2016 Scolnick Prize Lecture: Dr. Cornelia Bargmann

Title: Genes, Neurons, Circuits and Behavior: An Integrated Approach in a Compact Brain
Speaker: Cornelia Bargmann, The Rockefeller University
Date + Time: March 30, 2016 @ 4pm
Location: 46-3002 (Singleton Auditorium)

Abstract:

Behavior is variable, both within and between individuals. We use the nematode worm C. elegans to ask how genes, neurons, circuits, and the environment interact to give rise to flexible behaviors. This work has provided insights into four kinds of behavioral variability mediated by overlapping circuits: the gating of information flow by circuit state over seconds, the extrasynaptic regulation of circuits by neuropeptides and neuromodulators over minutes, the modification of behavior by learning over hours or days, and natural genetic variation across generations.

2016 Sharp Lecture in Neural Circuits: Dr. Markus Meister

 

Title: “Neural computations in the retina: from photons to behavior”
Speaker: Markus Meister, Caltech
Date + Time: March 8, 2016 @ 4pm
Location: 46-3002 (Singleton Auditorium)

Abstract: The retina is touted as the brain’s window upon the world, but unlike a glass pane, the retina performs a great deal of visual processing. Its intricate circuits use ~70 different types of neuron. The output signals in the optic nerve are carried by 20 different types of retinal ganglion cell, each of which completely tiles the visual field. Thus the eye communicates twenty parallel representations of the visual scene. This raises several questions: What is being computed here, can we understand the visual feature reported by each type of ganglion cell? How is this feature computed by the circuit of neurons and synapses that leads to that ganglion cell type? And finally, why are these particular features getting computed, rather than some other set? In recent years, all these research areas have been turbocharged by modern genetic tools, especially the ability to visualize and modify select neuron types within a circuit. Some general insights are:

What? The various ganglion cell types fit on a spectrum from simple “pixel encoders” to “feature detectors”. A few types encode a very simple function of the image, like the local contrast, with a continuously varying firing rate. However, most types fire quite rarely and report specific features, for example differential motion between the foreground and the background. Some ganglion cells seem to play an alarm function; they are silent except under very specific stimulus conditions associated with threats.

How? It has emerged that dramatically different computations can result from circuits using the same kinds of neuronal elements, but arranged in a different sequence or combinations. In fact many of the twenty circuits in the retina share the same elements. On at least one occasion the same neuron is used to transfer signals in both directions! An important source of nonlinearity on which the computations are based is the sharp thresholding of signals at the bipolar cell synapse, which has emerged as a very versatile circuit element.

Why? It has been proposed that each of the twenty ganglion cell types of the retina is Evolution’s answer to a specific behavioral need that is served by the visual system. If so, then the selective silencing of one type of ganglion cell should affect only selected visual behaviors. Early experiments suggest this is a promising avenue of research.

2016 McGovern Institute Spring Symposium

REGISTRATION FOR THIS EVENT IS NOW CLOSED

 

TITLE: “Computations: from synapses to systems”
DATE: Monday May 9, 2016
TIME: 8:30am – 5:00pm
LOCATION: MIT Bldg 46-3002 (Singleton Auditorium)

QUESTIONS? Naomi Berkowitz | naomiber@mit.edu | 617.715.5396

Registration is required and space is limited.

 

PROGRAM

8:30 am
Continental breakfast served in atrium

9:00 am – 9:15 am
ROBERT DESIMONE & MARK HARNETT, McGovern Institute
Welcoming Remarks

 

Session I

9:15 am – 10:00 am
ANGUS SILVER, University College London
Information processing in the input layer of the cerebellar cortex

10:00 am – 10:45 am
GAUTAM AWATRAMANI, University of Victoria
The Fine Balancing Act of GABAergic/Cholinergic Retinal Starburst Amacrine Cells

10:45 am – 11:00 am
Break

11:00 am – 11:45 am
STEFAN REMY, German Center for Neurodegenerative Diseases
Synaptic integration of locomotion-speed by entorhinal cortex and hippocampus

11:45 am – 12:30 pm
JENNIFER RAYMOND, Stanford University
Neural learning rules in the cerebellum

12:30 pm – 01:30 pm
Lunch

 

Session II

01:30 pm – 02:15 pm
CARL PETERSEN, École Polytechnique Fédérale de Lausanne
Neural circuits for goal-directed sensorimotor transformation

02:15 pm – 03:00 pm
SURYA GANGULI, Stanford University
A theory of neural dimensionality, dynamics and measurement

03:00 pm – 03:15 pm
Break

03:15 pm – 04:00 pm
LINDSEY GLICKFELD, Duke Institute for Brain Sciences
Functional specialization in the mouse visual cortex

04:00 pm – 04:45 pm
STEVE SIEGELBAUM, Columbia University
Storing memories through cortico-hippocampal circuits

5:00 pm – 6:30 pm
Reception

McGovern Institute awards prize to neurogeneticist Cori Bargmann

The McGovern Institute for Brain Research at MIT announced today that Cornelia Bargmann of The Rockefeller University is the winner of the 2016 Edward M. Scolnick Prize in Neuroscience. The Prize is awarded annually by the McGovern Institute to recognize outstanding advances in any field of neuroscience. Bargmann is recognized for her work on the genetic and neural mechanisms that control behavior in the nematode Caenorhabditis elegans.

