Re-imagining our theories of language

Over a decade ago, the neuroscientist Ev Fedorenko asked 48 English speakers to complete tasks like reading sentences, recalling information, solving math problems, and listening to music. As they did this, she scanned their brains using functional magnetic resonance imaging to see which circuits were activated. If, as linguists have proposed for decades, language is connected to thought in the human brain, then the language processing regions would be activated even during nonlinguistic tasks.

Fedorenko’s experiment, published in 2011 in the Proceedings of the National Academy of Sciences, showed that when it comes to arithmetic, musical processing, general working memory, and other nonlinguistic tasks, language regions of the human brain showed no response. Contrary to what many linguistists have claimed, complex thought and language are separate things. One does not require the other. “We have this highly specialized place in the brain that doesn’t respond to other activities,” says Fedorenko, who is an associate professor at the Department of Brain and Cognitive Sciences (BCS) and the McGovern Institute for Brain Research. “It’s not true that thought critically needs language.”

The design of the experiment, using neuroscience to understand how language works, how it evolved, and its relation to other cognitive functions, is at the heart of Fedorenko’s research. She is part of a unique intellectual triad at MIT’s Department of BCS, along with her colleagues Roger Levy and Ted Gibson. (Gibson and Fedorenko have been married since 2007). Together they have engaged in a years-long collaboration and built a significant body of research focused on some of the biggest questions in linguistics and human cognition. While working in three independent labs — EvLab, TedLab, and the Computational Psycholinguistics Lab — the researchers are motivated by a shared fascination with the human mind and how language works in the brain. “We have a great deal of interaction and collaboration,” says Levy. “It’s a very broadly collaborative, intellectually rich and diverse landscape.”

Using combinations of computational modeling, psycholinguistic experimentation, behavioral data, brain imaging, and large naturalistic language datasets, the researchers also share an answer to a fundamental question: What is the purpose of language? Of all the possible answers to why we have language, perhaps the simplest and most obvious is communication. “Believe it or not,” says Ted Gibson, “that is not the standard answer.”

Gibson first came to MIT in 1993 and joined the faculty of the Linguistics Department in 1997. Recalling the experience today, he describes it as frustrating. The field of linguistics at that time was dominated by the ideas of Noam Chomsky, one of the founders of MIT’s Graduate Program in Linguistics, who has been called the father of modern linguistics. Chomsky’s “nativist” theories of language posited that the purpose of language is the articulation of thought and that language capacity is built-in in advance of any learning. But Gibson, with his training in math and computer science, felt that researchers didn’t satisfyingly test these ideas. He believed that finding the answer to many outstanding questions about language required quantitative research, a departure from standard linguistic methodology. “There’s no reason to rely only on you and your friends, which is how linguistics has worked,” Gibson says. “The data you can get can be much broader if you crowdsource lots of people using experimental methods.” Chomsky’s ascendancy in linguistics presented Gibson with what he saw as a challenge and an opportunity. “I felt like I had to figure it out in detail and see if there was truth in these claims,” he says.

Three decades after he first joined MIT, Gibson believes that the collaborative research at BCS is persuasive and provocative, pointing to new ways of thinking about human culture and cognition. “Now we’re at a stage where it is not just arguments against. We have a lot of positive stuff saying what language is,” he explains. Levy adds: “I would say all three of us are of the view that communication plays a very import role in language learning and processing, but also in the structure of language itself.”

Levy points out that the three researchers completed PhDs in different subjects: Fedorenko in neuroscience, Gibson in computer science, Levy in linguistics. Yet for years before their paths finally converged at MIT, their shared interests in quantitative linguistic research led them to follow each other’s work closely and be influenced by it. The first collaboration between the three was in 2005 and focused on language processing in Russian relative clauses. Around that time, Gibson recalls, Levy was presenting what he describes as “lovely work” that was instrumental in helping him to understand the links between language structure and communication. “Communicative pressures drive the structures,” says Gibson. “Roger was crucial for that. He was the one helping me think about those things a long time ago.”

Levy’s lab is focused on the intersection of artificial intelligence, linguistics, and psychology, using natural language processing tools. “I try to use the tools that are afforded by mathematical and computer science approaches to language to formalize scientific hypotheses about language and the human mind and test those hypotheses,” he says.

Levy points to ongoing research between him and Gibson focused on language comprehension as an example of the benefits of collaboration. “One of the big questions is: When language understanding fails, why does it fail?” Together, the researchers have applied the concept of a “noisy channel,” first developed by the information theorist Claude Shannon in the 1950s, which says that information or messages are corrupted in transmission. “Language understanding unfolds over time, involving an ongoing integration of the past with the present,” says Levy. “Memory itself is an imperfect channel conveying the past from our brain a moment ago to our brain now in order to support successful language understanding.” Indeed, the richness of our linguistic environment, the experience of hundreds of millions of words by adulthood, may create a kind of statistical knowledge guiding our expectations, beliefs, predictions, and interpretations of linguistic meaning. “Statistical knowledge of language actually interacts with the constraints of our memory,” says Levy. “Our experience shapes our memory for language itself.”

All three researchers say they share the belief that by following the evidence, they will eventually discover an even bigger and more complete story about language. “That’s how science goes,” says Fedorenko. “Ted trained me, along with Nancy Kanwisher, and both Ted and Roger are very data-driven. If the data is not giving you the answer you thought, you don’t just keep pushing your story. You think of new hypotheses. Almost everything I have done has been like that.” At times, Fedorenko’s research into parts of the brain’s language system has surprised her and forced her to abandon her hypotheses. “In a certain project I came in with a prior idea that there would be some separation between parts that cared about combinatorics versus words meanings,” she says, “but every little bit of the language system is sensitive to both. At some point, I was like, this is what the data is telling us, and we have to roll with it.”

The researchers’ work pointing to communication as the constitutive purpose of language opens new possibilities for probing and studying non-human language. The standard claim is that human language has a drastically more extensive lexicon than animals, which have no grammar. “But many times, we don’t even know what other species are communicating,” says Gibson. “We say they can’t communicate, but we don’t know. We don’t speak their language.” Fedorenko hopes that more opportunities to make cross-species linguistic comparisons will open up. “Understanding where things are similar and where things diverge would be super useful,” she says.

Meanwhile, the potential applications of language research are far-reaching. One of Levy’s current research projects focuses on how people read and use machine learning algorithms informed by the psychology of eye movements to develop proficiency tests. By tracking the eye movements of people who speak English as a second language while they read texts in English, Levy can predict how good they are at English, an approach that could one day replace the Test of English as a Foreign Language. “It’s an implicit measure of language rather than a much more game-able test,” he says.

The researchers agree that some of the most exciting opportunities in the neuroscience of language lies with large language models that provide new opportunities for asking new questions and making new discoveries. “In the neuroscience of language, the kind of stories that we’ve been able to tell about how the brain does language were limited to verbal, descriptive hypotheses,” says Fedorenko. Computationally implemented models are now amazingly good at language and show some degree of alignment to the brain, she adds. Now, researchers can ask questions such as: what are the actual computations that cells are doing to get meaning from strings of words? “You can now use these models as tools to get insights into how humans might be processing language,” she says. “And you can take the models apart in ways you can’t take apart the brain.”

Nuevo podcast de neurociencia en español celebra su tercera temporada

Sylvia Abente, neuróloga clínica de la Universidad Nacional de Asunción (Paraguay), investiga la variedad de síntomas que son característicos de la epilepsia. Trabaja con los pueblos indígenas de Paraguay, y su dominio del español y el guaraní, los dos idiomas oficiales de Paraguay, le permite ayudar a los pacientes a encontrar las palabras que ayuden a describir sus síntomas de epilepsia para poder tratarlos.

