Twenty-five years after its founding, the McGovern Institute is shaping brain science and improving human lives at a global scale

In 2000, Patrick J. McGovern ’59 and Lore Harp McGovern made an extraordinary gift to establish the McGovern Institute for Brain Research at MIT, driven by their deep curiosity about the human mind and their belief in the power of science to change lives. Their $350 million pledge began with a simple yet audacious vision: to understand the human brain in all its complexity and to leverage that understanding for the betterment of humanity.

Twenty-five years later, the McGovern Institute stands as a testament to the power of interdisciplinary collaboration, continuing to shape our understanding of the brain and improve the quality of life for people worldwide.

In the Beginning

“This is by any measure a truly historic moment for MIT,” said MIT’s 15th President Charles M. Vest during his opening remarks at an event in 2000 to celebrate the McGovern gift agreement. “The creation of the McGovern Institute will launch one of the most profound and important scientific ventures of this century in what surely will be a cornerstone of MIT scientific contributions from the decades ahead.”

Vest tapped Phillip A. Sharp, MIT Institute Professor Emeritus of Biology and Nobel laureate, to lead the institute and appointed six MIT professors — Emilio Bizzi, Martha Constantine-Paton, Ann Graybiel PhD ’71, H. Robert Horvitz ’68, Nancy Kanwisher ’80, PhD ’86, and Tomaso Poggio — to represent its founding faculty.  Construction began in 2003 on Building 46, a 376,000 square foot research complex at the northeastern edge of campus. MIT’s new “gateway from the north” would eventually house the McGovern Institute, the Picower Institute for Learning and Memory, and MIT’s Department of Brain and Cognitive Sciences.

Group photo in front of construction sign.
Patrick J. McGovern ’59 and Lore Harp McGovern gather with faculty members and MIT administration at the groundbreaking of MIT Building 46 in 2003. Photo: Donna Coveney

Robert Desimone, the Doris and Don Berkey Professor of Neuroscience at MIT,  succeeded Sharp as director of the McGovern Institute in 2005, and assembled a distinguished roster of 22 faculty members, including a Nobel laureate, a Breakthrough Prize winner, two National Medal of Science/Technology awardees, and 15 members of the American Academy of Arts and Sciences.

A Quarter Century of Innovation

On April 11, 2025, the McGovern Institute celebrated its 25th anniversary with a half day symposium featuring presentations by MIT Institute Professor Robert Langer, alumni speakers from various McGovern labs, and Desimone, who is in his twentieth year as director of the institute.

Desimone highlighted the institute’s recent discoveries, including the development of the CRISPR genome-editing system, which has culminated in the world’s first CRISPR gene therapy approved for humans — a remarkable achievement that is ushering in a new era of transformative medicine. In other milestones, McGovern researchers developed the first prosthetic limb fully controlled by the body’s nervous system; a flexible probe that taps into gut-brain communication; an expansion microscopy technique that paves the way for biology labs around the world to perform nanoscale imaging; and advanced computational models that demonstrate how we see, hear, use language, and even think about what others are thinking. Equally transformative has been the McGovern Institute’s work in neuroimaging, uncovering the architecture of human thought and establishing markers that signal the early emergence of mental illness, before symptoms even appear.

Synergy and Open Science

“I am often asked what makes us different from other neuroscience institutes and programs around the world,” says Desimone. “My answer is simple. At the McGovern Institute, the whole is greater than the sum of its parts.”

Many discoveries at the McGovern Institute have depended on collaborations across multiple labs, ranging from biological engineering to human brain imaging and artificial intelligence. In modern brain research, significant advances often require the joint expertise of people working in neurophysiology, behavior, computational analysis, neuroanatomy, and molecular biology. More than a dozen different MIT departments are represented by McGovern faculty and graduate students, and this synergy has led to insights and innovations that are far greater than what any single discipline could achieve alone.

Also baked into the McGovern ethos is a spirit of open science, where newly developed technologies are shared with colleagues around the world. Through hospital partnerships for example, McGovern researchers are testing their tools and therapeutic interventions in clinical settings, accelerating their discoveries into real-world solutions.

The McGovern Legacy  

Hundreds of scientific papers have emerged from McGovern labs over the past 25 years, but most faculty would argue that it’s the people, the young researchers, that truly define the McGovern Institute. Award-winning faculty often attract the brightest young minds, but many McGovern faculty also serve as mentors, creating a diverse and vibrant scientific community that is setting the global standard for brain research and its applications. Nancy Kanwisher ’80 PhD ’86, for example, has guided more than 70 doctoral students and postdocs who have gone on to become leading scientists around the world. Three of her former students, Evelina Fedorenko PhD ‘07, Josh McDermott PhD ‘06, and the John W. Jarve (1978) Professor of Brain and Cognitive Sciences, Rebecca Saxe PhD ‘03, are now her colleagues at the McGovern Institute. Other McGovern alumni shared stories of mentorship, science, and real-world impact at the 25th anniversary symposium.