Bargmann is currently the Torsten N. Wiesel Professor at The Rockefeller University and an investigator of the Howard Hughes Medical Institute. She was a faculty member at University of California, San Francisco for 13 years before moving to Rockefeller in 2004.

Bargmann received her Ph.D. from MIT, where she studied with Robert Weinberg, making important contributions to cancer biology including the identification of the HER2/neu oncogene that is now an important target for the treatment of breast cancer. For her postdoctoral studies, she joined the MIT laboratory of H. Robert Horvitz, now a McGovern investigator, where she began to study the nervous system of the microscopic nematode worm C. elegans. With just 302 neurons, whose connections are known, C. elegans is ideally suited for understanding the genetic and neural mechanisms that control behavior, with a level of precision not possible in more complex organisms. At MIT, Bargmann demonstrated that worms can sense volatile odors via specific chemosensory neurons, and she identified genes that affected the animals’ responses to specific odorants, setting the stage for a genetic analysis of chemosensory behavior that she subsequently pursued in her own lab at UCSF and The Rockefeller University.

Among Bargmann’s important early contributions was the demonstration in 1996 that the gene odr-10 encodes an odorant receptor (OR) that is specific for diacetyl, a volatile compound that gives butter its distinct smell and to which worms are strongly attracted. Although putative ORs had been identified in other species, it had proved difficult to identify specific ligands for individual receptors, and Bargmann’s discovery, the first example in any species, opened many new research directions. In one especially elegant experiment, she and her team were able to drive expression of odr-10 in another sensory neuron that normally responds to repulsive odors, causing the worms to avoid the previously attractive diacetyl. This experiment provides one of the most compelling demonstrations of the “labeled line” hypothesis, in which the response to a sensory stimulus is determined not by the inherent properties of the stimulus itself but by the identity of the neuronal connection that transmits the signal.

This work was followed by detailed studies of the mechanisms by which worms sense and respond flexibly to chemical cues in their environment, in which Bargmann and her colleagues traced the flow of information from sensory inputs to motor outputs through circuits of identified neurons. Bargmann also provided a clear demonstration of learning in worms, showing that animals exposed to pathogenic bacteria can learn to avoid odorants associated with the pathogen. Interestingly, this avoidance response is mediated by the neurotransmitter serotonin, which is also plays important role in mammalian nausea, suggesting an ancient conserved mechanism for conditioned food aversion.

Building on her olfaction work, Bargmann has also studied the neural basis of social behavior, which in worms is strongly regulated by chemical cues. In one set of papers, for example, she identified a single neuron that integrates information from multiple chemical cues including food, oxygen and pheromones, to control the expression of social behavior. Bargmann’s work has encompassed many other areas of neuroscience, and by combining behavioral analysis with genetic manipulations and laser ablation of individual identified cells, she has revealed the diverse genetic and cellular mechanisms through which a simple nervous system can produce a wide range of behaviors.

Bargmann has received many awards and honors for her work, including the Kavli Neuroscience Prize and the Breakthrough Prize for Life Sciences. She has been elected to both the American Academy of Arts and Sciences and the National Academy of Sciences, and she served as co-chair of the advisory committee for the NIH BRAIN initiative.

The McGovern Institute will award the Scolnick Prize to Dr. Bargmann on Wednesday March 30, 2016. At 4.00 pm she will deliver a lecture entitled “Genes, neurons, circuits and behavior:  an integrated approach in a compact brain,” to be followed by a reception, at the McGovern Institute in the Brain and Cognitive Sciences Complex, 43 Vassar Street (building 46, room 3002) in Cambridge. The event is free and open to the public.

About the Edward M. Scolnick Prize in Neuroscience
The Scolnick Prize, awarded annually by the McGovern Institute, is named in honor of Dr. Edward M. Scolnick, who stepped down as President of Merck Research Laboratories in December 2002 after holding Merck’s top research post for 17 years. Dr. Scolnick is now a core member of the Broad Institute, where he is chief scientist at the Stanley Center for Psychiatric Research. He also serves as a member of the McGovern Institute’s governing board. The prize, which is endowed through a gift from Merck to the McGovern Institute, consists of a $125,000 award, plus an inscribed gift. Previous winners are Charles Gilbert (The Rockefeller University), Huda Zoghbi (Baylor College of Medicine), Thomas Jessell (Columbia University), Roger Nicoll (University of California, San Francisco), Bruce McEwen (The Rockefeller University), Lily and Yuh-Nung Jan (University of California, San Francisco), Jeremy Nathans (Johns Hopkins University), Michael Davis (Emory University), David Julius (University of California, San Francisco), Michael Greenberg (Harvard Medical School), Judith Rapoport (National Institute of Mental Health) and Mark Konishi (California Institute of Technology).

