McGovern neuroscientists discover new role for ‘hunger hormone’

About a dozen years ago, scientists discovered that a hormone called ghrelin enhances appetite. Dubbed the “hunger hormone,” ghrelin was quickly targeted by drug companies seeking treatments for obesity — none of which have yet panned out.

MIT neuroscientists have now discovered that ghrelin’s role goes far beyond controlling hunger. The researchers found that ghrelin released during chronic stress makes the brain more vulnerable to traumatic events, suggesting that it may predispose people to posttraumatic stress disorder (PTSD).

Drugs that reduce ghrelin levels, originally developed to try to combat obesity, could help protect people who are at high risk for PTSD, such as soldiers serving in war, says Ki Goosens, an assistant professor of brain and cognitive sciences at MIT, and senior author of a paper describing the findings in the Oct. 15 online edition of Molecular Psychiatry.

“Perhaps we could give people who are going to be deployed into an active combat zone a ghrelin vaccine before they go, so they will have a lower incidence of PTSD. That’s exciting because right now there’s nothing given to people to prevent PTSD,” says Goosens, who is also a member of MIT’s McGovern Institute for Brain Research.

Lead author of the paper is Retsina Meyer, a recent MIT PhD recipient. Other authors are McGovern postdoc Anthony Burgos-Robles, graduate student Elizabeth Liu, and McGovern research scientist Susana Correia.

Stress and fear

Stress is a useful response to dangerous situations because it provokes action to escape or fight back. However, when stress is chronic, it can produce anxiety, depression and other mental illnesses.

At MIT, Goosens discovered that one brain structure that is especially critical for generating fear, the amygdala, has a special response to chronic stress. The amygdala produces large amounts of growth hormone during stress, a change that seems not to occur in other brain regions.

In the new paper, Goosens and her colleagues found that the release of the growth hormone in the amygdala is controlled by ghrelin, which is produced primarily in the stomach and travels throughout the body, including the brain.

Ghrelin levels are elevated by chronic stress. In humans, this might be produced by factors such as unemployment, bullying, or loss of a family member. Ghrelin stimulates the secretion of growth hormone from the brain; the effects of growth hormone from the pituitary gland in organs such as the liver and bones have been extensively studied. However, the role of growth hormone in the brain, particularly the amygdala, is not well known.

The researchers found that when rats were given either a drug to stimulate the ghrelin receptor or gene therapy to overexpress growth hormone over a prolonged period, they became much more susceptible to fear than normal rats. Fear was measured by training all of the rats to fear an innocuous, novel tone. While all rats learned to fear the tone, the rats with prolonged increased activity of the ghrelin receptor or overexpression of growth hormone were the most fearful, assessed by how long they froze after hearing the tone. Blocking the cell receptors that interact with ghrelin or growth hormone reduced fear to normal levels in chronically stressed rats.

When rats were exposed to chronic stress over a prolonged period, their circulating ghrelin and amygdalar growth hormone levels also went up, and fearful memories were encoded more strongly. This is similar to what the researchers believe happens in people who suffer from PTSD.

“When you have people with a history of stress who encounter a traumatic event, they are more likely to develop PTSD because that history of stress has altered something about their biology. They have an excessively strong memory of the traumatic event, and that is one of the things that drives their PTSD symptoms,” Goosens says.

New drugs, new targets

Over the last century, scientists have described the hypothalamic-pituitary-adrenal (HPA) axis, which produces adrenaline, cortisol (corticosterone in rats), and other hormones that stimulate “fight or flight” behavior. Since then, stress research has focused almost exclusively on the HPA axis.

After discovering ghrelin’s role in stress, the MIT researchers suspected that ghrelin was also linked to the HPA axis. However, they were surprised to find that when the rats’ adrenal glands — the source of corticosterone, adrenaline, and noradrenaline — were removed, the animals still became overly fearful when chronically stressed. The authors also showed that repeated ghrelin-receptor stimulation did not trigger release of HPA hormones, and that blockade of the ghrelin receptor did not blunt release of HPA stress hormones. Therefore, the ghrelin-initiated stress pathway appears to act independently of the HPA axis. “That’s important because it gives us a whole new target for stress therapies,” Goosens says.