Group photo of four smiling scientists.
Nancy Kanwisher (center) with former students-turned-colleagues Evelina Fedorenko (left), Josh McDermott, and Rebecca Saxe (right). Photo: Steph Stevens

Looking to the future, the McGovern community is more committed than ever to unraveling the mysteries of the brain and making a meaningful difference in lives of individuals at a global scale.

“By promoting team science, open communication, and cross-discipline partnerships,” says institute co-founder Lore Harp McGovern, “our culture demonstrates how individual expertise can be amplified through collective effort. I am honored to be the co-founder of this incredible institution – onward to the next 25 years!”

Leslie Vosshall awarded the 2025 Scolnick Prize in Neuroscience

Today the McGovern Institute at MIT announces that the 2025 Edward M. Scolnick Prize in Neuroscience will be awarded to Leslie Vosshall, the Robin Chemers Neustein Professor at The Rockefeller University and Vice President and Chief Scientific Officer of the Howard Hughes Medical Institute. Vosshall is being recognized for her discovery of the neural mechanisms underlying mosquito host-seeking behavior. The Scolnick Prize is awarded annually by the McGovern Institute for outstanding achievements in neuroscience.

“Leslie Vosshall’s vision to apply decades of scientific know-how in a model insect to bear on one of the greatest human health threats, the mosquito, is awe-inspiring,” says McGovern Institute Director and chair of the selection committee, Robert Desimone. “Vosshall brought together academic and industry scientists to create the first fully annotated genome of the deadly Aedes aegypti mosquito and she became the first to apply powerful CRISPR-Cas9 editing to study this species.”

Vosshall was born in Switzerland, moved to the US as a child and worked throughout high school and college in her uncle’s laboratory, alongside Gerald Weissman, at the Marine Biological Laboratory at Woods Hole. During this time, she published a number of papers on cell aggregation and neutrophil signaling and received a BA in 1987 from Columbia University. She went to graduate school at The Rockefeller University where she first began working on the genetic model organism, the fruit fly Drosophila. Her mentor was Michael Young, who had just recently cloned the circadian rhythm gene period, work for which he later shared the Nobel Prize. Vosshall contributed to this work by showing that the gene timeless is required for rhythmic cycling of the PERIOD protein in and out of a cell’s nucleus and that this is required in only a subset of brain cells to drive circadian behaviors.

For her postdoctoral research, Vosshall returned to Columbia University in 1993 to join the laboratory of Richard Axel, also a future Nobel Laureate. There, Vosshall began her studies of olfaction and was one of the first to clone olfactory receptors in fruit flies. She mapped the expression pattern of each of the fly’s 60 or so olfactory receptors to individual sensory neurons and showed that each sensory neuron has a stereotyped projection into the brain. This work revealed that there is a topological map of brain activity responses for different odorants.

Vosshall started her own laboratory to study the mechanisms of olfaction and olfactory behavior in 2000, at The Rockefeller University. She rose through the ranks to receive tenure in 2006 and full professorship in 2010. Vosshall’s group was initially focused on the classic fruit fly model organism Drosophila but, in 2013, they showed that some of the same molecular mechanisms for olfaction in fruit flies are used by mosquitoes to find human hosts. From that point on, Vosshall rapidly applied her vast expertise in bioengineering to unravel the brain circuits underlying the behavior of the mosquito Aedes aegypti. This mosquito is responsible for transmission of yellow fever, dengue fever, zika fever and more, making it one of the deadliest animals to humankind.

Close-up of mosquito on human skin.
Vosshall identified oils produced by the skin of some people that make them “mosquito magnets.” Photo: Alex Wild

Mosquitoes have evolved to specifically prey on humans and transmit millions of cases of deadly diseases around the globe. Vosshall’s laboratory is filled with mosquitoes in which her team induces various gene mutations to identify the molecular circuits that mosquitoes use to hunt and feed on humans. In 2022, Vosshall received press around the world for identifying oils produced by the skin of some people that make them “mosquito magnets.”  Vosshall further showed that olfactory receptors have an unusual distribution pattern within the antennae of mosquitoes that allow mosquitoes to detect a whole slew of human scents, in addition to their ability to detect human’s warmth and breath. Vosshall’s team has also unraveled the molecular basis for mosquitoes’ avoidance of DEET and identified a novel repellent and identified genes for how they choose where to lay eggs and resist drought. Vosshall’s brilliant application of genome engineering to understand a wide range of mosquito behaviors has profound implications for human health. Moreover, since shifting her research to the mosquito, seven postdoctoral researchers that Vosshall mentored have established their own mosquito research laboratories at Boston University, Columbia University, Yale University, Johns Hopkins University, Princeton University, Florida International University, and the University of British Columbia.