Juan Carlos Caicedo Mera, neurocientífico de la Universidad Externado de Colombia, utiliza modelos de roedores para investigar los efectos neurobiológicos del estrés en los primeros años de vida. Ha desempeñado un papel decisivo en despertar la conciencia pública sobre los efectos biológicos y conductuales del castigo físico a edades tempranas, lo que ha propiciado cambios políticos encaminados a reducir su prevalencia como práctica cultural en Colombia.

Woman interviews a man at a table with a camera recording the interview in the foreground.
Jessica Chomik-Morales (right) interviews Pedro Maldonado at the Biomedical Neuroscience Institute of Chile at the University of Chile. Photo: Jessica Chomik-Morales

Estos son solo dos de los 33 neurocientíficos de siete países latinoamericanos que Jessica Chomik-Morales entrevistó durante 37 días para la tercera temporada de su podcast en español “Mi Última Neurona,” que se estrenará el 18 de septiembre a las 5:00 p. m. en YouTube. Cada episodio dura entre 45 y 90 minutos.

“Quise destacar sus historias para disipar la idea errónea de que la ciencia de primer nivel solo puede hacerse en Estados Unidos y Europa,” dice Chomik-Morales, “o que no se consigue en Sudamérica debido a barreras financieras y de otro tipo.”

Chomik-Morales, graduada universitaria de primera generación que creció en Asunción (Paraguay) y Boca Ratón (Florida), es ahora investigadora académica de post licenciatura en el MIT. Aquí trabaja con Laura Schulz, profesora de Ciencia Cognitiva, y Nancy Kanwisher, investigadora del McGovern Institute y la profesora Walter A. Rosenblith de Neurociencia Cognitiva, utilizando imágenes cerebrales funcionales para investigar de qué forma el cerebro explica el pasado, predice el futuro e interviene sobre el presente a traves del razonamiento causal.

“El podcast está dirigido al público en general y es apto para todas las edades,” afirma. “Se explica la neurociencia de forma fácil para inspirar a los jóvenes en el sentido de que ellos también pueden llegar a ser científicos y para mostrar la amplia variedad de investigaciones que se realizan en los países de origen de los escuchas.”

El viaje de toda una vida

“Mi Última Neurona” comenzó como una idea en 2021 y creció rápidamente hasta convertirse en una serie de conversaciones con destacados científicos hispanos, entre ellos L. Rafael Reif, ingeniero electricista venezolano-estadounidense y 17.º presidente del MIT.

Woman interviews man at a table while another man adjusts microphone.
Jessica Chomik-Morales (left) interviews the 17th president of MIT, L. Rafael Reif (right), for her podcast while Héctor De Jesús-Cortés (center) adjusts the microphone. Photo: Steph Stevens

Con las relaciones profesionales que estableció en las temporadas uno y dos, Chomik-Morales amplió su visión y reunió una lista de posibles invitados en América Latina para la tercera temporada. Con la ayuda de su asesor científico, Héctor De Jesús-Cortés, un investigador Boricua de posdoctorado del MIT, y el apoyo financiero del McGovern Institute, el Picower Institute for Learning and Memory, el Departamento de Ciencias Cerebrales y Cognitivas, y las Iniciativas Internacionales de Ciencia y Tecnología del MIT, Chomik-Morales organizó entrevistas con científicos en México, Perú, Colombia, Chile, Argentina, Uruguay y Paraguay durante el verano de 2023.

Viajando en avión cada cuatro o cinco días, y consiguiendo más posibles participantes de una etapa del viaje a la siguiente por recomendación, Chomik-Morales recorrió más de 10,000 millas y recopiló 33 historias para su tercera temporada. Las áreas de especialización de los científicos abarcan toda una variedad de temas, desde los aspectos sociales de los ciclos de sueño y vigilia hasta los trastornos del estado de ánimo y la personalidad, pasando por la lingüística y el lenguaje en el cerebro o el modelado por computadoras como herramienta de investigación.

“Si alguien estudia la depresión y la ansiedad, quiero hablar sobre sus opiniones con respecto a diversas terapias, incluidos los fármacos y también las microdosis con alucinógenos,” dice Chomik-Morales. “Estas son las cosas de las que habla la gente.” No le teme a abordar temas delicados, como la relación entre las hormonas y la orientación sexual, porque “es importante que la gente escuche a los expertos hablar de estas cosas,” comenta.

El tono de las entrevistas va de lo informal (“el investigador y yo somos como amigos”, dice) a lo pedagógico (“de profesor a alumno”). Lo que no cambia es la accesibilidad (se evitan términos técnicos) y las preguntas iniciales y finales en cada entrevista. Para empezar: “¿Cómo ha llegado hasta aquí? ¿Qué le atrajo de la neurociencia?”. Para terminar: “¿Qué consejo le daría a un joven estudiante latino interesado en Ciencias, Ingeniería, Tecnología y Matemáticas[1]?

Permite que el marco de referencia de sus escuchas sea lo que la guíe. “Si no entendiera algo o pensara que se podría explicar mejor, diría: ‘Hagamos una pausa’. ¿Qué significa esta palabra?”, aunque ella conociera la definición. Pone el ejemplo de la palabra “MEG” (magnetoencefalografía): la medición del campo magnético generado por la actividad eléctrica de las neuronas, que suele combinarse con la resonancia magnética para producir imágenes de fuentes magnéticas. Para aterrizar el concepto, preguntaría: “¿Cómo funciona? ¿Este tipo de exploración hace daño al paciente?”.

Allanar el camino para la creación de redes globales

El equipo de Chomik-Morales era escaso: tres micrófonos Yeti y una cámara de video Canon conectada a su computadora portátil. Las entrevistas se realizaban en salones de clase, oficinas universitarias, en la casa de los investigadores e incluso al aire libre, ya que no había estudios insonorizados disponibles. Ha estado trabajando con el ingeniero de sonido David Samuel Torres, de Puerto Rico, para obtener un sonido más claro.

Ninguna limitación tecnológica podía ocultar la importancia del proyecto para los científicos participantes.

Two women talking at a table in front of a camera.
Jessica Chomik-Morales (left) interviews Josefina Cruzat (right) at Adolfo Ibañez University in Chile. Photo: Jessica Chomik-Morales

“Mi Última Neurona” muestra nuestro conocimiento diverso en un escenario global, proporcionando un retrato más preciso del panorama científico en América Latina,” dice Constanza Baquedano, originaria de Chile. “Es un avance hacia la creación de una representación más inclusiva en la ciencia”. Baquendano es profesora adjunta de psicología en la Universidad Adolfo Ibáñez, en donde utiliza electrofisiología y mediciones electroencefalográficas y conductuales para investigar la meditación y otros estados contemplativos. “Estaba ansiosa por ser parte de un proyecto que buscara brindar reconocimiento a nuestras experiencias compartidas como mujeres latinoamericanas en el campo de la neurociencia.”

“Comprender los retos y las oportunidades de los neurocientíficos que trabajan en América Latina es primordial,” afirma Agustín Ibáñez, profesor y director del Instituto Latinoamericano de Salud Cerebral (BrainLat) de la Universidad Adolfo Ibáñez de Chile. “Esta región, que se caracteriza por tener importantes desigualdades que afectan la salud cerebral, también presenta desafíos únicos en el campo de la neurociencia,” afirma Ibáñez, quien se interesa principalmente en la intersección de la neurociencia social, cognitiva y afectiva. “Al centrarse en América Latina, el podcast da a conocer las historias que frecuentemente no se cuentan en la mayoría de los medios. Eso tiende puentes y allana el camino para la creación de redes globales.”

