New MIT initiative seeks to transform rare brain disorders research

More than 300 million people worldwide are living with rare disorders — many of which have a genetic cause and affect the brain and nervous system — yet the vast majority of these conditions lack an approved therapy. Because each rare disorder affects fewer than 65 out of every 100,000 people, studying these disorders and creating new treatments for them is especially challenging.

Thanks to a generous philanthropic gift from Ana Méndez ’91 and Rajeev Jayavant ’86, EE ’88, SM ’88, MIT is now poised to fill the gaps in this research landscape. By establishing the Rare Brain Disorders Nexus — or RareNet — at MIT’s McGovern Institute, the alumni aim to convene leaders in neuroscience research, clinical medicine, patient advocacy, and industry to streamline the lab-to-clinic pipeline for rare brain disorder treatments.

“Ana and Rajeev’s commitment to MIT will form crucial partnerships to propel the translation of scientific discoveries into promising therapeutics and expand the Institute’s impact on the rare brain disorders community,” says MIT President Sally Kornbluth. “We are deeply grateful for their pivotal role in advancing such critical science and bringing attention to conditions that have long been overlooked.”

Building new coalitions

Several hurdles have slowed the lab-to-clinic pipeline for rare brain disorder research. It is difficult to secure a sufficient number of patients per study, and current research efforts are fragmented since each study typically focuses on a single disorder (there are more than 7,000 known rare disorders, according to the World Health Organization). Pharmaceutical companies are often reluctant to invest in emerging treatments due to a limited market size and the high costs associated with preparing drugs for commercialization.

Méndez and Jayavant envision that RareNet will finally break down these barriers. “Our hope is that RareNet will allow leaders in the field to come together under a shared framework and ignite scientific breakthroughs across multiple conditions. A discovery for one rare brain disorder could unlock new insights that are relevant to another,” says Jayavant. “By congregating the best minds in the field, we are confident that MIT will create the right scientific climate to produce drug candidates that may benefit a spectrum of uncommon conditions.”

Guoping Feng, the James W. (1963) and Patricia T. Poitras Professor in Neuroscience and associate director of the McGovern Institute for Brain Research at MIT, will serve as RareNet’s inaugural faculty director. Feng holds a strong record of advancing studies on therapies for neurodevelopmental disorders, including autism spectrum disorders, Williams syndrome, and uncommon forms of epilepsy. His team’s gene therapy for Phelan-McDermid syndrome, a rare and profound autism spectrum disorder, has been licensed to Jaguar Gene Therapy and is currently undergoing clinical trials. “RareNet pioneers a unique model for biomedical research — one that is reimagining the role academia can play in developing therapeutics,” says Feng.

Image of SHANK3 therapy correctly finding its way to dendrites. Image: Guoping Feng
An early version of a gene therapy for SHANK3 mutations — linked to a rare brain disorder called Phelan-McDermid syndrome — correctly finds its way to neurons. Image: Feng lab

RareNet plans to deploy two major initiatives: a global consortium and a therapeutic pipeline accelerator. The consortium will form an international network of researchers, clinicians, and patient groups from the outset. It seeks to connect siloed research efforts, secure more patient samples, promote data sharing, and drive a strong sense of trust and goal alignment across the RareNet community. Partnerships within the consortium will support the aim of the therapeutic pipeline accelerator: to de-risk early lab discoveries and expedite their translation to clinic. By fostering more targeted collaborations — especially between academia and industry — the accelerator will prepare potential treatments for clinical use as efficiently as possible.

MIT labs are focusing on four uncommon conditions in the first wave of RareNet projects: Rett syndrome, prion disease, disorders linked to SYNGAP1 mutations, and Sturge-Weber syndrome. The teams are working to develop novel therapies that can slow, halt, or reverse dysfunctions in the brain and nervous system.

These efforts will build new bridges to connect key stakeholders across the rare brain disorders community and disrupt conventional research approaches. “Rajeev and I are motivated to seed powerful collaborations between MIT researchers, clinicians, patients, and industry,” says Méndez. “Guoping Feng clearly understands our goal to create an environment where foundational studies can thrive and seamlessly move toward clinical impact.”

“Patient and caregiver experiences, and our foreseeable impact on their lives, will guide us and remain at the forefront of our work,” Feng adds. “For far too long the rare brain disorders community has been deprived of life-changing treatments — and, importantly, hope. RareNet gives us the opportunity to transform how we study these conditions and to do so at a moment when it’s needed more than ever.”

 

New gift expands mental illness studies at Poitras Center for Psychiatric Disorders Research

One in every eight people—970 million globally—live with mental illness, according to the World Health Organization, with depression and anxiety being the most common mental health conditions worldwide. Existing therapies for complex psychiatric disorders like depression, anxiety, and schizophrenia have limitations, and federal funding to address these shortcomings is growing increasingly uncertain.