Pharmaceutical companies have developed at least a dozen possible drug compounds that interfere with ghrelin. Many of these drugs have been found safe for humans, but have not been shown to help people lose weight. The researchers believe these drugs could offer a way to vaccinate people entering stressful situations, or even to treat people who already suffer from PTSD, because ghrelin levels remain high long after the chronic stress ends.

PTSD affects about 7.7 million American adults, including soldiers and victims of crimes, accidents, or natural disasters. About 40 to 50 percent of patients recover within five years, Meyer says, but the rest never get better.

The researchers hypothesize that the persistent elevation of ghrelin following trauma exposure could be one of the factors that maintain PTSD. “So, could you immediately reverse PTSD? Maybe not, but maybe the ghrelin could get damped down and these people could go through cognitive behavioral therapy, and over time, maybe we can reverse it,” Meyer says.

Working with researchers at Massachusetts General Hospital, Goosens’ lab is now planning to study ghrelin levels in human patients suffering from anxiety and fear disorders. They are also planning a clinical trial of a drug that blocks ghrelin to see if it can prevent relapse of depression.

The research was funded by the U.S. Army Research Office, the Defense Advanced Research Projects Agency, and the National Institute of Mental Health.

Five graduate students awarded McGovern fellowships

This year, five graduate students have been awarded fellowships made possible by McGovern supporters.

Leah Acker, a fifth year graduate student in the labs of Ed Boyden and Robert Desimone, has been awarded a 2013-14 Friends of the McGovern Fellowship. Leah is focused on understanding the basis of neural dynamics underlying complex behaviors in primate models. She is developing extremely precise optogenetic technologies for observing neural circuits that give rise to high level cognitive functions such as attention. Leah hopes her work will lead to the development of new treatments for brain disorders.

Graduate student Yinqing Li, a member of Feng Zhang‘s lab, has been awarded a Friends of the McGovern Fellowship for his work sequencing the connectome, a comprehensive map of neural connections in the brain. Yinqing’s research has involved developing novel technologies for barcoding individual neurons with unique identifiers, and then pooling, amplifying, and preparing individual neurons for next-generation sequencing. His work has the promise to fundamentally change the way systems neuroscientists learn about the connections underlying neural circuit function.

The Mark Gorenberg ’76 Fellowship has been awarded to Leyla Isik, a fourth year graduate student studying with Tomaso Poggio, for her research into the visual system. Bridging neuroscience and computer science, Leyla uses sophisticated computer simulations and magnetoencephalography (MEG) imaging of humans to develop improved computer algorithms for object recognition. Leyla has developed a methodology that enables a machine to identity which image a human subject is looking at on the basis of his or her MEG data, and is currently performing new experiments to understand how humans recognize these images under complex viewing conditions (such as in a cluttered background, or at different positions or viewpoints). Leyla hopes to use these insights to develop a new computational model that simulates how humans develop invariant object recognition

Tatsuo Okubo, a graduate student in Michale Fee‘s lab, is this year’s recipient of the Huburt Schoemaker Fellowship. Tots’ research is focused on understanding the brain circuitry underlying the development of complex learned behaviors. Using young songbirds just learning to sing as a model, Tots is investigating the role of the premotor area HVC in the avian brain, which is analogous to Broca’s area in the human brain. Tots employs sophisticated electrophysiological recording techniques while the bird is singing to observe the process of learning at the level of individual neurons. His goal is to understand how the activity pattern in the premotor area changes during song learning, and he hopes this research will give insight into learning complex behavior in general such as language acquisition in humans.

The Janet and Sheldon (1959) Razin Fellowship has been awarded to Joshua Manning, a graduate student in John Gabrieli‘s Lab. Josh’s goal is to use neuroimaging to understand decision making, risk taking, and sense of reward in the brains of healthy people as well as individuals with psychiatric disorders. He is working with sophisticated computer models, MRI scans, and personality and cognitive data to develop a better sense of the brain basis of psychiatric illnesses. Josh hopes to advance our knowledge of the neurological root of behaviors linked to impatience and impulsivity in individuals with brain disorders such as anxiety and attention deficit hyperactivity disorder.