Por su parte, Chomik-Morales confía en que su podcast generará un gran número de seguidores en América Latina. “Estoy muy agradecida por el espléndido patrocinio del MIT,” dice Chomik-Morales. “Este es el proyecto más gratificante que he hecho en mi vida.”

__

[1] En inglés Science, Technology, Engineering and Mathematics (STEM)

New Spanish-language neuroscience podcast flourishes in third season

A Spanish version of this news story can be found here. (Una versión en español de esta noticia se puede encontrar aquí.)

___

Sylvia Abente, a clinical neurologist at the Universidad Nacional de Asunción in Paraguay, investigates the range of symptoms that characterize epilepsy. She works with indigenous peoples in Paraguay, and her fluency in Spanish and Guarni—the two official languages of Paraguay—allows her to help patients find the words to describe their epilepsy symptoms so she can treat them.

Juan Carlos Caicedo Mera, a neuroscientist at the Universidad Externado de Colombia, uses rodent models to research the neurobiological effects of early life stress. He has been instrumental in raising public awareness about the biological and behavioral effects of early-age physical punishment, leading to policy changes aimed at reducing its prevalence as a cultural practice in Colombia.

Woman interviews a man at a table with a camera recording the interview in the foreground.
Jessica Chomik-Morales (right) interviews Pedro Maldonado at the Biomedical Neuroscience Institute of Chile at the University of Chile. Photo: Jessica Chomik-Morales

Those are just two of the 33 neuroscientists in seven Latin American countries that Jessica Chomik-Morales interviewed over 37 days for the expansive third season of her Spanish-language podcast, “Mi Ultima Neurona” (“My Last Neuron”), which launches Sept. 18 at 5 p.m. on YouTube. Each episode runs between 45 and 90 minutes.

“I wanted to shine a spotlight on their stories to dispel the misconception that excellent science can only be done in America and Europe,” says Chomik-Morales, “or that it isn’t being produced in South America because of financial and other barriers.”

A first-generation college graduate who grew up in Asunción, Paraguay and Boca Raton, Florida, Chomik-Morales is now a postbaccalaureate research scholar at MIT. Here she works with Laura Schulz, professor of cognitive science, and Nancy Kanwisher, McGovern Institute investigator and the Walter A. Rosenblith Professor of Cognitive Neuroscience, using functional brain imaging to investigate how the brain explains the past, predicts the future, and intervenes on the present.

“The podcast is for the general public and is suitable for all ages,” she says. “It explains neuroscience in a digestable way to inspire young people that they, too, can become scientists and to show the rich variety of reseach that is being done in listeners’ home countries.”

Journey of a lifetime

“Mi Ultima Neurona” began as an idea in 2021 and grew rapidly into a collection of conversations with prominent Hispanic scientists, including L. Rafael Reif, a Venezuelan-American electrical engineer and the 17th president of MIT.

Woman interviews man at a table while another man adjusts microphone.
Jessica Chomik-Morales (left) interviews the 17th president of MIT, L. Rafael Reif (right), for her podcast while Héctor De Jesús-Cortés (center) adjusts the microphone. Photo: Steph Stevens

Building upon the professional relationships she built in seasons one and two, Chomik-Morales broadened her vision, and assembled a list of potential guests in Latin America for season three.  With research help from her scientific advisor, Héctor De Jesús-Cortés, an MIT postdoc from Puerto Rico, and financial support from the McGovern Institute, the Picower Institute for Learning and Memory, the Department of Brain and Cognitive Sciences, and MIT International Science and Technology Initiatives, Chomik-Morales lined up interviews with scientists in Mexico, Peru, Colombia, Chile, Argentina, Uruguay, and Paraguay during the summer of 2023.

Traveling by plane every four or five days, and garnering further referrals from one leg of the trip to the next through word of mouth, Chomik-Morales logged over 10,000 miles and collected 33 stories for her third season. The scientists’ areas of specialization run the gamut— from the social aspects of sleep/wake cycles to mood and personality disorders, from linguistics and language in the brain to computational modeling as a research tool.

“This is the most fulfilling thing I’ve ever done.” – Jessica Chomik-Morales

“If somebody studies depression and anxiety, I want to touch on their opinions regarding various therapies, including drugs, even microdosing with hallucinogens,” says Chomik-Morales. “These are the things people are talking about.” She’s not afraid to broach sensitive topics, like the relationship between hormones and sexual orientation, because “it’s important that people listen to experts talk about these things,” she says.

The tone of the interviews range from casual (“the researcher and I are like friends,” she says) to pedagogic (“professor to student”). The only constants are accessibility—avoiding technical terms—and the opening and closing questions in each one. To start: “How did you get here? What drew you to neuroscience?” To end: “What advice would you give a young Latino student who is interested in STEM?”

She lets her listeners’ frame of reference be her guide. “If I didn’t understand something or thought it could be explained better, I’d say, ‘Let’s pause. ‘What does this word mean?’ ” even if she knew the definition herself. She gives the example of the word “MEG” (magnetoencephalography)—the measurement of the magnetic field generated by the electrical activity of neurons, which is usually combined with magnetic resonance imaging to produce magnetic source imaging. To bring the concept down to Earth, she’d ask: “How does it work? Does this kind of scan hurt the patient?’ ”

Paving the way for global networking

Chomik-Morales’s equipment was spare: three Yeti microphones and a Canon video camera connected to her laptop computer. The interviews took place in classrooms, university offices, at researchers’ homes, even outside—no soundproof studios were available. She has been working with sound engineer David Samuel Torres, from Puerto Rico, to clarify the audio.

No technological limitations could obscure the significance of the project for the participating scientists.

Two women talking at a table in front of a camera.
Jessica Chomik-Morales (left) interviews Josefina Cruzat (right) at Adolfo Ibañez University in Chile. Photo: Jessica Chomik-Morales

“‘Mi Ultima Neurona’ showcases our diverse expertise on a global stage, providing a more accurate portrayal of the scientific landscape in Latin America,” says Constanza Baquedano, who is from Chile. “It’s a step toward creating a more inclusive representation in science.” Baquendano is an assistant professor of psychology at Universidad Adolfo Ibáñez, where she uses electrophysiology and electroencephalographic and behavioral measurements to investigate meditation and other contemplative states. “I was eager to be a part of a project that aimed to bring recognition to our shared experiences as Latin American women in the field of neuroscience.”

“Understanding the challenges and opportunities of neuroscientists working in Latin America is vital,”says Agustín Ibañez, professor and director of the Latin American Brain Health Institute (BrainLat) at Universidad Adolfo Ibáñez in Chile. “This region, characterized by significant inequalities affecting brain health, also presents unique challenges in the field of neuroscience,” says Ibañez, who is primarily interested in the intersection of social, cognitive, and affective neuroscience. “By focusing on Latin America, the podcast brings forth the narratives that often remain untold in the mainstream. That bridges gaps and paves the way for global networking.”

For her part, Chomik-Morales is hopeful that her podcast will generate a strong following in Latin America. “I am so grateful for the wonderful sponsorship from MIT,” says Chomik-Morales. “This is the most fulfilling thing I’ve ever done.”