Jim and Pat Poitras
James and Patricia Poitras at an event co-hosted by the McGovern Institute and Autism Speaks. Photo: Justin Knight

Patricia and James Poitras ’63 have committed $8 million to the Poitras Center for Psychiatric Disorders Research to launch pioneering research initiatives aimed at uncovering the brain basis of major mental illness and accelerating the development of novel treatments.

“Federal funding rarely supports the kind of bold, early-stage research that has the potential to transform our understanding of psychiatric illness. Pat and I want to help fill that gap—giving researchers the freedom to follow their most promising leads, even when the path forward isn’t guaranteed,” says James Poitras, who is chair of the McGovern Institute Board.

Their latest gift builds upon their legacy of philanthropic support for psychiatric disorders research at MIT, which now exceeds $46 million.

“With deep gratitude for Jim and Pat’s visionary support, we are eager to launch a bold set of studies aimed at unraveling the neural and cognitive underpinnings of major mental illnesses,” says Robert Desimone, director of the McGovern Institute, home to the Poitras Center. “Together, these projects represent a powerful step toward transforming how we understand and treat mental illness.”

A legacy of support

Soon after joining the McGovern Institute Leadership Board in 2006, the Poitrases made a $20 million commitment to establish the Poitras Center for Psychiatric Disorders Research at MIT. The center’s goal, to improve human health by addressing the root causes of complex psychiatric disorders, is deeply personal to them both.

“We had decided many years ago that our philanthropic efforts would be directed towards psychiatric research. We could not have imagined then that this perfect synergy between research at MIT’s McGovern Institute and our own philanthropic goals would develop,” recalls Patricia.

The center supports research at the McGovern Institute and collaborative projects with institutions such as the Broad Institute, McLean Hospital, Mass General Brigham and other clinical research centers. Since its establishment in 2007, the center has enabled advances in psychiatric research including the development of a machine learning “risk calculator” for bipolar disorder, the use of brain imaging to predict treatment outcomes for anxiety, and studies demonstrating that mindfulness can improve mental health in adolescents.

A scientist speaks at a podium with an image of DNA on the wall behind him.
Feng Zhang, the James and Patricia Poitras Professor of Neuroscience at MIT, delivers a lecture at the Poitras Center’s 10th anniversary celebration in 2017. Photo: Justin Knight

For the past decade, the Poitrases have also fueled breakthroughs in McGovern Investigator Feng Zhang’s lab, backing the invention of powerful CRISPR systems and other molecular tools that are transforming biology and medicine. Their support has enabled the Zhang team to engineer new delivery vehicles for gene therapy, including vehicles capable of carrying genetic payloads that were once out of reach. The lab has also advanced innovative RNA-guided gene engineering tools such as NovaIscB, published in Nature Biotechnology in May 2025. These revolutionary genome editing and delivery technologies hold promise for the next generation of therapies needed for serious psychiatric illness.

In addition to fueling research in the center, the Poitras family has gifted two endowed professorships—the James and Patricia Poitras Professor of Neuroscience at MIT, currently held by Feng Zhang, and the James W. (1963) and Patricia T. Poitras Professor of Brain and Cognitive Sciences at MIT, held by Guoping Feng—and an annual postdoctoral fellowship at the McGovern Institute.

New initiatives at the Poitras Center

The Poitras family’s latest commitment to the Poitras Center will launch an ambitious set of new projects that bring together neuroscientists, clinicians, and computational experts to probe underpinnings of complex psychiatric disorders including schizophrenia, anxiety, and depression. These efforts reflect the center’s core mission: to speed scientific discovery and therapeutic innovation in the field of psychiatric brain disorders research.

McGovern cognitive neuroscientists Evelina Fedorenko PhD ‘07 and Nancy Kanwisher ’80, PhD ’86, the Walter A. Rosenblith Professor of Cognitive Neuroscience—in collaboration with psychiatrist Ann Shinn of McLean Hospital—will explore how altered inner speech and reasoning contribute to the symptoms of schizophrenia. They will collect functional MRI data from individuals diagnosed with schizophrenia and matched controls as they perform reasoning tasks. The goal is to identify the brain activity patterns that underlie impaired reasoning in schizophrenia, a core cognitive disruption in the disorder.

Three women wearing name tags smile for hte camera.
Patricia Poitras (center) with McGovern Investigators Nancy Kanwisher ’80, PhD ’86 (left) and Martha Constantine-Paton (right) at the Poitras Center’s 10th anniversary celebration in 2017. Photo: Justin Knight

A complementary line of investigation will focus on the role of inner speech—the “voice in our head” that shapes thought and self-awareness. The team will conduct a large-scale online behavioral study of neurotypical individuals to analyze how inner speech characteristics correlate with schizophrenia-spectrum traits. This will be followed by neuroimaging work comparing brain architecture among individuals with strong or weak inner voices and people with schizophrenia, with the aim of discovering neural markers linked to self-talk and disrupted cognition.