Vosshall’s professional service is remarkable – she has served on innumerable committees at Rockefeller University and has participated in outreach activities around the globe, even starring in the feature length film “The Fly Room.” She began serving as the Vice President and Chief Scientific Officer of HHMI in 2022 and previously served as Associate Director and Director of the Kavli Neural Systems Institute from 2015 to 2021. She has served as an editor for numerous journals, on the Board of Directors for the Helen Hay Whitney Foundation, the McKnight Foundation and more, and co-organized over a dozen conferences. Her achievements have been recognized by the Dickson Prize in Medicine (2024), the Perl-UNC Neuroscience Prize (2022), and the Pradel Research Award (2020). She is an elected member of the National Academy of Medicine, National Academy of Sciences, American Philosophical Society, and American Association for the Advancement of Science.

The McGovern Institute will award the Scolnick Prize to Vosshall on May 9, 2025. At 4:00 pm she will deliver a lecture titled “Mosquitoes: neurobiology of the world’s most dangerous animal” to be followed by a reception at the McGovern Institute, 43 Vassar Street (building 46, room 3002) in Cambridge. The event is free and open to the public.

Evelina Fedorenko receives Troland Award from National Academy of Sciences

The National Academy of Sciences (NAS) announced today that McGovern Investigator Evelina Fedorenko will receive a 2025 Troland Research Award for her groundbreaking contributions towards understanding the language network in the human brain.

The Troland Research Award is given annually to recognize unusual achievement by early-career researchers within the broad spectrum of experimental psychology.

Two women and one child looking at a computer screen.
McGovern Investigator Ev Fedorenko (center) looks at a young subject’s brain scan in the Martinos Imaging Center at MIT. Photo: Alexandra Sokhina

Fedorenko, who is an associate professor of brain and cognitive sciences at MIT, is interested in how minds and brains create language. Her lab is unpacking the internal architecture of the brain’s language system and exploring the relationship between language and various cognitive, perceptual, and motor systems.  Her novel methods combine precise measures of an individual’s brain organization with innovative computational modeling to make fundamental discoveries about the computations that underlie the uniquely human ability for language.

Fedorenko has shown that the language network is selective for language processing over diverse non-linguistic processes that have been argued to share computational demands with language, such as math, music, and social reasoning. Her work has also demonstrated that syntactic processing is not localized to a particular region within the language network, and every brain region that responds to syntactic processing is at least as sensitive to word meanings.

She has also shown that representations from neural network language models, such as ChatGPT, are similar to those in the human language brain areas. Fedorenko also highlighted that although language models can master linguistic rules and patterns, they are less effective at using language in real-world situations. In the human brain, that kind of functional competence is distinct from formal language competence, she says, requiring not just language-processing circuits but also brain areas that store knowledge of the world, reason, and interpret social interactions. Contrary to a prominent view that language is essential for thinking, Fedorenko argues that language is not the medium of thought and is primarily a tool for communication.

A probabilistic atlas of the human language network based on >800 individuals (center) and sample individual language networks, which illustrate inter-individual variability in the precise locations and shapes of the language areas. Image: Ev Fedorenko

Ultimately, Fedorenko’s cutting-edge work is uncovering the computations and representations that fuel language processing in the brain. She will receive the Troland Award this April, during the annual meeting of the NAS in Washington DC.

 

 

 

Feng Zhang awarded 2024 National Medal of Technology

This post is adapted from an MIT News story.

***

Feng Zhang, the James and Patricia Poitras Professor of Neuroscience at MIT and an Investigator at the McGovern Institute, has won the National Medal of Technology and Innovation, the nation’s highest recognition for scientists and engineers. The prestigious award recognizes “American innovators whose vision, intellect, creativity, and determination have strengthened America’s economy and improved our quality of life.”

Zhang, who is also a professor of brain and cognitive sciences and biological engineering at MIT, a core member of the Broad Institute of MIT and Harvard, and an investigator with the Howard Hughes Medical Institute, was recognized for his work developing molecular tools, including the CRISPR genome-editing system, that have accelerated biomedical research and led to the first FDA-approved gene editing therapy.

This year, the White House awarded the National Medal of Science to 14 recipients and named nine individual awardees of the National Medal of Technology and Innovation, along with two organizations. Zhang is among four MIT faculty members who were awarded the nation’s highest honors for exemplary achievement and leadership in science and technology.

Designing molecular tools

Zhang, who earned his undergraduate degree from Harvard University in 2004, has contributed to the development of multiple molecular tools to accelerate the understanding of human disease. While a graduate student at Stanford University, from which he received his PhD in 2009, Zhang worked in the lab of Professor Karl Deisseroth. There, he worked on a protein called channelrhodopsin, which he and Deisseroth believed held potential for engineering mammalian cells to respond to light.

The resulting technique, known as optogenetics, is now used widely used in neuroscience and other fields. By engineering neurons to express light-sensitive proteins such as channelrhodopsin, researchers can either stimulate or silence the cells’ electrical impulses by shining different wavelengths of light on them. This has allowed for detailed study of the roles of specific populations of neurons in the brain, and the mapping of neural circuits that control a variety of behaviors.