Study decodes surprising approach mice take in learning

Neuroscience discoveries ranging from the nature of memory to treatments for disease have depended on reading the minds of mice, so researchers need to truly understand what the rodents’ behavior is telling them during experiments. In a new study that examines learning from reward, MIT researchers deciphered some initially mystifying mouse behavior, yielding new ideas about how mice think and a mathematical tool to aid future research.

The task the mice were supposed to master is simple: Turn a wheel left or right to get a reward and then recognize when the reward direction switches. When neurotypical people play such “reversal learning” games they quickly infer the optimal approach: stick with the direction that works until it doesn’t and then switch right away. Notably, people with schizophrenia struggle with the task. In the new study in PLOS Computational Biology, mice surprised scientists by showing that while they were capable of learning the “win-stay, lose-shift” strategy, they nonetheless refused to fully adopt it.

“It is not that mice cannot form an inference-based model of this environment—they can,” said corresponding author Mriganka Sur, Newton Professor in The Picower Institute for Learning and Memory and MIT’s Department of Brain and Cognitive Sciences (BCS). “The surprising thing is that they don’t persist with it. Even in a single block of the game where you know the reward is 100 percent on one side, every so often they will try the other side.”

While the mouse motif of departing from the optimal strategy could be due to a failure to hold it in memory, said lead author and Sur Lab graduate student Nhat Le, another possibility is that mice don’t commit to the “win-stay, lose-shift” approach because they don’t trust that their circumstances will remain stable or predictable. Instead, they might deviate from the optimal regime to test whether the rules have changed. Natural settings, after all, are rarely stable or predictable.

“I’d like to think mice are smarter than we give them credit for,” Le said.

But regardless of which reason may cause the mice to mix strategies, added co-senior author Mehrdad Jazayeri, Associate Professor in BCS and the McGovern Institute for Brain Research, it is important for researchers to recognize that they do and to be able to tell when and how they are choosing one strategy or another.

“This study highlights the fact that, unlike the accepted wisdom, mice doing lab tasks do not necessarily adopt a stationary strategy and it offers a computationally rigorous approach to detect and quantify such non-stationarities,” he said. “This ability is important because when researchers record the neural activity, their interpretation of the underlying algorithms and mechanisms may be invalid when they do not take the animals’ shifting strategies into account.”

Tracking thinking

The research team, which also includes co-author Murat Yildirim, a former Sur lab postdoc who is now an assistant professor at the Cleveland Clinic Lerner Research Institute, initially expected that the mice might adopt one strategy or the other. They simulated the results they’d expect to see if the mice either adopted the optimal strategy of inferring a rule about the task, or more randomly surveying whether left or right turns were being rewarded. Mouse behavior on the task, even after days, varied widely but it never resembled the results simulated by just one strategy.

To differing, individual extents, mouse performance on the task reflected variance along three parameters: how quickly they switched directions after the rule switched, how long it took them to transition to the new direction, and how loyal they remained to the new direction. Across 21 mice, the raw data represented a surprising diversity of outcomes on a task that neurotypical humans uniformly optimize. But the mice clearly weren’t helpless. Their average performance significantly improved over time, even though it plateaued below the optimal level.

In the task, the rewarded side switched every 15-25 turns. The team realized the mice were using more than one strategy in each such “block” of the game, rather than just inferring the simple rule and optimizing based on that inference. To disentangle when the mice were employing that strategy or another, the team harnessed an analytical framework called a Hidden Markov Model (HMM), which can computationally tease out when one unseen state is producing a result vs. another unseen state. Le likens it to what a judge on a cooking show might do: inferring which chef contestant made which version of a dish based on patterns in each plate of food before them.

Before the team could use an HMM to decipher their mouse performance results, however, they had to adapt it. A typical HMM might apply to individual mouse choices, but here the team modified it to explain choice transitions over the course of whole blocks. They dubbed their modified model the blockHMM. Computational simulations of task performance using the blockHMM showed that the algorithm is able to infer the true hidden states of an artificial agent. The authors then used this technique to show the mice were persistently blending multiple strategies, achieving varied levels of performance.

“We verified that each animal executes a mixture of behavior from multiple regimes instead of a behavior in a single domain,” Le and his co-authors wrote. “Indeed 17/21 mice used a combination of low, medium and high-performance behavior modes.”

Further analysis revealed that the strategies afoot were indeed the “correct” rule inference strategy and a more exploratory strategy consistent with randomly testing options to get turn-by-turn feedback.

Now that the researchers have decoded the peculiar approach mice take to reversal learning, they are planning to look more deeply into the brain to understand which brain regions and circuits are involved. By watching brain cell activity during the task, they hope to discern what underlies the decisions the mice make to switch strategies.

By examining reversal learning circuits in detail, Sur said, it’s possible the team will gain insights that could help explain why people with schizophrenia show diminished performance on reversal learning tasks. Sur added that some people with autism spectrum disorders also persist with newly unrewarded behaviors longer than neurotypical people, so his lab will also have that phenomenon in mind as they investigate.

Yildirim, too, is interested in examining potential clinical connections.

“This reversal learning paradigm fascinates me since I want to use it in my lab with various preclinical models of neurological disorders,” he said. “The next step for us is to determine the brain mechanisms underlying these differences in behavioral strategies and whether we can manipulate these strategies.”

Funding for the study came from The National Institutes of Health, the Army Research Office, a Paul and Lilah Newton Brain Science Research Award, the Massachusetts Life Sciences Initiative, The Picower Institute for Learning and Memory and The JPB Foundation.

One scientist’s journey from the Middle East to MIT

Smiling man holidng paper in a room.
Ubadah Sabbagh, soon after receiving his US citizenship papers, in April 2023. Photo: Ubadah Sabbagh

“I recently exhaled a breath I’ve been holding in for nearly half my life. After applying over a decade ago, I’m finally an American. This means so many things to me. Foremost, it means I can go back to the the Middle East, and see my mama and the family, for the first time in 14 years.” — McGovern Institute Postdoctoral Associate Ubadah Sabbagh, X (formerly Twitter) post, April 27, 2023

The words sit atop a photo of Ubadah Sabbagh, who joined the lab of Guoping Feng, James W. (1963) and Patricia T. Poitras Professor at MIT, as a postdoctoral associate in 2021. Sabbagh, a Syrian national, is dressed in a charcoal grey jacket, a keffiyeh loose around his neck, and holding his US citizenship papers, which he began applying for when he was 19 and an undergraduate at the University of Missouri-Kansas City (UMKC) studying biology and bioinformatics.

In the photo he is 29.

A clarity of vision

Sabbagh’s journey from the Middle East to his research position at MIT has been marked by determination and courage, a multifaceted curiosity, and a role as a scientist-writer/scientist-advocate.  He is particularly committed to the importance of humanity in science.

“For me, a scientist is a person who is not only in the lab but also has a unique perspective to contribute to society,” he says. “The scientific method is an idea, and that can be objective. But the process of doing science is a human endeavor, and like all human endeavors, it is inherently both social and political.”

At just 30 years of age, some of Sabbagh’s ideas have disrupted conventional thinking about how science is done in the United States. He believes nations should do science not primarily to compete, for example, but to be aspirational.

“It is our job to make our work accessible to the public, to educate and inform, and to help ground policy,” he says. “In our technologically advanced society, we need to raise the baseline for public scientific intuition so that people are empowered and better equipped to separate truth from myth.”