A different project led by McGovern neuroscientist Mark Harnett and 2024–2026 Poitras Center Postdoctoral Fellow Cynthia Rais focuses on how ketamine—an increasingly used antidepressant—alters brain circuits to produce rapid and sustained improvements in mood. Despite its clinical success, ketamine’s mechanisms of action remain poorly understood. The Harnett lab is using sophisticated tools to track how ketamine affects synaptic communication and large-scale brain network dynamics, particularly in models of treatment-resistant depression. By mapping these changes at both the cellular and systems levels, the team hopes to reveal how ketamine lifts mood so quickly—and inform the development of safer, longer-lasting antidepressants.

Guoping Feng is leveraging a new animal model of depression to uncover the brain circuits that drive major depressive disorder. The new animal model provides a powerful system for studying the intricacies of mood regulation. Feng’s team is using state-of-the-art molecular tools to identify the specific genes and cell types involved in this circuit, with the goal of developing targeted treatments that can fine-tune these emotional pathways.

“This is one of the most promising models we have for understanding depression at a mechanistic level,” says Feng, who is also associate director of the McGovern Institute. “It gives us a clear target for future therapies.”

Another novel approach to treating mood disorders comes from the lab of James DiCarlo, the Peter de Florez Professor of Neuroscience at MIT, who is exploring the brain’s visual-emotional interface as a therapeutic tool for anxiety. The amygdala, a key emotional center in the brain, is heavily influenced by visual input. DiCarlo’s lab is using advanced computational models to design visual scenes that may subtly shift emotional processing in the brain—essentially using sight to regulate mood. Unlike traditional therapies, this strategy could offer a noninvasive, drug-free option for individuals suffering from anxiety.

Together, these projects exemplify the kind of interdisciplinary, high-impact research that the Poitras Center was established to support.

“Mental illness affects not just individuals, but entire families who often struggle in silence and uncertainty,” adds Patricia. “Our hope is that Poitras Center scientists will continue to make important advancements and spark novel treatments for complex mental health disorders and most of all, give families living with these conditions a renewed sense of hope for the future.”

MIT’s McGovern Institute and Department of Brain and Cognitive Sciences welcome new faculty member Sven Dorkenwald

The McGovern Institute and the Department of Brain and Cognitive Sciences are pleased to announce the appointment of Sven Dorkenwald as an assistant professor starting in January 2026. A trailblazer in the field of computational neuroscience, Dorkenwald is recognized for his leadership in connectomics—an emerging discipline focused on reconstructing and analyzing neural circuitry at unprecedented scale and detail. 

“We are thrilled to welcome Sven to MIT” says McGovern Institute Director Robert Desimone. “He brings visionary science and a collaborative spirit to a rapidly advancing area of brain and cognitive sciences and his appointment strengthens MIT’s position at the forefront of brain research.” 

Dorkenwald’s research is driven by a bold vision: to develop and apply cutting-edge computational methods that reveal how brain circuits are organized and how they give rise to complex computations. His innovative work has led to transformative advances in the reconstruction of connectomes (detailed neural maps) from nanometer-scale electron microscopy images. He has championed open team science and data sharing and played a central role in producing the first connectome of an entire fruit fly brain—a groundbreaking achievement that is reshaping our understanding of sensory processing and brain circuit function. 

Sven is a rising leader in computational neuroscience who has already made significant contributions toward advancing our understanding of the brain,” says Michale Fee, the Glen V. and Phyllis F. Dorflinger Professor of Neuroscience, and Department Head of Brain and Cognitive Sciences. “He brings a combination of technical expertise, a collaborative mindset, and a strong commitment to open science that will be invaluable to our department. I’m pleased to welcome him to our community and look forward to the impact he will have.” 

Dorkenwald earned his BS in physics in 2014 and MS in computer engineering in 2017 from the University of Heidelberg, Germany. He began his research in connectomics as an undergraduate in the group of Winfried Denk at the Max Planck Institute for Medical Research and Max Planck Institute of Neurobiology.  Dorkenwald went on to complete his PhD at Princeton University in 2023, where he studied both computer science and neuroscience under the mentorship of Sebastian Seung and Mala Murthy. 

All 139,255 neurons in the brain of an adult fruit fly reconstructed by the FlyWire Consortium, with each neuron uniquely color-coded. Render by Tyler Sloan. Image: Sven Dorkenwald

As a PhD student at Princeton, Dorkenwald spearheaded the FlyWire Consortium, a group of more than 200 scientists, gamers, and proofreaders who combined their skills to create the fruit fly connectome. More than 20 million scientific images of the adult fruit fly brain  were added to an AI model that traced each neuron and synapse in exquisite detail. Members of the consortium then checked the results produced by the AI model and pieced them together into a complete, three-dimensional map. With over 140,000 neurons, it is the most complex brain completely mapped to date. The findings were published in a special issue of Nature in 2024. 

Dorkenwald’s work also played a key role in the MICrONS’ consortium effort to reconstruct a cubic millimeter connectome of the mouse visual cortex. Within the MICrONS effort, he co-lead the development of the software infrastructure, CAVE, that enables scientists to collaboratively edit and analyze large connectomics datasets, including FlyWire’s. The findings of the MICrONS consortium were published in a special issue of Nature in 2025. 