In 2011, about a month after joining the MIT faculty, Zhang attended a talk by Harvard Medical School Professor Michael Gilmore, who studies the pathogenic bacterium Enteroccocus. The scientist mentioned that these bacteria protect themselves from viruses with DNA-cutting enzymes known as nucleases, which are part of a defense system known as CRISPR.

“I had no idea what CRISPR was, but I was interested in nucleases,” Zhang told MIT News in 2016. “I went to look up CRISPR, and that’s when I realized you might be able to engineer it for use for genome editing.”

In January 2013, Zhang and members of his lab reported that they had successfully used CRISPR to edit genes in mammalian cells. The CRISPR system includes a nuclease called Cas9, which can be directed to cut a specific genetic target by RNA molecules known as guide strands.

Since then, scientists in fields from medicine to plant biology have used CRISPR to study gene function and modify faulty genes that cause disease. More recently, Zhang’s lab has devised many enhancements to the original CRISPR system, such as making the targeting more precise and preventing unintended cuts in the wrong locations. In 2023, the FDA approved Casgevy, a CRISPR gene therapy based on Zhang’s discoveries, for the treatment of sickle cell disease and beta thalassemia.

The National Medal of Technology and Innovation was established in 1980 and is administered for the White House by the U.S. Department of Commerce’s Patent and Trademark Office. The award recognizes those who have made lasting contributions to America’s competitiveness and quality of life and helped strengthen the nation’s technological workforce.

3 Questions: Claire Wang on training the brain for memory sports

On Nov. 10, some of the country’s top memorizers converged on MIT’s Kresge Auditorium to compete in a “Tournament of Memory Champions” in front of a live audience.

The competition was split into four events: long-term memory, words-to-remember, auditory memory, and double-deck of cards, in which competitors must memorize the exact order of two decks of cards. In between the events, MIT faculty who are experts in the science of memory provided short talks and demos about memory and how to improve it. Among the competitors was MIT’s own Claire Wang, a sophomore majoring in electrical engineering and computer science. Wang has competed in memory sports for years, a hobby that has taken her around the world to learn from some of the best memorists on the planet. At the tournament, she tied for first place in the words-to-remember competition.

The event commemorated the 25th anniversary of the USA Memory Championship Organization (USAMC). USAMC sponsored the event in partnership with MIT’s McGovern Institute for Brain Research, the Department of Brain and Cognitive Sciences, the MIT Quest for Intelligence, and the company Lumosity.

MIT News sat down with Wang to learn more about her experience with memory competitions — and see if she had any advice for those of us with less-than-amazing memory skills.

Q: How did you come to get involved in memory competitions?

A: When I was in middle school, I read the book “Moonwalking with Einstein,” which is about a journalist’s journey from average memory to being named memory champion in 2006. My parents were also obsessed with this TV show where people were memorizing decks of cards and performing other feats of memory. I had already known about the concept of “memory palaces,” so I was inspired to explore memory sports. Somehow, I convinced my parents to let me take a gap year after seventh grade, and I travelled the world going to competitions and learning from memory grandmasters. I got to know the community in that time and I got to build my memory system, which was really fun. I did a lot less of those competitions after that year and some subsequent competitions with the USA memory competition, but it’s still fun to have this ability.

Q: What was the Tournament of Memory Champions like?

A: USAMC invited a lot of winners from previous years to compete, which was really cool. It was nice seeing a lot of people I haven’t seen in years. I didn’t compete in every event because I was too busy to do the long-term memory, which takes you two weeks of memorization work. But it was a really cool experience. I helped a bit with the brainstorming beforehand because I know one of the professors running it. We thought about how to give the talks and structure the event.

Then I competed in the words event, which is when they give you 300 words over 15 minutes, and the competitors have to recall each one in order in a round robin competition. You got two strikes. A lot of other competitions just make you write the words down. The round robin makes it more fun for people to watch. I tied with someone else — I made a dumb mistake — so I was kind of sad in hindsight, but being tied for first is still great.

Since I hadn’t done this in a while (and I was coming back from a trip where I didn’t get much sleep), I was a bit nervous that my brain wouldn’t be able to remember anything, and I was pleasantly surprised I didn’t just blank on stage. Also, since I hadn’t done this in a while, a lot of my loci and memory palaces were forgotten, so I had to speed-review them before the competition. The words event doesn’t get easier over time — it’s just 300 random words (which could range from “disappointment” to “chair”) and you just have to remember the order.

Q: What is your approach to improving memory?

A: The whole idea is that we memorize images, feelings, and emotions much better than numbers or random words. The way it works in practice is we make an ordered set of locations in a “memory palace.” The palace could be anything. It could be a campus or a classroom or a part of a room, but you imagine yourself walking through this space, so there’s a specific order to it, and in every location I place certain information. This is information related to what I’m trying to remember. I have pictures I associate with words and I have specific images I correlate with numbers. Once you have a correlated image system, all you need to remember is a story, and then when you recall, you translate that back to the original information.