Two men sitting at a booth wearing headphones.
Ubadah Sabbagh is interviewed for Max Planck Forida’s Neurotransmissions podcast at the 2023 Society for Neuroscience conference in San Diego. Photo: Max Planck Florida

His research and advocacy work have won him accolades, including the 2023 Young Arab Pioneers Award from the Arab Youth Center and the 2020 Young Investigator Award from the American Society of Neurochemistry. He was also named to the 2021 Forbes “30 under 30” list, the first Syrian to be selected in the Science category.

A path to knowledge

Sabbagh’s path to that knowledge began when, living on his own at age 16, he attended Longview Community College, in Kansas City, often juggling multiple jobs. It continued at UMKC, where he fell in love with biology and had his first research experience with bioinformatician Gerald Wyckoff at the same time the civil war in Syria escalated, with his family still in the Middle East. “That was a rough time for me,” he says. “I had a lot of survivor’s guilt: I am here, I have all of this stability and security compared to what they have, and while they had suffocation, I had opportunity. I need to make this mean something positive, not just for me, but in as broad a way as possible for other people.”

Child smiles in front of scientific poster.
Ubadah Sabbagh, age 9, presents his first scientific poster. Photo: Ubadah Sabbagh

The war also sparked Sabbagh’s interest in human behavior—“where it originates, what motivates people to do things, but in a biological, not a psychological way,” he says. “What circuitry is engaged? What is the infrastructure of the brain that leads to X, Y, Z?”

His passion for neuroscience blossomed as a graduate student at Virginia Tech, where he earned his PhD in translational biology, medicine, and health. There, he received a six-year NIH F99/K00 Award, and under the mentorship of neuroscientist at the Fralin Biomedical Research Institute he researched the connections between the eye and the brain, specifically, mapping the architecture of the principle neurons in a region of the thalamus essential to visual processing.

“The retina, and the entire visual system, struck me as elegant, with beautiful layers of diverse cells found at every node,” says Sabbagh, his own eyes lighting up.

His research earned him a coveted spot on the Forbes “30 under 30” list, generating enormous visibility, including in the Arab world, adding visitors to his already robust X (formerly Twitter) account, which has more than 9,200 followers. “The increased visibility lets me use my voice to advocate for the things I care about,” he says.

“I need to make this mean something positive, not just for me, but in as broad a way as possible for other people.” — Ubadah Sabbagh

Those causes range from promoting equity and inclusion in science to transforming the American system of doing science for the betterment of science and the scientists themselves. He cofounded the nonprofit Black in Neuro to celebrate and empower Black scholars in neuroscience, and he continues to serve on the board. He is the chair of an advisory committee for the Society for Neuroscience (SfN), recommending ways SfN can better address the needs of its young members, and a member of the Advisory Committee to the National Institutes of Health (NIH) Director working group charged with re-envisioning postdoctoral training. He serves on the advisory board of Community for Rigor, a new NIH initiative that aims to teach scientific rigor at national scale and, in his spare time, he writes articles about the relationship of science and policy for publications including Scientific American and the Washington Post.

Still, there have been obstacles. The same year Sabbagh received the NIH F99/K00 Award, he faced major setbacks in his application to become a citizen. He would not try again until 2021, when he had his PhD in hand and had joined the McGovern Institute.

An MIT postdoc and citizenship

Sabbagh dove into his research in Guoping Feng’s lab with the same vigor and outside-the-box thinking that characterized his previous work. He continues to investigate the thalamus, but in a region that is less involved in processing pure sensory signals, such as light and sound, and more focused on cognitive functions of the brain. He aims to understand how thalamic brain areas orchestrate complex functions we carry out every day, including working memory and cognitive flexibility.

“This is important to understand because when this orchestra goes out of tune it can lead to a range of neurological disorders, including autism spectrum disorder and schizophrenia,” he says. He is also developing new tools for studying the brain using genome editing and viral engineering to expand the toolkit available to neuroscientists.

Microscopic image of mouse brain
Neurons in a transgenic mouse brain labeled by Sabbagh using genome editing technology in the Feng lab. Image: Ubadah Sabbagh

The environment at the McGovern Institute is also a source of inspiration for Sabbagh’s research. “The scale and scope of work being done at McGovern is remarkable. It’s an exciting place for me to be as a neuroscientist,” said Sabbagh. “Besides being intellectually enriching, I’ve found great community here – something that’s important to me wherever I work.”

Returning to the Middle East

Profile of scientist Ubadah Sabbagh speaking at a table.
McGovern postdoc Ubadah Sabbagh at the 2023 Young Arab Pioneers Award ceremony in Abu Dhabi. Photo: Arab Youth Center

While at an advisory meeting at the NIH, Sabbagh learned he had been selected as a Young Arab Pioneer by the Arab Youth Center and was flown the next day to Abu Dhabi for a ceremony overseen by Her Excellency Shamma Al Mazrui, Cabinet Member and Minister of Community Development in the United Arab Emirates. The ceremony recognized 20 Arab youth from around the world in sectors ranging from scientific research to entrepreneurship and community development. Sabbagh’s research “presented a unique portrayal of creative Arab youth and an admirable representation of the values of youth beyond the Arab world,” said Sadeq Jarrar, executive director of the center.

“There I was, among other young Arab leaders, learning firsthand about their efforts, aspirations, and their outlook for the future,” says Sabbagh, who was deeply inspired by the experience.

Just a month earlier, his passport finally secured, Sabbagh had reunited with his family in the Middle East after more than a decade in the United States. “I had been away for so long,” he said, describing the experience as a “cultural reawakening.”

Woman hands man an award on stage.
Ubadah Sabbagh receives a Young Arab Pioneer Award by Her Excellency Shamma Al Mazrui, Cabinet Member and Minister of Community Development in the United Arab Emirates. Photo: Arab Youth Center

Sabbagh saw a gaping need he had not been aware of when he left 14 years earlier, as a teen. “The Middle East had such a glorious intellectual past,” he says. “But for years people have been leaving to get their advanced scientific training, and there is no adequate infrastructure to support them if they want to go back.” He wondered: What if there were a scientific renaissance in the region? How would we build infrastructure to cultivate local minds and local talent? What if the next chapter of the Middle East included being a new nexus of global scientific advancements?

“I felt so inspired,” he says. “I have a longing, someday, to meaningfully give back.”

Unpacking auditory hallucinations

Tamar Regev, the 2022–2024 Poitras Center Postdoctoral Fellow, has identified a new neural system that may shed light on the auditory hallucinations experienced by patients diagnosed with schizophrenia.

Scientist portrait
Tamar Regev is the 2022–2024 Poitras Center Postdoctoral
Fellow in Ev Fedorenko’s lab at the McGovern Institute. Photo: Steph Stevens

“The system appears integral to prosody processing,”says Regev. “‘Prosody’ can be described as the melody of speech — auditory gestures that we use when we’re speaking to signal linguistic, emotional, and social information.” The prosody processing system Regev has uncovered is distinct from the lower-level auditory speech processing system as well as the higher-level language processing system. Regev aims to understand how the prosody system, along with the speech and language processing systems, may be impaired in neuropsychiatric disorders such as schizophrenia, especially when experienced with auditory hallucinations in the form of speech.

“Knowing which neural systems are affected by schizophrenia can lay the groundwork for future research into interventions that target the mechanisms underlying symptoms such as hallucinations,” says Regev. Passionate about bridging gaps between disciplines, she is collaborating with Ann Shinn, MD, MPH, of McLean Hospital’s Schizophrenia and Bipolar Disorder Research Program.