Dorkenwald is currently a Shanahan Fellow at the Allen Institute and the University of Washington. He also serves as a visiting faculty researcher at Google Research, where he has been developing machine learning approaches for the annotation of cell reconstructions as part of the Neuromancer team led by Viren Jain.  

As an investigator at the McGovern Institute and an assistant professor in the department of brain and cognitive sciences at MIT, Dorkenwald  plans to develop computational approaches to overcome challenges in scaling connectomics to whole mammalian brains with the goal of advancing our mechanistic understanding of neuronal circuits and analyzing how they compare across regions and species. 

 

Researchers present bold ideas for AI at MIT Generative AI Impact Consortium kickoff event

Launched in February of this year, the MIT Generative AI Impact Consortium (MGAIC), a presidential initiative led by MIT’s Office of Innovation and Strategy and administered by the MIT Stephen A. Schwarzman College of Computing, issued a call for proposals, inviting researchers from across MIT to submit ideas for innovative projects studying high-impact uses of generative AI models.

The call received 180 submissions from nearly 250 faculty members, spanning all of MIT’s five schools and the college. The overwhelming response across the Institute exemplifies the growing interest in AI and follows in the wake of MIT’s Generative AI Week and call for impact papers. Fifty-five proposals were selected for MGAIC’s inaugural seed grants, with several more selected to be funded by the consortium’s founding company members.

Over 30 funding recipients presented their proposals to the greater MIT community at a kickoff event on May 13. Anantha P. Chandrakasan, chief innovation and strategy officer and dean of the School of Engineering who is head of the consortium, welcomed the attendees and thanked the consortium’s founding industry members.

“The amazing response to our call for proposals is an incredible testament to the energy and creativity that MGAIC has sparked at MIT. We are especially grateful to our founding members, whose support and vision helped bring this endeavor to life,” adds Chandrakasan. “One of the things that has been most remarkable about MGAIC is that this is a truly cross-Institute initiative. Deans from all five schools and the college collaborated in shaping and implementing it.”

Vivek F. Farias, the Patrick J. McGovern (1959) Professor at the MIT Sloan School of Management and co-faculty director of the consortium with Tim Kraska, associate professor of electrical engineering and computer science in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), emceed the afternoon of five-minute lightning presentations.

Presentation highlights include:

“AI-Driven Tutors and Open Datasets for Early Literacy Education,” presented by Ola Ozernov-Palchik, a research scientist at the McGovern Institute for Brain Research, proposed a refinement for AI-tutors for pK-7 students to potentially decrease literacy disparities.

“Developing jam_bots: Real-Time Collaborative Agents for Live Human-AI Musical Improvisation,” presented by Anna Huang, assistant professor of music and assistant professor of electrical engineering and computer science, and Joe Paradiso, the Alexander W. Dreyfoos (1954) Professor in Media Arts and Sciences at the MIT Media Lab, aims to enhance human-AI musical collaboration in real-time for live concert improvisation.

“GENIUS: GENerative Intelligence for Urban Sustainability,” presented by Norhan Bayomi, a postdoc at the MIT Environmental Solutions Initiative and a research assistant in the Urban Metabolism Group, which aims to address the critical gap of a standardized approach in evaluating and benchmarking cities’ climate policies.

Georgia Perakis, the John C Head III Dean (Interim) of the MIT Sloan School of Management and professor of operations management, operations research, and statistics, who serves as co-chair of the GenAI Dean’s oversight group with Dan Huttenlocher, dean of the MIT Schwarzman College of Computing, ended the event with closing remarks that emphasized “the readiness and eagerness of our community to lead in this space.”

“This is only the beginning,” he continued. “We are at the front edge of a historic moment — one where MIT has the opportunity, and the responsibility, to shape the future of generative AI with purpose, with excellence, and with care.”

Twenty-five years after its founding, the McGovern Institute is shaping brain science and improving human lives at a global scale

In 2000, Patrick J. McGovern ’59 and Lore Harp McGovern made an extraordinary gift to establish the McGovern Institute for Brain Research at MIT, driven by their deep curiosity about the human mind and their belief in the power of science to change lives. Their $350 million pledge began with a simple yet audacious vision: to understand the human brain in all its complexity and to leverage that understanding for the betterment of humanity.

Twenty-five years later, the McGovern Institute stands as a testament to the power of interdisciplinary collaboration, continuing to shape our understanding of the brain and improve the quality of life for people worldwide.

In the Beginning

“This is by any measure a truly historic moment for MIT,” said MIT’s 15th President Charles M. Vest during his opening remarks at an event in 2000 to celebrate the McGovern gift agreement. “The creation of the McGovern Institute will launch one of the most profound and important scientific ventures of this century in what surely will be a cornerstone of MIT scientific contributions from the decades ahead.”

