K. Lisa Yang Postbaccalaureate Program names new scholars

Funded by philanthropist Lisa Yang, the K. Lisa Yang Postbaccalaureate Scholar Program provides two years of paid laboratory experience, mentorship, and education to recent college graduates from backgrounds underrepresented in neuroscience. This year, two young researchers in McGovern Institute labs, Joseph Itiat and Sam Merrow, are the recipients of the Yang postbac program.

Itiat moved to the United States from Nigeria in 2019 to pursue a degree in psychology and cognitive neuroscience at Temple University. Today, he is a Yang postbac in John Gabrieli’s lab studying the relationship between learning and value processes and their influence on future-oriented decision-making. Ultimately, Itiat hopes to develop models that map the underlying mechanisms driving these processes.

“Being African, with limited research experience and little representation in the domain of neuroscience research,” Itiat says, “I chose to pursue a postbaccalaureate
research program to prepare me for a top graduate school and a career in cognitive neuroscience.”

Merrow first fell in love with science while working at the Barrow Neurological Institute in Arizona during high school. After graduating from Simmons University in Boston, Massachusetts, Merrow joined Guoping Feng’s lab as a Yang postbac to pursue research on glial cells and brain disorders. “As a queer, nonbinary, LatinX person, I have not met anyone like me in my field, nor have I had role models that hold a similar identity to myself,” says Merrow.

“My dream is to one day become a professor, where I will be able to show others that science is for anyone.”

Previous Yang postbacs include Alex Negron, Zoe Pearce, Ajani Stewart, and Maya Taliaferro.

What does the future hold for generative AI?

Speaking at the “Generative AI: Shaping the Future” symposium on Nov. 28, the kickoff event of MIT’s Generative AI Week, keynote speaker and iRobot co-founder Rodney Brooks warned attendees against uncritically overestimating the capabilities of this emerging technology, which underpins increasingly powerful tools like OpenAI’s ChatGPT and Google’s Bard.

“Hype leads to hubris, and hubris leads to conceit, and conceit leads to failure,” cautioned Brooks, who is also a professor emeritus at MIT, a former director of the Computer Science and Artificial Intelligence Laboratory (CSAIL), and founder of Robust.AI.

“No one technology has ever surpassed everything else,” he added.

The symposium, which drew hundreds of attendees from academia and industry to the Institute’s Kresge Auditorium, was laced with messages of hope about the opportunities generative AI offers for making the world a better place, including through art and creativity, interspersed with cautionary tales about what could go wrong if these AI tools are not developed responsibly.

Generative AI is a term to describe machine-learning models that learn to generate new material that looks like the data they were trained on. These models have exhibited some incredible capabilities, such as the ability to produce human-like creative writing, translate languages, generate functional computer code, or craft realistic images from text prompts.

In her opening remarks to launch the symposium, MIT President Sally Kornbluth highlighted several projects faculty and students have undertaken to use generative AI to make a positive impact in the world. For example, the work of the Axim Collaborative, an online education initiative launched by MIT and Harvard, includes exploring the educational aspects of generative AI to help underserved students.

The Institute also recently announced seed grants for 27 interdisciplinary faculty research projects centered on how AI will transform people’s lives across society.

In hosting Generative AI Week, MIT hopes to not only showcase this type of innovation, but also generate “collaborative collisions” among attendees, Kornbluth said.

Collaboration involving academics, policymakers, and industry will be critical if we are to safely integrate a rapidly evolving technology like generative AI in ways that are humane and help humans solve problems, she told the audience.

“I honestly cannot think of a challenge more closely aligned with MIT’s mission. It is a profound responsibility, but I have every confidence that we can face it, if we face it head on and if we face it as a community,” she said.

While generative AI holds the potential to help solve some of the planet’s most pressing problems, the emergence of these powerful machine learning models has blurred the distinction between science fiction and reality, said CSAIL Director Daniela Rus in her opening remarks. It is no longer a question of whether we can make machines that produce new content, she said, but how we can use these tools to enhance businesses and ensure sustainability. 

“Today, we will discuss the possibility of a future where generative AI does not just exist as a technological marvel, but stands as a source of hope and a force for good,” said Rus, who is also the Andrew and Erna Viterbi Professor in the Department of Electrical Engineering and Computer Science.