Regev’s graduate work at the Hebrew University of Jerusalem focused on exploring the auditory system with electroencephalography (EEG), which measures electrical activity in the brain using small electrodes attached to the scalp. She came to MIT to study under Evelina Fedorenko, a world leader in researching the cognitive and neural mechanisms underlying language processing. With Fedorenko she has learned to use functional magnetic resonance imaging (fMRI), which reveals the brain’s functional anatomy by measuring small changes in blood flow that occur with brain activity.

“I hope my research will lead to a better understanding of the neural architectures that underlie these disorders—and eventually help us as a society to better understand and accept special populations.”- Tamar Regev

“EEG has very good temporal resolution but poor spatial resolution, while fMRI provides a map of the brain showing where neural signals are coming from,” says Regev. “With fMRI I can connect my work on the auditory system with that on the language system.”

Regev developed a unique fMRI paradigm to do that. While her human subjects are in the scanner, she is comparing brain responses to speech with expressive prosody versus flat prosody to find the role of the prosody system among the auditory, speech, and language regions. She plans to apply her findings to analyze a rich data set drawn from fMRI studies that Fedorenko and Shinn began a few years ago while investigating the neural basis of auditory hallucinations in patients with schizophrenia and bipolar disorder. Regev is exploring how the neural architecture may differ between control subjects and those with and without auditory hallucinations as well as those with schizophrenia and bipolar disorder.

“This is the first time these questions are being asked using the individual-subject approach developed in the Fedorenko lab,” says Regev. The approach provides superior sensitivity, functional resolution, interpretability, and versatility compared with the group analyses of the past. “I hope my research will lead to a better understanding of the neural architectures that underlie these disorders,” says Regev, “and eventually help us as a society to better understand and accept special populations.”

Using the tools of neuroscience to personalize medicine

Profile picture of Sadie Zacharek
Graduate student Sadie Zacharek. Photo: Steph Stevens

From summer internships as an undergraduate studying neuroscience at the University of Notre Dame, Sadie Zacharek developed interests in areas ranging from neuroimaging to developmental psychopathologies, from basic-science research to clinical translation. When she interviewed with John Gabrieli, the Grover Hermann Professor of Health Sciences and Technology and Cognitive Neuroscience, for a position in his lab as a graduate fellow, everything came together.

“The brain provides a window not only into dysfunction but also into response to treatment,” she says. “John and I both wanted to explore how we might use neuroimaging as a step toward personalized medicine.”

Zacharek joined the Gabrieli lab in 2020 and currently holds the Sheldon and Janet Razin’59 Fellowship for 2023-2024. In the Gabrieli lab, she has been designing and helping launch studies focusing on the neural mechanisms driving childhood depression and social anxiety disorder with the aim of developing strategies to predict which treatments will be most effective for individual patients.

Helping children and adults

“Depression in children is hugely understudied,” says Zacharek. “Most of the research has focused on adult and adolescent depression.” But the clinical presentation differs in the two groups, she says. “In children, irritability can be the primary presenting symptom rather than melancholy.” To get to the root of childhood depression, she is exploring both the brain basis of the disorder and how the parent-child relationship might influence symptoms. “Parents help children develop their emotion-regulation skills,” she says. “Knowing the underlying mechanisms could, in family-focused therapy, help them turn a ‘downward spiral’ into irritability, into an ‘upward spiral,’ away from it.”

The studies she is conducting include functional magnetic resonance imaging (fMRI) of children to explore their brain responses to positive and negative stimuli, fMRI of both the child and parent to compare maps of their brains’ functional connectivity, and magnetic resonance spectroscopy to explore the neurochemical environment of both, including quantities of neurometabolites that indicate inflammation (higher levels have been found to correlate with depressive pathology).

“If we could find a normative range for neurochemicals and then see how far someone has deviated in depression, or a neural signature of elevated activity in a brain region, that could serve as a biomarker for future interventions,” she says. “Such a biomarker would be especially relevant for children given that they are less able to articulately convey their symptoms or internal experience.”

“The brain provides a window not only into dysfunction but also into response to treatment.” – Sadie Zacharek

Social anxiety disorder is a chronic and disabling condition that affects about 7.1 percent of U.S. adults. Treatment usually involves cognitive behavior therapy (CBT), and then, if there is limited response, the addition of a selective serotonin reuptake inhibitor (SSRI), as an anxiolytic.

But what if research could reveal the key neurocircuitry of social anxiety disorder as well as changes associated with treatment? That could open the door to predicting treatment outcome.

Zacharek is collecting neuroimaging data, as well as clinical assessments, from participants. The participants diagnosed with social anxiety disorder will then undergo 12 weeks of group CBT, followed by more data collection, and then individual CBT for 12 weeks plus an SSRI for those who do not benefit from the group CBT. The results from those two time points will help determine the best treatment for each person.

“We hope to build a predictive model that could enable clinicians to scan a new patient and select the optimal treatment,” says Zacharek. “John’s many long-standing relationships with clinicians in this area make all of these translational studies possible.”

Nature: An unexpected source of innovative tools to study the brain

This story originally appeared in the Fall 2023 issue of BrainScan.

___

Scientist holds 3D printed phage over a natural background.
Genetic engineer Joseph Kreitz looks to the microscopic world for inspiration in Feng Zhang’s lab at the McGovern Institute. Photo: Steph Steve

In their quest to deepen their understanding of the brain, McGovern scientists take inspiration wherever it comes — and sometimes it comes from surprising sources. To develop new tools for research and innovative strategies for treating disease, they’ve drawn on proteins that organisms have been making for billions of years as well as sophisticated materials engineered for modern technology.

For McGovern investigator Feng Zhang, the natural world provides a rich source of molecules with remarkable and potentially useful functions.

Zhang is one of the pioneers of CRISPR, a programmable system for gene editing that is built from the components of a bacterial adaptive immune system. Scientists worldwide use CRISPR to modify genetic sequences in their labs, and many CRISPR-based therapies, which aim to treat disease through gene editing, are now in development. Meanwhile, Zhang and his team have continued to explore CRISPR-like systems beyond the bacteria in which they were originally discovered.

Turning to nature

This year, the search for evolutionarily related systems led Zhang’s team to a set of enzymes made by more complex organisms, including single-celled algae and hard-shell clams. Like the enzymes that power CRISPR, these newly discovered enzymes, called Fanzors, can be directed to cut DNA at specific sites by programming an RNA molecule as a guide.

Rhiannon Macrae, a scientific advisor in Zhang’s lab, says the discovery was surprising because Fanzors don’t seem to play the same role in immunity that CRISPR systems do. In fact, she says it’s not clear what Fanzors do at all. But as programmable gene editors, Fanzors might have an important advantage over current CRISPR tools — particularly for clinical applications. “Fanzor proteins are much smaller than the workhorse CRISPR tool, Cas9,” Macrae says. “This really matters when you actually want to be able to use one of these tools in a patient, because the bigger the tool, the harder it is to package and deliver to patients’ cells.”

Cryo-EM map of a Fanzor protein (gray, yellow, light blue, and pink) in complex with ωRNA (purple) and its target DNA (red). Non-target DNA strand in blue. Image: Zhang lab

Zhang’s team has thought a lot about how to get therapies to patients’ cells, and size is only one consideration. They’ve also been looking for ways to direct drugs, gene-editing tools, or other therapies to specific cells and tissues in the body. One of the lab’s leading strategies comes from another unexpected natural source: a microscopic syringe produced by certain insect-infecting bacteria.

