary collaboration, every postdoctoral fellow and engineer at the center will work with multiple faculty mentors. In order to attract young scientists and engineers to the field of computational neuroscience, the center will also provide four graduate fellowships to MIT students each year in perpetuity. Interacting closely with three scientific cores, engineers and fellows will develop computational models and technologies for analyzing molecular data, neural circuits, and behavior, such as tools to identify patterns in neural recordings or automate the analysis of human behavior to aid psychiatric diagnoses. These technologies and models will be instrumental in synthesizing data into knowledge and understanding.

Center priorities

In its first five years, the ICoN Center will prioritize four areas of investigation: episodic memory and exploration, including functions like navigation and spatial memory; complex or stereotypical behavior, such as the perseverative behaviors associated with autism and obsessive-compulsive disorder; cognition and attention; and sleep. Models of complex behavior will be created in collaboration with clinicians and researchers at Children’s Hospital of Philadelphia.

The goal, Fiete says, is to model the neuronal interactions that underlie these functions so that researchers can predict what will happen when something changes — when certain neurons become more active or when a genetic mutation is introduced, for example. When paired with experimental data from MIT labs, the center’s models will help explain not just how these circuits work, but also how they are altered by genes, the environment, aging, and disease. These focus areas encompass circuits and behaviors often affected by psychiatric disorders and neurodegeneration, and models will give researchers new opportunities to explore their origins and potential treatment strategies.

“Lisa Yang is focused on helping the scientific community realize its goals in translational research,” says Nergis Mavalvala, dean of the School of Science and the Curtis and Kathleen Marble Professor of Astrophysics. “With her generous support, we can accelerate the pace of research by connecting the data to the delivery of tangible results.”