Engineering Revolutions | Ed Boyden at the 2016 World Economic Forum

Brain disorders, climate change, clean energy, cancer – these are examples of problems which are difficult to solve because we don’t know what we would need to know to solve them. Edward Boyden, Associate Professor at Massachusetts Institute of Technology, teaches students how to think about approaching intractable problems. In this presentation for the World Economic Forum, he explains strategies such as valuing interdisciplinary expertise and being willing to leave comfort zones.

2016 Phillip A. Sharp Lecture in Neural Circuits

Title: “Neural computations in the retina: from photons to behavior”
Speaker: Markus Meister, Caltech
Date + Time: March 8, 2016 @ 4pm
Location: 46-3002 (Singleton Auditorium)

Abstract:

The retina is touted as the brain’s window upon the world, but unlike a glass pane, the retina performs a great deal of visual processing. Its intricate circuits use ~70 different types of neuron. The output signals in the optic nerve are carried by 20 different types of retinal ganglion cell, each of which completely tiles the visual field. Thus the eye communicates twenty parallel representations of the visual scene. This raises several questions: What is being computed here, can we understand the visual feature reported by each type of ganglion cell? How is this feature computed by the circuit of neurons and synapses that leads to that ganglion cell type? And finally, why are these particular features getting computed, rather than some other set? In recent years, all these research areas have been turbocharged by modern genetic tools, especially the ability to visualize and modify select neuron types within a circuit. Some general insights are:

What? The various ganglion cell types fit on a spectrum from simple “pixel encoders” to “feature detectors”. A few types encode a very simple function of the image, like the local contrast, with a continuously varying firing rate. However, most types fire quite rarely and report specific features, for example differential motion between the foreground and the background. Some ganglion cells seem to play an alarm function; they are silent except under very specific stimulus conditions associated with threats.

How? It has emerged that dramatically different computations can result from circuits using the same kinds of neuronal elements, but arranged in a different sequence or combinations. In fact many of the twenty circuits in the retina share the same elements. On at least one occasion the same neuron is used to transfer signals in both directions! An important source of nonlinearity on which the computations are based is the sharp thresholding of signals at the bipolar cell synapse, which has emerged as a very versatile circuit element.

Why? It has been proposed that each of the twenty ganglion cell types of the retina is Evolution’s answer to a specific behavioral need that is served by the visual system. If so, then the selective silencing of one type of ganglion cell should affect only selected visual behaviors. Early experiments suggest this is a promising avenue of research.

Happy Chinese New Year!

In the Chinese calendar, 2016 is the Year of the Monkey. We wish all of our friends and colleagues a happy, healthy and inventive new year!

Edward Boyden wins BBVA Foundation Frontiers of Knowledge Award

Edward S. Boyden, a professor of media arts and sciences, biological engineering, and brain and cognitive sciences at MIT, has won the BBVA Foundation Frontiers of Knowledge Award in Biomedicine for his role in the development of optogenetics, a technique for controlling brain activity with light. Gero Miesenböck of the University of Oxford and Karl Deisseroth of Stanford University were also honored with the prize for their role in developing and refining the technique.

The BBVA Foundation Frontiers of Knowledge Awards are given annually for “outstanding contributions and radical advances in a broad range of scientific, technological and artistic areas.” The €400.000 prize in the category of biomedicine will be shared among the three neuroscientists.

“If we imagine the brain as a computer, optogenetics is a keyboard that allows us to send extremely precise commands,” says Boyden, a a faculty member at the MIT Media Lab with a joint appointment at MIT’s McGovern Institute for Brain Research. “It is a tool whereby we can control the brain with exquisite precision.”

Boyden joins an illustrious list of prize laureates including physicist Stephen Hawking and artificial intelligence pioneer Marvin Minsky of MIT, who died on January 24.

The BBVA Foundation will host the winners at an awards ceremony on June 21, 2016 at the foundation’s headquarters in Madrid, Spain.

About the BBVA Foundation Frontiers of Knowledge Awards

The BBVA Foundation promotes, funds and disseminates world-class scientific research and artistic creation, in the conviction that science, culture and knowledge hold the key to better opportunities for all world citizens. The Foundation designs and implements its programs in partnership with some of the leading scientific and cultural organizations in Spain and abroad, striving to identify and prioritize those projects with the power to significantly advance the frontiers of the known world.

The juries in each of eight categories are made up of leading international experts in their respective fields, who arrive at their decisions in a wholly independent manner, applying internationally recognized metrics of excellence. The BBVA Foundation is aided in the organization of the awards by the Spanish National Research Council (CSIC).

Stanley Center & Poitras Center Translational Neuroscience Joint Seminar: Deanna M. Barch

“Connectomics and Psychopathology: A Tale of Many Regions”

Abstract: A growing body of research clearly indicates that both functional and structural connectivity within and between core brain systems is a critical determinant of cognitive and affective function in both health and disease. This talk will first briefly overview the state of the art methods for assessing human brain connectivity. Next this talk will illustrate the ways in which variation in brain connectivity relates to variation in cognitive and affective functions in healthy individuals, as well as how impairments in functional brain connectivity relate to impaired cognitive and affective function associated with risk for psychopathology and manifest illness.