Doing memory sports really helps you with visualization, and being able to visualize things faster and better helps you remember things better. You start remembering with spaced repetition that you can talk yourself through. Allowing things to have an emotional connection is also important, because you remember emotions better. Doing memory competitions made me want to study neuroscience and computer science at MIT.

The specific memory sports techniques are not as useful in everyday life as you’d think, because a lot of the information we learn is more operative and requires intuitive understanding, but I do think they help in some ways. First, sometimes you have to initially remember things before you can develop a strong intuition later. Also, since I have to get really good at telling a lot of stories over time, I have gotten great at visualization and manipulating objects in my mind, which helps a lot.

Season’s Greetings from the McGovern Institute

For this year’s holiday greeting, we asked the McGovern Institute community what comes to mind when they think of the winter holidays. More than 100 words were submitted for the project. The words were fed into ChatGPT to generate our holiday “prediction.” And a text-to-music generator (Udio) converted the words into a holiday song.

With special thanks to Jarrod Hicks and Jamal Williams from the McDermott lab for the inspiration…and to AI for pushing the boundaries of science and imagination.

Video credits:
Jacob Pryor (animation)
JR Narrows, Space Lute (sound design)

Four from MIT named 2025 Rhodes Scholars

Yiming Chen ’24, Wilhem Hector, Anushka Nair, and David Oluigbo have been selected as 2025 Rhodes Scholars and will begin fully funded postgraduate studies at Oxford University in the U.K. next fall. In addition to MIT’s two U.S. Rhodes winners, Ouigbo and Nair, two affiliates were awarded international Rhodes Scholarships: Chen for Rhodes’ China constituency and Hector for the Global Rhodes Scholarship. Hector is the first Haitian citizen to be named a Rhodes Scholar.

The scholars were supported by Associate Dean Kim Benard and the Distinguished Fellowships team in Career Advising and Professional Development. They received additional mentorship and guidance from the Presidential Committee on Distinguished Fellowships.

“It is profoundly inspiring to work with our amazing students, who have accomplished so much at MIT and, at the same time, thought deeply about how they can have an impact in solving the world’s major challenges,” says Professor Nancy Kanwisher who co-chairs the committee along with Professor Tom Levenson. “These students have worked hard to develop and articulate their vision and to learn to communicate it to others with passion, clarity, and confidence. We are thrilled but not surprised to see so many of them recognized this year as finalists and as winners.

Yiming Chen ’24

Yiming Chen, from Beijing, China, and the Washington area, was named one of four Rhodes China Scholars on Sept 28. At Oxford, she will pursue graduate studies in engineering science, working toward her ongoing goal of advancing AI safety and reliability in clinical workflows.

Chen graduated from MIT in 2024 with a BS in mathematics and computer science and an MEng in computer science. She worked on several projects involving machine learning for health care, and focused her master’s research on medical imaging in the Medical Vision Group of the Computer Science and Artificial Intelligence Laboratory (CSAIL).

Collaborating with IBM Research, Chen developed a neural framework for clinical-grade lumen segmentation in intravascular ultrasound and presented her findings at the MICCAI Machine Learning in Medical Imaging conference. Additionally, she worked at Cleanlab, an MIT-founded startup, creating an open-source library to ensure the integrity of image datasets used in vision tasks.

Chen was a teaching assistant in the MIT math and electrical engineering and computer science departments, and received a teaching excellence award. She taught high school students at the Hampshire College Summer Studies in Math and was selected to participate in MISTI Global Teaching Labs in Italy.

Having studied the guzheng, a traditional Chinese instrument, since age 4, Chen served as president of the MIT Chinese Music Ensemble, explored Eastern and Western music synergies with the MIT Chamber Music Society, and performed at the United Nations. On campus, she was also active with Asymptones a capella, MIT Ring Committee, Ribotones, Figure Skating Club, and the Undergraduate Association Innovation Committee.

Wilhem Hector

Wilhem Hector, a senior from Port-au-Prince, Haiti, majoring in mechanical engineering, was awarded a Global Rhodes Scholarship on Nov 1. The first Haitian national to be named a Rhodes Scholar, Hector will pursue at Oxford a master’s in energy systems followed by a master’s in education, focusing on digital and social change. His long-term goals are twofold: pioneering Haiti’s renewable energy infrastructure and expanding hands-on opportunities in the country‘s national curriculum.

Hector developed his passion for energy through his research in the MIT Howland Lab, where he investigated the uncertainty of wind power production during active yaw control. He also helped launch the MIT Renewable Energy Clinic through his work on the sources of opposition to energy projects in the U.S. Beyond his research, Hector had notable contributions as an intern at Radia Inc. and DTU Wind Energy Systems, where he helped develop computational wind farm modeling and simulation techniques.