Early Explorations of the Visual Cortex

On October 14, 2011, Nobel laureates David Hubel and Torsten Wiesel discussed their early explorations of the visual cortex.

Brain Scan Cover Image: Spring 2013

A bundle of spiny apical dendrites, reconstructed from a series of ultra-thin slices of mouse cortex. Image: Daniel Berger and Sebastian Seung (MIT); based on data from Jeff Lichtman and colleagues (Harvard).

Brains on Trial with Alan Alda

What if we could peer into the brain to determine guilt or innocence? Could advances in neuroscience help reform our criminal justice system?

On Tuesday, September 17th, the McGovern Institute hosted a discussion with a distinguished group of legal and neuroscience experts who debated these and related questions. Alan Alda moderated the panel of experts, showed clips from his 2-part PBS special, “Brains on Trial,” and engaged the audience in a Q&A session.

See below for a photo gallery of the event. All photos courtesy of Justin Knight.

Brains on Trial with Alan Alda

What if we could peer into the brain to determine guilt or innocence? Could advances in neuroscience help reform our criminal justice system?

On Tuesday, September 17th, the McGovern Institute hosted a discussion with a distinguished group of legal and neuroscience experts who debated these and related questions. Alan Alda moderated the panel of experts, showed clips from his 2-part PBS special, “Brains on Trial,” and engaged the audience in a Q&A session.

Feng Zhang named to Popular Science Brilliant 10

Popular Science magazine has named two MIT junior faculty members — Pedro Reis and Feng Zhang — to its 2013 Brilliant 10 list of young stars in science and technology. The list will appear in the magazine’s October issue.

Popular Science prides itself on revealing the innovations and ideas that are laying today’s groundwork for tomorrow’s breakthroughs, and the Brilliant 10 is one of the most exciting ways we do that,” says Jake Ward, editor-in-chief. “This collection of 10 brilliant young researchers is our chance to honor the most promising work — and the most hardworking people — in science and technology today. This year’s winners are particularly distinguished and I’m proud to welcome them all as members of the 2013 Brilliant 10.”

Pedro Reis, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering and Mechanical Engineering, studies the mechanics of slender structures, with a particular focus on devising new ways of turning mechanical failure into functionality.

Over the past few years, Reis, 35, has published a number of eclectic and impactful papers in prominent journals. In 2009 he reported on the delamination of thin films adhered to soft foundations, which is relevant for stretchable electronics. He explained why adhesive films tear into triangular shapes, a problem that applies to both the everyday peeling of adhesive tape from a roll and the manufacturing of tapered graphene nanoribbons. Motivated by the closing of aquatic flowers, he recently discovered a new mechanism for passively pipetting liquids using a petal-shaped object. And last year inspired by a toy, Reis introduced the Buckliball, a new class of structures that uses buckling to provide origami-like folding capabilities to curved structures with potential uses for encapsulation and soft robotics.

In other work undertaken just for fun, Reis and colleagues reported in 2010 that when cats lap fluids (milk or water, for example), they take advantage of a perfect balance between gravity and inertia.

Feng Zhang, 31, is the W.M. Keck Career Development Professor in Biomedical Engineering, an assistant professor in the department of Brain and Cognitive Sciences, a member of the McGovern Institute for Brain Research and a core member of the Broad Institute. He received the award for his work on genome editing. Earlier this year he reported a powerful new way to make targeted mutations in genomic DNA, based on a bacterial system known as CRISPR. The new method will greatly accelerate the development of animal models of human genetic diseases, and may eventually make it possible to correct genetic mutations in patients. Zhang, a pioneer in optogenetics, has also recently invented a new method for controlling gene expression with light, in which light-sensitive plant proteins are engineered to create an “optical switch” that can turn other genes on or off at will.

This is the 12th annual Brilliant 10 list. Ten MIT researchers were included on previous lists.

Nanodiamonds

The Boyden lab is exploring the use of fluorescent nanodiamonds as a new class of optical probes for neuroscience research. Photo: Justin Knight