Vest tapped Phillip A. Sharp, MIT Institute Professor Emeritus of Biology and Nobel laureate, to lead the institute and appointed six MIT professors — Emilio Bizzi, Martha Constantine-Paton, Ann Graybiel PhD ’71, H. Robert Horvitz ’68, Nancy Kanwisher ’80, PhD ’86, and Tomaso Poggio — to represent its founding faculty.  Construction began in 2003 on Building 46, a 376,000 square foot research complex at the northeastern edge of campus. MIT’s new “gateway from the north” would eventually house the McGovern Institute, the Picower Institute for Learning and Memory, and MIT’s Department of Brain and Cognitive Sciences.

Group photo in front of construction sign.
Patrick J. McGovern ’59 and Lore Harp McGovern gather with faculty members and MIT administration at the groundbreaking of MIT Building 46 in 2003. Photo: Donna Coveney

Robert Desimone, the Doris and Don Berkey Professor of Neuroscience at MIT,  succeeded Sharp as director of the McGovern Institute in 2005, and assembled a distinguished roster of 22 faculty members, including a Nobel laureate, a Breakthrough Prize winner, two National Medal of Science/Technology awardees, and 15 members of the American Academy of Arts and Sciences.

A Quarter Century of Innovation

On April 11, 2025, the McGovern Institute celebrated its 25th anniversary with a half day symposium featuring presentations by MIT Institute Professor Robert Langer, alumni speakers from various McGovern labs, and Desimone, who is in his twentieth year as director of the institute.

Desimone highlighted the institute’s recent discoveries, including the development of the CRISPR genome-editing system, which has culminated in the world’s first CRISPR gene therapy approved for humans — a remarkable achievement that is ushering in a new era of transformative medicine. In other milestones, McGovern researchers developed the first prosthetic limb fully controlled by the body’s nervous system; a flexible probe that taps into gut-brain communication; an expansion microscopy technique that paves the way for biology labs around the world to perform nanoscale imaging; and advanced computational models that demonstrate how we see, hear, use language, and even think about what others are thinking. Equally transformative has been the McGovern Institute’s work in neuroimaging, uncovering the architecture of human thought and establishing markers that signal the early emergence of mental illness, before symptoms even appear.

Synergy and Open Science

“I am often asked what makes us different from other neuroscience institutes and programs around the world,” says Desimone. “My answer is simple. At the McGovern Institute, the whole is greater than the sum of its parts.”

Many discoveries at the McGovern Institute have depended on collaborations across multiple labs, ranging from biological engineering to human brain imaging and artificial intelligence. In modern brain research, significant advances often require the joint expertise of people working in neurophysiology, behavior, computational analysis, neuroanatomy, and molecular biology. More than a dozen different MIT departments are represented by McGovern faculty and graduate students, and this synergy has led to insights and innovations that are far greater than what any single discipline could achieve alone.

Also baked into the McGovern ethos is a spirit of open science, where newly developed technologies are shared with colleagues around the world. Through hospital partnerships for example, McGovern researchers are testing their tools and therapeutic interventions in clinical settings, accelerating their discoveries into real-world solutions.

The McGovern Legacy  

Hundreds of scientific papers have emerged from McGovern labs over the past 25 years, but most faculty would argue that it’s the people, the young researchers, that truly define the McGovern Institute. Award-winning faculty often attract the brightest young minds, but many McGovern faculty also serve as mentors, creating a diverse and vibrant scientific community that is setting the global standard for brain research and its applications. Nancy Kanwisher ’80 PhD ’86, for example, has guided more than 70 doctoral students and postdocs who have gone on to become leading scientists around the world. Three of her former students, Evelina Fedorenko PhD ‘07, Josh McDermott PhD ‘06, and the John W. Jarve (1978) Professor of Brain and Cognitive Sciences, Rebecca Saxe PhD ‘03, are now her colleagues at the McGovern Institute. Other McGovern alumni shared stories of mentorship, science, and real-world impact at the 25th anniversary symposium.

Group photo of four smiling scientists.
Nancy Kanwisher (center) with former students-turned-colleagues Evelina Fedorenko (left), Josh McDermott, and Rebecca Saxe (right). Photo: Steph Stevens

Looking to the future, the McGovern community is more committed than ever to unraveling the mysteries of the brain and making a meaningful difference in lives of individuals at a global scale.

“By promoting team science, open communication, and cross-discipline partnerships,” says institute co-founder Lore Harp McGovern, “our culture demonstrates how individual expertise can be amplified through collective effort. I am honored to be the co-founder of this incredible institution – onward to the next 25 years!”

Leslie Vosshall awarded the 2025 Scolnick Prize in Neuroscience

Today the McGovern Institute at MIT announces that the 2025 Edward M. Scolnick Prize in Neuroscience will be awarded to Leslie Vosshall, the Robin Chemers Neustein Professor at The Rockefeller University and Vice President and Chief Scientific Officer of the Howard Hughes Medical Institute. Vosshall is being recognized for her discovery of the neural mechanisms underlying mosquito host-seeking behavior. The Scolnick Prize is awarded annually by the McGovern Institute for outstanding achievements in neuroscience.