Outside of MIT, he leads the Hector Foundation, a nonprofit providing educational opportunities to young people in Haiti. He has raised over $80,000 in the past five years to finance their initiatives, including the construction of Project Manus, Haiti’s first open-use engineering makerspace. Hector’s service endeavors have been supported by the MIT PKG Center, which awarded him the Davis Peace Prize, the PKG Fellowship for Social Impact, and the PKG Award for Public Service.

Hector co-chairs both the Student Events Board and the Class of 2025 Senior Ball Committee and has served as the social chair for Chocolate City and the African Students Association.

Anushka Nair

Anushka Nair, from Portland, Oregon, will graduate next spring with BS and MEng degrees in computer science and engineering with concentrations in economics and AI. She plans to pursue a DPhil in social data science at the Oxford Internet Institute. Nair aims to develop ethical AI technologies that address pressing societal challenges, beginning with combating misinformation.

For her master’s thesis under Professor David Rand, Nair is developing LLM-powered fact-checking tools to detect nuanced misinformation beyond human or automated capabilities. She also researches human-AI co-reasoning at the MIT Center for Collective Intelligence with Professor Thomas Malone. Previously, she conducted research on autonomous vehicle navigation at Stanford’s AI and Robotics Lab, energy microgrid load balancing at MIT’s Institute for Data, Systems, and Society, and worked with Professor Esther Duflo in economics.

Nair interned in the Executive Office of the Secretary General at the United Nations, where she integrated technology solutions and assisted with launching the High-Level Advisory Body on AI. She also interned in Tesla’s energy sector, contributing to Autobidder, an energy trading tool, and led the launch of a platform for monitoring distributed energy resources and renewable power plants. Her work has earned her recognition as a Social and Ethical Responsibilities of Computing Scholar and a U.S. Presidential Scholar.

Nair has served as President of the MIT Society of Women Engineers and MIT and Harvard Women in AI, spearheading outreach programs to mentor young women in STEM fields. She also served as president of MIT Honors Societies Eta Kappa Nu and Tau Beta Pi.

David Oluigbo

David Oluigbo, from Washington, is a senior majoring in artificial intelligence and decision making and minoring in brain and cognitive sciences. At Oxford, he will undertake an MSc in applied digital health followed by an MSc in modeling for global health. Afterward, Oluigbo plans to attend medical school with the goal of becoming a physician-scientist who researches and applies AI to address medical challenges in low-income countries.

Since his first year at MIT, Oluigbo has conducted neural and brain research with Ev Fedorenko at the McGovern Institute for Brain Research and with Susanna Mierau’s Synapse and Network Development Group at Brigham and Women’s Hospital. His work with Mierau led to several publications and a poster presentation at the Federation of European Societies annual meeting.

In a summer internship at the National Institutes of Health Clinical Center, Oluigbo designed and trained machine-learning models on CT scans for automatic detection of neuroendocrine tumors, leading to first authorship on an International Society for Optics and Photonics conference proceeding paper, which he presented at the 2024 annual meeting. Oluigbo also did a summer internship with the Anyscale Learning for All Laboratory at the MIT Computer Science and Artificial Intelligence Laboratory.

Oluigbo is an EMT and systems administrator officer with MIT-EMS. He is a consultant for Code for Good, a representative on the MIT Schwarzman College of Computing Undergraduate Advisory Group, and holds executive roles with the Undergraduate Association, the MIT Brain and Cognitive Society, and the MIT Running Club.

Brains, fashion, alien life, and more: Highlights from the Cambridge Science Festival

What is it like to give birth on Mars? Can bioengineer TikTok stars win at the video game “Super Smash Brothers” while also answering questions about science? How do sheep, mouse, and human brains compare? These questions and others were asked last month when more than 50,000 visitors from across Cambridge, Massachusetts, and Greater Boston participated in the MIT Museum’s annual Cambridge Science Festival, a week-long celebration dedicated to creativity, ingenuity, and innovation. Running Monday, Sept. 23 through Sunday, Sept. 29, the 2024 edition was the largest in its history, with a dizzyingly diverse program spanning more than 300 events presented in more than 75 different venues, all free and open to the public.

Presented in partnership with the City of Cambridge and more than 250 collaborators across Greater Boston, this year’s festival comprised a wide range of interactive programs for adults, children, and families, including workshops, demos, keynote lectures, walking tours, professional networking opportunities, and expert panels. Aimed at scientists and non-scientists alike, the festival also collaborated with several local schools to offer visits from an astronaut for middle- and high-school students.

With support from dozens of local organizations, the festival was the first iteration to happen under the new leadership of Michael John Gorman, who was appointed director of the MIT Museum in January and began his position in July.

“A science festival like this has an incredible ability to unite a diverse array of people and ideas, while also showcasing Cambridge as an internationally recognized leader in science, technology, engineering, and math,” says Gorman. “I’m thrilled to have joined an institution that values producing events that foster such a strong sense of community, and was so excited to see the enthusiastic response from the tens of thousands of people who showed up and made the festival such a success.”