In their search for an efficient system for targeted drug delivery, Zhang and graduate student Joseph Kreitz first considered the injection systems of bacteria-infecting viruses: needle-like structures that pierce the outer membrane of their host to deliver their own genetic material. But these viral injection systems can’t easily be freed from the rest of the virus.

Then Zhang learned that some bacteria have injection systems of their own, which they release inside their hosts after packing them with toxins. They reengineered the bacterial syringe, devising a delivery system that works on human cells. Their current system can be programmed to inject proteins — including those used for gene editing — directly into specified cell types. With further development, Zhang hopes it will work with other types of therapies, as well.

Magnetic imaging

In McGovern Associate Investigator Alan Jasanoff’s lab, researchers are designing sensors that can track the activity of specific neurons or molecules in the brain, using magnetic resonance imaging (MRI) or related forms of non-invasive imaging. These tools are essential for understanding how the brain’s cells and circuits work together to process information. “We want to give MRI a suite of metaphorical colors: sensitivities that enable us to dissect the different kinds of mechanistically significant contributors to neural activity,” he explains.

Jasanoff can tick off a list of molecules with notable roles in biology and industry that his lab has repurposed to glean more information from brain imaging. These include manganese — a metal once used to tint ancient glass; nitric oxide synthase — the enzyme that causes blushing; and iron oxide nanoparticles — tiny magnets that enable compact data storage inside computers. But Jasanoff says none of these should be considered out of place in the imaging world. “Most are pretty logical choices,” he says. “They all do different things and we use them in pretty different ways, but they are either magnetic or interact with magnetic molecules to serve our purposes for brain imaging.”

Close-up picture of manganese metal
Manganese, a metal that interacts weakly with magnetic fields, is a key component in new MRI sensors being developed in Alan Jasanoff’s lab at the McGovern Institute.

The enzyme nitric oxide synthase, for example, plays an important role in most functional MRI scans. The enzyme produces nitric oxide, which causes blood vessels to expand. This can bring a blush to the cheeks, but in the brain, it increases blood flow to bring more oxygen to busy neurons. MRI can detect this change because it is sensitive to the magnetic properties of blood.

By using blood flow as a proxy for neural activity, functional MRI scans light up active regions of the brain, but they can’t pinpoint the activity of specific cells. So Jasanoff and his team devised a more informative MRI sensor by reengineering nitric oxide synthase. Their modified enzyme, which they call NOSTIC, can be introduced into a select group of cells, where it will produce nitric oxide in response to neural activity — triggering increased blood flow and strengthening the local MRI signal. Researchers can deliver it to specific kinds of brain cells, or they can deliver it exclusively to neurons that communicate directly with one another. Then they can watch for an elevated MRI signal when those cells fire. This lets them see how information flows through the brain and tie specific cells to particular tasks.

Miranda Dawson, a graduate student in Jasanoff’s lab, is using NOSTIC to study the brain circuits that fuel addiction. She’s interested in the involvement of a brain region called the insula, which may mediate the physical sensations that people with addiction experience during drug cravings or withdrawal. With NOSTIC, Dawson can follow how the insula communicates to other parts of the brain as a rat experiences these MITstages of addiction. “We give our sensor to the insula, and then it projects to anatomically connected brain regions,” she explains. “So we’re able to delineate what circuits are being activated at different points in the addiction cycle.”

Scientist with folded arms next to a picture of a brain
Miranda Dawson uses her lab’s novel MRI sensor, NOSTIC, to illuminate the brain circuits involved in fentanyl craving and withdrawal. Photo: Steph Stevens; MRI scan: Nan Li, Souparno Ghosh, Jasanoff lab

Mining biodiversity

McGovern investigators know that good ideas and useful tools can come from anywhere. Sometimes, the key to harnessing those tools is simply recognizing their potential. But there are also opportunities for a more deliberate approach to finding them.

McGovern Investigator Ed Boyden is leading a program that aims to accelerate the discovery of valuable natural products. Called the Biodiversity Network (BioNet), the project is collecting biospecimens from around the world and systematically analyzing them, looking for molecular tools that could be applied to major challenges in science and medicine, from brain research to organ preservation. “The idea behind BioNet,” Boyden explains, “is rather than wait for chance to give us these discoveries, can we go look for them on purpose?”

Fourteen MIT School of Science professors receive tenure for 2022 and 2023

In 2022, nine MIT faculty were granted tenure in the School of Science:

Gloria Choi examines the interaction of the immune system with the brain and the effects of that interaction on neurodevelopment, behavior, and mood. She also studies how social behaviors are regulated according to sensory stimuli, context, internal state, and physiological status, and how these factors modulate neural circuit function via a combinatorial code of classic neuromodulators and immune-derived cytokines. Choi joined the Department of Brain and Cognitive Sciences after a postdoc at Columbia University. She received her bachelor’s degree from the University of California at Berkeley, and her PhD from Caltech. Choi is also an investigator in The Picower Institute for Learning and Memory.

Nikta Fakhri develops experimental tools and conceptual frameworks to uncover laws governing fluctuations, order, and self-organization in active systems. Such frameworks provide powerful insight into dynamics of nonequilibrium living systems across scales, from the emergence of thermodynamic arrow of time to spatiotemporal organization of signaling protein patterns and discovery of odd elasticity. Fakhri joined the Department of Physics in 2015 following a postdoc at University of Göttingen. She completed her undergraduate degree at Sharif University of Technology and her PhD at Rice University.

Geobiologist Greg Fournier uses a combination of molecular phylogeny insights and geologic records to study major events in planetary history, with the hope of furthering our understanding of the co-evolution of life and environment. Recently, his team developed a new technique to analyze multiple gene evolutionary histories and estimated that photosynthesis evolved between 3.4 and 2.9 billion years ago. Fournier joined the Department of Earth, Atmospheric and Planetary Sciences in 2014 after working as a postdoc at the University of Connecticut and as a NASA Postdoctoral Program Fellow in MIT’s Department of Civil and Environmental Engineering. He earned his BA from Dartmouth College in 2001 and his PhD in genetics and genomics from the University of Connecticut in 2009.

Daniel Harlow researches black holes and cosmology, viewed through the lens of quantum gravity and quantum field theory. His work generates new insights into quantum information, quantum field theory, and gravity. Harlow joined the Department of Physics in 2017 following postdocs at Princeton University and Harvard University. He obtained a BA in physics and mathematics from Columbia University in 2006 and a PhD in physics from Stanford University in 2012. He is also a researcher in the Center for Theoretical Physics.

A biophysicist, Gene-Wei Li studies how bacteria optimize the levels of proteins they produce at both mechanistic and systems levels. His lab focuses on design principles of transcription, translation, and RNA maturation. Li joined the Department of Biology in 2015 after completing a postdoc at the University of California at San Francisco. He earned an BS in physics from National Tsinghua University in 2004 and a PhD in physics from Harvard University in 2010.

Michael McDonald focuses on the evolution of galaxies and clusters of galaxies, and the role that environment plays in dictating this evolution. This research involves the discovery and study of the most distant assemblies of galaxies alongside analyses of the complex interplay between gas, galaxies, and black holes in the closest, most massive systems. McDonald joined the Department of Physics and the Kavli Institute for Astrophysics and Space Research in 2015 after three years as a Hubble Fellow, also at MIT. He obtained his BS and MS degrees in physics at Queen’s University, and his PhD in astronomy at the University of Maryland in College Park.