“Leslie Vosshall’s vision to apply decades of scientific know-how in a model insect to bear on one of the greatest human health threats, the mosquito, is awe-inspiring,” says McGovern Institute Director and chair of the selection committee, Robert Desimone. “Vosshall brought together academic and industry scientists to create the first fully annotated genome of the deadly Aedes aegypti mosquito and she became the first to apply powerful CRISPR-Cas9 editing to study this species.”

Vosshall was born in Switzerland, moved to the US as a child and worked throughout high school and college in her uncle’s laboratory, alongside Gerald Weissman, at the Marine Biological Laboratory at Woods Hole. During this time, she published a number of papers on cell aggregation and neutrophil signaling and received a BA in 1987 from Columbia University. She went to graduate school at The Rockefeller University where she first began working on the genetic model organism, the fruit fly Drosophila. Her mentor was Michael Young, who had just recently cloned the circadian rhythm gene period, work for which he later shared the Nobel Prize. Vosshall contributed to this work by showing that the gene timeless is required for rhythmic cycling of the PERIOD protein in and out of a cell’s nucleus and that this is required in only a subset of brain cells to drive circadian behaviors.

For her postdoctoral research, Vosshall returned to Columbia University in 1993 to join the laboratory of Richard Axel, also a future Nobel Laureate. There, Vosshall began her studies of olfaction and was one of the first to clone olfactory receptors in fruit flies. She mapped the expression pattern of each of the fly’s 60 or so olfactory receptors to individual sensory neurons and showed that each sensory neuron has a stereotyped projection into the brain. This work revealed that there is a topological map of brain activity responses for different odorants.

Vosshall started her own laboratory to study the mechanisms of olfaction and olfactory behavior in 2000, at The Rockefeller University. She rose through the ranks to receive tenure in 2006 and full professorship in 2010. Vosshall’s group was initially focused on the classic fruit fly model organism Drosophila but, in 2013, they showed that some of the same molecular mechanisms for olfaction in fruit flies are used by mosquitoes to find human hosts. From that point on, Vosshall rapidly applied her vast expertise in bioengineering to unravel the brain circuits underlying the behavior of the mosquito Aedes aegypti. This mosquito is responsible for transmission of yellow fever, dengue fever, zika fever and more, making it one of the deadliest animals to humankind.

Close-up of mosquito on human skin.
Vosshall identified oils produced by the skin of some people that make them “mosquito magnets.” Photo: Alex Wild

Mosquitoes have evolved to specifically prey on humans and transmit millions of cases of deadly diseases around the globe. Vosshall’s laboratory is filled with mosquitoes in which her team induces various gene mutations to identify the molecular circuits that mosquitoes use to hunt and feed on humans. In 2022, Vosshall received press around the world for identifying oils produced by the skin of some people that make them “mosquito magnets.”  Vosshall further showed that olfactory receptors have an unusual distribution pattern within the antennae of mosquitoes that allow mosquitoes to detect a whole slew of human scents, in addition to their ability to detect human’s warmth and breath. Vosshall’s team has also unraveled the molecular basis for mosquitoes’ avoidance of DEET and identified a novel repellent and identified genes for how they choose where to lay eggs and resist drought. Vosshall’s brilliant application of genome engineering to understand a wide range of mosquito behaviors has profound implications for human health. Moreover, since shifting her research to the mosquito, seven postdoctoral researchers that Vosshall mentored have established their own mosquito research laboratories at Boston University, Columbia University, Yale University, Johns Hopkins University, Princeton University, Florida International University, and the University of British Columbia.

Vosshall’s professional service is remarkable – she has served on innumerable committees at Rockefeller University and has participated in outreach activities around the globe, even starring in the feature length film “The Fly Room.” She began serving as the Vice President and Chief Scientific Officer of HHMI in 2022 and previously served as Associate Director and Director of the Kavli Neural Systems Institute from 2015 to 2021. She has served as an editor for numerous journals, on the Board of Directors for the Helen Hay Whitney Foundation, the McKnight Foundation and more, and co-organized over a dozen conferences. Her achievements have been recognized by the Dickson Prize in Medicine (2024), the Perl-UNC Neuroscience Prize (2022), and the Pradel Research Award (2020). She is an elected member of the National Academy of Medicine, National Academy of Sciences, American Philosophical Society, and American Association for the Advancement of Science.

The McGovern Institute will award the Scolnick Prize to Vosshall on May 9, 2025. At 4:00 pm she will deliver a lecture titled “Mosquitoes: neurobiology of the world’s most dangerous animal” to be followed by a reception at the McGovern Institute, 43 Vassar Street (building 46, room 3002) in Cambridge. The event is free and open to the public.

Evelina Fedorenko receives Troland Award from National Academy of Sciences

The National Academy of Sciences (NAS) announced today that McGovern Investigator Evelina Fedorenko will receive a 2025 Troland Research Award for her groundbreaking contributions towards understanding the language network in the human brain.