The 2024 Cambridge Science Festival was broad in scope, with events ranging from hands-on 3D-printing demos to concerts from the MIT Laptop Ensemble to participatory activities at the MIT Museum’s Maker Hub. This year’s programming also highlighted three carefully curated theme tracks that each encompassed more than 25 associated events:

  1. “For the Win: Games, Puzzles, and the Science of Play” (Thursday) consisted of multiple evening events clustered around Kendall Square.
  2. “Frontiers: A New Era of Space Exploration” (Friday and Saturday) featured programs throughout Boston and was co-curated by The Space Consortium, organizers of Massachusetts Space Week.
  3. “Electric Skin: Wearable Tech and the Future of Fashion” (Saturday) offered both day and evening events at the intersection of science, fabric, and fashion, taking place at The Foundry and co-curated by Boston Fashion Week and Advanced Functional Fabrics of America.

One of the discussions tied to the games-themed “For the Win” track involved artist Jeremy Couillard speaking with MIT Lecturer Mikael Jakobsson about the larger importance of games as a construct for encouraging interpersonal interaction and creating meaningful social spaces. Starting this past summer, the List Visual Arts Center has been the home of Couillard’s first-ever institutional solo exhibition, which centers around “Escape from Lavender Island,” a dystopian third-person, open-world exploration game he released in 2023 on the Steam video-game platform.

For the “Frontiers” space theme, one of the headlining events, “Is Anyone Out There?”, tackled the latest cutting-edge research and theories related to the potential existence of extraterrestrial life. The panel of local astronomers and astrophysicists included Sara Seager, the Class of 1941 Professor of Planetary Science, professor of physics, and professor of aeronautics and astronautics at MIT; Kim Arcand, an expert in astronomic visualization at the Harvard-Smithsonian Center for Astrophysics; and Michael Hecht, a research scientist and associate director of research management at MIT’s Haystack Observatory. The researchers spoke about the tools they and their peers use to try to search for extraterrestrial life, and what discovering life beyond our planet might mean for humanity.

For the “Electric Skin” fashion track, events spanned a range of topics revolving around the role that technology will play in the future of the field, including sold-out workshops where participants learned how to laser-cut and engineer “structural garments.” A panel looking at generative technologies explored how designers are using AI to spur innovation in their companies. Onur Yüce Gün, director of computational design at New Balance, also spoke on a panel with Ziyuan “Zoey” Zhu from IDEO, MIT Media Lab research scientist and architect Behnaz Farahi, and Fiorenzo Omenetto, principal investigator and director of The Tufts Silk Lab and the Frank C. Doble Professor of Engineering at Tufts University and a professor in the Biomedical Engineering Department and in the Department of Physics at Tufts.

Beyond the three themed tracks, the festival comprised an eclectic mix of interactive events and panels. Cambridge Public Library hosted a “Science Story Slam” with high-school students from 10 different states competing for $5,000 in prize money. Entrants shared 5-minute-long stories about their adventures in STEM, with topics ranging from probability to “astro-agriculture.” Judges included several MIT faculty and staff, as well as New York Times national correspondent Kate Zernike.

Elsewhere, the MIT Museum’s Gorman moderated a discussion on AI and democracy that included Audrey Tang, the former minister of digital affairs of Taiwan. The panelists explored how AI tools could combat the polarization of political discourse and increase participation in democratic processes, particularly for marginalized voices. Also in the MIT Museum, the McGovern Institute for Brain Research organized a “Decoding the Brain” event with demos involving real animal brains, while the Broad Institute of MIT and Harvard ran a “Discovery After Dark” event to commemorate the institute’s 20th anniversary. Sunday’s Science Carnival featured more than 100 demos, events, and activities, including the ever-popular “Robot Petting Zoo.”

When it first launched in 2007, the Cambridge Science Festival was by many accounts the first large-scale event of its kind across the entire United States. Similar festivals have since popped up all over the country, including the World Science Festival in New York City, the USA Science and Engineering Festival in Washington, the North Carolina Science Festival in Chapel Hill, and the San Diego Festival of Science and Engineering.

More information about the festival is available online, including opportunities to participate in next year’s events.

Polina Anikeeva named 2024 Blavatnik Award Finalist

The Blavatnik Family Foundation and New York Academy of Sciences has announced the honorees of the 2024 Blavatnik National Awards, and McGovern Investigator Polina Anikeeva is among five finalists in the category of physical sciences and engineering.

Anikeeva, the Matoula S. Salapatas Professor in Materials Science and Engineering at MIT, works at the intersection of materials science, electronics, and neurobiology to improve our understanding of brain-body communication. She is head of MIT’s Materials Science and Engineering Department, and is also a professor of brain and cognitive sciences, director of the K. Lisa Yang Brain-Body Center, and associate director of the Research Laboratory of Electronics. Anikeeva’s lab has developed ultrathin, flexible fibers that probe the flow of information between the brain and peripheral organs in the body. Her ultimate goal is to develop novel technologies to achieve healthy minds in healthy bodies.