Gabriela Schlau-Cohen combines tools from chemistry, optics, biology, and microscopy to develop new approaches to probe dynamics. Her group focuses on dynamics in membrane proteins, particularly photosynthetic light-harvesting systems that are of interest for sustainable energy applications. Following a postdoc at Stanford University, Schlau-Cohen joined the Department of Chemistry faculty in 2015. She earned a bachelor’s degree in chemical physics from Brown University in 2003 followed by a PhD in chemistry at the University of California at Berkeley.

Phiala Shanahan’s research interests are focused around theoretical nuclear and particle physics. In particular, she works to understand the structure and interactions of hadrons and nuclei from the fundamental degrees of freedom encoded in the Standard Model of particle physics. After a postdoc at MIT and a joint position as an assistant professor at the College of William and Mary and senior staff scientist at the Thomas Jefferson National Accelerator Facility, Shanahan returned to the Department of Physics as faculty in 2018. She obtained her BS from the University of Adelaide in 2012 and her PhD, also from the University of Adelaide, in 2015.

Omer Yilmaz explores the impact of dietary interventions on stem cells, the immune system, and cancer within the intestine. By better understanding how intestinal stem cells adapt to diverse diets, his group hopes to identify and develop new strategies that prevent and reduce the growth of cancers involving the intestinal tract. Yilmaz joined the Department of Biology in 2014 and is now also a member of Koch Institute for Integrative Cancer Research. After receiving his BS from the University of Michigan in 1999 and his PhD and MD from University of Michigan Medical School in 2008, he was a resident in anatomic pathology at Massachusetts General Hospital and Harvard Medical School until 2013.

In 2023, five MIT faculty were granted tenure in the School of Science:

Physicist Riccardo Comin explores the novel phases of matter that can be found in electronic solids with strong interactions, also known as quantum materials. His group employs a combination of synthesis, scattering, and spectroscopy to obtain a comprehensive picture of these emergent phenomena, including superconductivity, (anti)ferromagnetism, spin-density-waves, charge order, ferroelectricity, and orbital order. Comin joined the Department of Physics in 2016 after postdoctoral work at the University of Toronto. He completed his undergraduate studies at the Universita’ degli Studi di Trieste in Italy, where he also obtained a MS in physics in 2009. Later, he pursued doctoral studies at the University of British Columbia, Canada, earning a PhD in 2013.

Netta Engelhardt researches the dynamics of black holes in quantum gravity and uses holography to study the interplay between gravity and quantum information. Her primary focus is on the black hole information paradox, that black holes seem to be destroying information that, according to quantum physics, cannot be destroyed. Engelhardt was a postdoc at Princeton University and a member of the Princeton Gravity Initiative prior to joining the Department of Physics in 2019. She received her BS in physics and mathematics from Brandeis University and her PhD in physics from the University of California at Santa Barbara. Engelhardt is a researcher in the Center for Theoretical Physics and the Black Hole Initiative at Harvard University.

Mark Harnett studies how the biophysical features of individual neurons endow neural circuits with the ability to process information and perform the complex computations that underlie behavior. As part of this work, his lab was the first to describe the physiological properties of human dendrites. He joined the Department of Brain and Cognitive Sciences and the McGovern Institute for Brain Research in 2015. Prior, he was a postdoc at the Howard Hughes Medical Institute’s Janelia Research Campus. He received his BA in biology from Reed College in Portland, Oregon and his PhD in neuroscience from the University of Texas at Austin.

Or Hen investigates quantum chromodynamic effects in the nuclear medium and the interplay between partonic and nucleonic degrees of freedom in nuclei. Specifically, Hen utilizes high-energy scattering of electron, neutrino, photon, proton and ion off atomic nuclei to study short-range correlations: temporal fluctuations of high-density, high-momentum, nucleon clusters in nuclei with important implications for nuclear, particle, atomic, and astrophysics. Hen was an MIT Pappalardo Fellow in the Department of Physics from 2015 to 2017 before joining the faculty in 2017. He received his undergraduate degree in physics and computer engineering from the Hebrew University and earned his PhD in experimental physics at Tel Aviv University.

Sebastian Lourido is interested in learning about the vulnerabilities of parasites in order to develop treatments for infectious diseases and expand our understanding of eukaryotic diversity. His lab studies many important human pathogens, including Toxoplasma gondii, to model features conserved throughout the phylum. Lourido was a Whitehead Fellow at the Whitehead Institute for Biomedical Research until 2017, when he joined the Department of Biology and became a Whitehead Member. He earned his BS from Tulane University in 2004 and his PhD from Washington University in St. Louis in 2012.

Thirty-four community members receive 2023 MIT Excellence Awards, Collier Medal, and Staff Award for Distinction in Service

Twenty-four individuals and one team were awarded MIT Excellence Awards — the highest awards for staff at the Institute — at a well-attended and energetic ceremony the afternoon of June 8 in Kresge Auditorium. In addition to the Excellence Awards, two community members were honored with the Collier Medal and Staff Award for Distinction in Service.

The Excellence Awards, Collier Medal, and Staff Award for Distinction in Service recognize the extraordinary dedication of staff and community members who represent all areas of the Institute, both on campus and at the Lincoln Laboratory.

The Collier Medal honors the memory of Officer Sean Collier, who gave his life protecting and serving the MIT community, and celebrates an individual or group whose actions demonstrate the importance of community. The Staff Award for Distinction in Service, now in its second year, is presented to a staff member whose service to the Institute results in a positive lasting impact on the community.

The 2023 MIT Excellence Award recipients and their award categories are:

  • Sustaining MIT: Erin Genereux; Rachida Kernis; J. Bradley Morrison, and the Tip Box Recycling Team (John R. Collins, Michael A. DeBerio, Normand J. Desrochers III, Mitchell S. Galanek, David M. Pavone, Ryan Samz, Rosario Silvestri, and Lu Zhong);
  • Innovative Solutions: Abram Barrett, Nicole H. W. Henning
  • Bringing Out the Best: Patty Eames, Suzy Maholchic Nelson
  • Serving Our Community: Mahnaz El-Kouedi, Kara Flyg, Timothy J. Meunier, Marie A. Stuppard, Roslyn R. Wesley
  • Embracing Diversity, Equity, and Inclusion: Farrah A. Belizaire
  • Outstanding Contributor: Diane Ballestas, Robert J. Bicchieri, Lindsey Megan Charles, Benoit Desbiolles, Dennis C. Hamel, Heather Anne Holland, Gregory L. Long, Linda Mar, Mary Ellen Sinkus, Sarah E. Willis, and Phyl A. Winn
  • The 2023 Collier Medal recipient was Martin Eric William Nisser, a graduate student fellow in the Department of Electrical Engineering and Computer Science/Computer Science and Artificial Intelligence Laboratory and the School of Engineering/MIT Schwarzman College of Computing.
  • The 2023 recipient of the Staff Award for Distinction in Service was Kimberly A. Haberlin, chief of staff in the Chancellor’s Office.

Presenters included President Sally Kornbluth; Vice President for Human Resources Ramona Allen; Provost Cynthia Barnhart; School of Engineering Dean Anantha Chandrakasan; MIT Police Chief John DiFava and MIT Police Captain Andrew Turco; Institute Community and Equity Officer John Dozier; Lincoln Laboratory Director Eric Evans; and Chancellor Melissa Nobles. As always, an animated and supportive audience with signs, pompoms, and glow bracelets filled the auditorium with cheers for the honorees.

Visit the MIT Human Resources website for more information about the award categories, selection process, recipients, and to view the archive video of the event.