The Troland Research Award is given annually to recognize unusual achievement by early-career researchers within the broad spectrum of experimental psychology.

Two women and one child looking at a computer screen.
McGovern Investigator Ev Fedorenko (center) looks at a young subject’s brain scan in the Martinos Imaging Center at MIT. Photo: Alexandra Sokhina

Fedorenko, who is an associate professor of brain and cognitive sciences at MIT, is interested in how minds and brains create language. Her lab is unpacking the internal architecture of the brain’s language system and exploring the relationship between language and various cognitive, perceptual, and motor systems.  Her novel methods combine precise measures of an individual’s brain organization with innovative computational modeling to make fundamental discoveries about the computations that underlie the uniquely human ability for language.

Fedorenko has shown that the language network is selective for language processing over diverse non-linguistic processes that have been argued to share computational demands with language, such as math, music, and social reasoning. Her work has also demonstrated that syntactic processing is not localized to a particular region within the language network, and every brain region that responds to syntactic processing is at least as sensitive to word meanings.

She has also shown that representations from neural network language models, such as ChatGPT, are similar to those in the human language brain areas. Fedorenko also highlighted that although language models can master linguistic rules and patterns, they are less effective at using language in real-world situations. In the human brain, that kind of functional competence is distinct from formal language competence, she says, requiring not just language-processing circuits but also brain areas that store knowledge of the world, reason, and interpret social interactions. Contrary to a prominent view that language is essential for thinking, Fedorenko argues that language is not the medium of thought and is primarily a tool for communication.

A probabilistic atlas of the human language network based on >800 individuals (center) and sample individual language networks, which illustrate inter-individual variability in the precise locations and shapes of the language areas. Image: Ev Fedorenko

Ultimately, Fedorenko’s cutting-edge work is uncovering the computations and representations that fuel language processing in the brain. She will receive the Troland Award this April, during the annual meeting of the NAS in Washington DC.

 

 

 

Feng Zhang awarded 2024 National Medal of Technology

This post is adapted from an MIT News story.

***

Feng Zhang, the James and Patricia Poitras Professor of Neuroscience at MIT and an Investigator at the McGovern Institute, has won the National Medal of Technology and Innovation, the nation’s highest recognition for scientists and engineers. The prestigious award recognizes “American innovators whose vision, intellect, creativity, and determination have strengthened America’s economy and improved our quality of life.”

Zhang, who is also a professor of brain and cognitive sciences and biological engineering at MIT, a core member of the Broad Institute of MIT and Harvard, and an investigator with the Howard Hughes Medical Institute, was recognized for his work developing molecular tools, including the CRISPR genome-editing system, that have accelerated biomedical research and led to the first FDA-approved gene editing therapy.

This year, the White House awarded the National Medal of Science to 14 recipients and named nine individual awardees of the National Medal of Technology and Innovation, along with two organizations. Zhang is among four MIT faculty members who were awarded the nation’s highest honors for exemplary achievement and leadership in science and technology.

Designing molecular tools

Zhang, who earned his undergraduate degree from Harvard University in 2004, has contributed to the development of multiple molecular tools to accelerate the understanding of human disease. While a graduate student at Stanford University, from which he received his PhD in 2009, Zhang worked in the lab of Professor Karl Deisseroth. There, he worked on a protein called channelrhodopsin, which he and Deisseroth believed held potential for engineering mammalian cells to respond to light.

The resulting technique, known as optogenetics, is now used widely used in neuroscience and other fields. By engineering neurons to express light-sensitive proteins such as channelrhodopsin, researchers can either stimulate or silence the cells’ electrical impulses by shining different wavelengths of light on them. This has allowed for detailed study of the roles of specific populations of neurons in the brain, and the mapping of neural circuits that control a variety of behaviors.

In 2011, about a month after joining the MIT faculty, Zhang attended a talk by Harvard Medical School Professor Michael Gilmore, who studies the pathogenic bacterium Enteroccocus. The scientist mentioned that these bacteria protect themselves from viruses with DNA-cutting enzymes known as nucleases, which are part of a defense system known as CRISPR.

“I had no idea what CRISPR was, but I was interested in nucleases,” Zhang told MIT News in 2016. “I went to look up CRISPR, and that’s when I realized you might be able to engineer it for use for genome editing.”

In January 2013, Zhang and members of his lab reported that they had successfully used CRISPR to edit genes in mammalian cells. The CRISPR system includes a nuclease called Cas9, which can be directed to cut a specific genetic target by RNA molecules known as guide strands.

Since then, scientists in fields from medicine to plant biology have used CRISPR to study gene function and modify faulty genes that cause disease. More recently, Zhang’s lab has devised many enhancements to the original CRISPR system, such as making the targeting more precise and preventing unintended cuts in the wrong locations. In 2023, the FDA approved Casgevy, a CRISPR gene therapy based on Zhang’s discoveries, for the treatment of sickle cell disease and beta thalassemia.