The Blavatnik National Awards for Young Scientists is the largest unrestricted scientific prize offered to America’s most promising, faculty-level scientific researchers under 42. The 2024 Blavatnik National Awards received 331 nominations from 172 institutions in 43 US states and selected three women scientists as laureates (Cigall Kadoch, Dana Farber Cancer Institute; Markita del Carpio Landry, UC Berkeley; and Britney Schmidt, Cornell University). An additional 15 finalists, including two from MIT: Anikeeva and Yogesh Surendranath will also receive monetary prizes.

“On behalf of the Blavatnik Family Foundation, I congratulate this year’s outstanding laureates and finalists for their exceptional research. They are among the preeminent leaders of the next generation of scientific innovation and discovery,” said Len Blavatnik, founder of Access Industries and the Blavatnik Family Foundation and a member of the President’s Council of The New York Academy of Sciences.

The Blavatnik National Awards for Young Scientists will celebrate the 2024 laureates and finalists in a gala ceremony on October 1, 2024, at the American Museum of Natural History in New York.

Three MIT professors named 2024 Vannevar Bush Fellows

The U.S. Department of Defense (DoD) has announced three MIT professors among the members of the 2024 class of the Vannevar Bush Faculty Fellowship (VBFF). The fellowship is the DoD’s flagship single-investigator award for research, inviting the nation’s most talented researchers to pursue ambitious ideas that defy conventional boundaries.

Domitilla Del Vecchio, professor of mechanical engineering and the Grover M. Hermann Professor in Health Sciences & Technology; Mehrdad Jazayeri, professor of brain and cognitive sciences and an investigator at the McGovern Institute for Brain Research; and Themistoklis Sapsis, the William I. Koch Professor of Mechanical Engineering and director of the Center for Ocean Engineering are among the 11 university scientists and engineers chosen for this year’s fellowship class. They join an elite group of approximately 50 fellows from previous class years.

“The Vannevar Bush Faculty Fellowship is more than a prestigious program,” said Bindu Nair, director of the Basic Research Office in the Office of the Under Secretary of Defense for Research and Engineering, in a press release. “It’s a beacon for tenured faculty embarking on groundbreaking ‘blue sky’ research.”

Research topics

Each fellow receives up to $3 million over a five-year term to pursue cutting-edge projects. Research topics in this year’s class span a range of disciplines, including materials science, cognitive neuroscience, quantum information sciences, and applied mathematics. While pursuing individual research endeavors, Fellows also leverage the unique opportunity to collaborate directly with DoD laboratories, fostering a valuable exchange of knowledge and expertise.

Del Vecchio, whose research interests include control and dynamical systems theory and systems and synthetic biology, will investigate the molecular underpinnings of analog epigenetic cell memory, then use what they learn to “establish unprecedented engineering capabilities for creating self-organizing and reconfigurable multicellular systems with graded cell fates.”

“With this fellowship, we will be able to explore the limits to which we can leverage analog memory to create multicellular systems that autonomously organize in permanent, but reprogrammable, gradients of cell fates and can be used for creating next-generation tissues and organoids with dramatically increased sophistication,” she says, honored to have been selected.

Jazayeri wants to understand how the brain gives rise to cognitive and emotional intelligence. The engineering systems being built today lack the hallmarks of human intelligence, explains Jazayeri. They neither learn quickly nor generalize their knowledge flexibly. They don’t feel emotions or have emotional intelligence.

Jazayeri plans to use the VBFF award to integrate ideas from cognitive science, neuroscience, and machine learning with experimental data in humans, animals, and computer models to develop a computational understanding of cognitive and emotional intelligence.

“I’m honored and humbled to be selected and excited to tackle some of the most challenging questions at the intersection of neuroscience and AI,” he says.

“I am humbled to be included in such a select group,” echoes Sapsis, who will use the grant to research new algorithms and theory designed for the efficient computation of extreme event probabilities and precursors, and for the design of mitigation strategies in complex dynamical systems.

Examples of Sapsis’s work include risk quantification for extreme events in human-made systems; climate events, such as heat waves, and their effect on interconnected systems like food supply chains; and also “mission-critical algorithmic problems such as search and path planning operations for extreme anomalies,” he explains.

VBFF impact

Named for Vannevar Bush PhD 1916, an influential inventor, engineer, former professor, and dean of the School of Engineering at MIT, the highly competitive fellowship, formerly known as the National Security Science and Engineering Faculty Fellowship, aims to advance transformative, university-based fundamental research. Bush served as the director of the U.S. Office of Scientific Research and Development, and organized and led American science and technology during World War II.

“The outcomes of VBFF-funded research have transformed entire disciplines, birthed novel fields, and challenged established theories and perspectives,” said Nair. “By contributing their insights to DoD leadership and engaging with the broader national security community, they enrich collective understanding and help the United States leap ahead in global technology competition.”