The National Medal of Technology and Innovation was established in 1980 and is administered for the White House by the U.S. Department of Commerce’s Patent and Trademark Office. The award recognizes those who have made lasting contributions to America’s competitiveness and quality of life and helped strengthen the nation’s technological workforce.

3 Questions: Claire Wang on training the brain for memory sports

On Nov. 10, some of the country’s top memorizers converged on MIT’s Kresge Auditorium to compete in a “Tournament of Memory Champions” in front of a live audience.

The competition was split into four events: long-term memory, words-to-remember, auditory memory, and double-deck of cards, in which competitors must memorize the exact order of two decks of cards. In between the events, MIT faculty who are experts in the science of memory provided short talks and demos about memory and how to improve it. Among the competitors was MIT’s own Claire Wang, a sophomore majoring in electrical engineering and computer science. Wang has competed in memory sports for years, a hobby that has taken her around the world to learn from some of the best memorists on the planet. At the tournament, she tied for first place in the words-to-remember competition.

The event commemorated the 25th anniversary of the USA Memory Championship Organization (USAMC). USAMC sponsored the event in partnership with MIT’s McGovern Institute for Brain Research, the Department of Brain and Cognitive Sciences, the MIT Quest for Intelligence, and the company Lumosity.

MIT News sat down with Wang to learn more about her experience with memory competitions — and see if she had any advice for those of us with less-than-amazing memory skills.

Q: How did you come to get involved in memory competitions?

A: When I was in middle school, I read the book “Moonwalking with Einstein,” which is about a journalist’s journey from average memory to being named memory champion in 2006. My parents were also obsessed with this TV show where people were memorizing decks of cards and performing other feats of memory. I had already known about the concept of “memory palaces,” so I was inspired to explore memory sports. Somehow, I convinced my parents to let me take a gap year after seventh grade, and I travelled the world going to competitions and learning from memory grandmasters. I got to know the community in that time and I got to build my memory system, which was really fun. I did a lot less of those competitions after that year and some subsequent competitions with the USA memory competition, but it’s still fun to have this ability.

Q: What was the Tournament of Memory Champions like?

A: USAMC invited a lot of winners from previous years to compete, which was really cool. It was nice seeing a lot of people I haven’t seen in years. I didn’t compete in every event because I was too busy to do the long-term memory, which takes you two weeks of memorization work. But it was a really cool experience. I helped a bit with the brainstorming beforehand because I know one of the professors running it. We thought about how to give the talks and structure the event.

Then I competed in the words event, which is when they give you 300 words over 15 minutes, and the competitors have to recall each one in order in a round robin competition. You got two strikes. A lot of other competitions just make you write the words down. The round robin makes it more fun for people to watch. I tied with someone else — I made a dumb mistake — so I was kind of sad in hindsight, but being tied for first is still great.

Since I hadn’t done this in a while (and I was coming back from a trip where I didn’t get much sleep), I was a bit nervous that my brain wouldn’t be able to remember anything, and I was pleasantly surprised I didn’t just blank on stage. Also, since I hadn’t done this in a while, a lot of my loci and memory palaces were forgotten, so I had to speed-review them before the competition. The words event doesn’t get easier over time — it’s just 300 random words (which could range from “disappointment” to “chair”) and you just have to remember the order.

Q: What is your approach to improving memory?

A: The whole idea is that we memorize images, feelings, and emotions much better than numbers or random words. The way it works in practice is we make an ordered set of locations in a “memory palace.” The palace could be anything. It could be a campus or a classroom or a part of a room, but you imagine yourself walking through this space, so there’s a specific order to it, and in every location I place certain information. This is information related to what I’m trying to remember. I have pictures I associate with words and I have specific images I correlate with numbers. Once you have a correlated image system, all you need to remember is a story, and then when you recall, you translate that back to the original information.

Doing memory sports really helps you with visualization, and being able to visualize things faster and better helps you remember things better. You start remembering with spaced repetition that you can talk yourself through. Allowing things to have an emotional connection is also important, because you remember emotions better. Doing memory competitions made me want to study neuroscience and computer science at MIT.

The specific memory sports techniques are not as useful in everyday life as you’d think, because a lot of the information we learn is more operative and requires intuitive understanding, but I do think they help in some ways. First, sometimes you have to initially remember things before you can develop a strong intuition later. Also, since I have to get really good at telling a lot of stories over time, I have gotten great at visualization and manipulating objects in my mind, which helps a lot.

Season’s Greetings from the McGovern Institute

For this year’s holiday greeting, we asked the McGovern Institute community what comes to mind when they think of the winter holidays. More than 100 words were submitted for the project. The words were fed into ChatGPT to generate our holiday “prediction.” And a text-to-music generator (Udio) converted the words into a holiday song.

With special thanks to Jarrod Hicks and Jamal Williams from the McDermott lab for the inspiration…and to AI for pushing the boundaries of science and imagination.

Video credits:
Jacob Pryor (animation)
JR Narrows, Space Lute (sound design)