But before the discussion dove deeply into the capabilities of generative AI, attendees were first asked to ponder their humanity, as MIT Professor Joshua Bennett read an original poem.

Bennett, a professor in the MIT Literature Section and Distinguished Chair of the Humanities, was asked to write a poem about what it means to be human, and drew inspiration from his daughter, who was born three weeks ago.

The poem told of his experiences as a boy watching Star Trek with his father and touched on the importance of passing traditions down to the next generation.

In his keynote remarks, Brooks set out to unpack some of the deep, scientific questions surrounding generative AI, as well as explore what the technology can tell us about ourselves.

To begin, he sought to dispel some of the mystery swirling around generative AI tools like ChatGPT by explaining the basics of how this large language model works. ChatGPT, for instance, generates text one word at a time by determining what the next word should be in the context of what it has already written. While a human might write a story by thinking about entire phrases, ChatGPT only focuses on the next word, Brooks explained.

ChatGPT 3.5 is built on a machine-learning model that has 175 billion parameters and has been exposed to billions of pages of text on the web during training. (The newest iteration, ChatGPT 4, is even larger.) It learns correlations between words in this massive corpus of text and uses this knowledge to propose what word might come next when given a prompt.

The model has demonstrated some incredible capabilities, such as the ability to write a sonnet about robots in the style of Shakespeare’s famous Sonnet 18. During his talk, Brooks showcased the sonnet he asked ChatGPT to write side-by-side with his own sonnet.

But while researchers still don’t fully understand exactly how these models work, Brooks assured the audience that generative AI’s seemingly incredible capabilities are not magic, and it doesn’t mean these models can do anything.

His biggest fears about generative AI don’t revolve around models that could someday surpass human intelligence. Rather, he is most worried about researchers who may throw away decades of excellent work that was nearing a breakthrough, just to jump on shiny new advancements in generative AI; venture capital firms that blindly swarm toward technologies that can yield the highest margins; or the possibility that a whole generation of engineers will forget about other forms of software and AI.

At the end of the day, those who believe generative AI can solve the world’s problems and those who believe it will only generate new problems have at least one thing in common: Both groups tend to overestimate the technology, he said.

“What is the conceit with generative AI? The conceit is that it is somehow going to lead to artificial general intelligence. By itself, it is not,” Brooks said.

Following Brooks’ presentation, a group of MIT faculty spoke about their work using generative AI and participated in a panel discussion about future advances, important but underexplored research topics, and the challenges of AI regulation and policy.

The panel consisted of Jacob Andreas, an associate professor in the MIT Department of Electrical Engineering and Computer Science (EECS) and a member of CSAIL; Antonio Torralba, the Delta Electronics Professor of EECS and a member of CSAIL; Ev Fedorenko, an associate professor of brain and cognitive sciences and an investigator at the McGovern Institute for Brain Research at MIT; and Armando Solar-Lezama, a Distinguished Professor of Computing and associate director of CSAIL. It was moderated by William T. Freeman, the Thomas and Gerd Perkins Professor of EECS and a member of CSAIL.

The panelists discussed several potential future research directions around generative AI, including the possibility of integrating perceptual systems, drawing on human senses like touch and smell, rather than focusing primarily on language and images. The researchers also spoke about the importance of engaging with policymakers and the public to ensure generative AI tools are produced and deployed responsibly.

“One of the big risks with generative AI today is the risk of digital snake oil. There is a big risk of a lot of products going out that claim to do miraculous things but in the long run could be very harmful,” Solar-Lezama said.

The morning session concluded with an excerpt from the 1925 science fiction novel “Metropolis,” read by senior Joy Ma, a physics and theater arts major, followed by a roundtable discussion on the future of generative AI. The discussion included Joshua Tenenbaum, a professor in the Department of Brain and Cognitive Sciences and a member of CSAIL; Dina Katabi, the Thuan and Nicole Pham Professor in EECS and a principal investigator in CSAIL and the MIT Jameel Clinic; and Max Tegmark, professor of physics; and was moderated by Daniela Rus.

One focus of the discussion was the possibility of developing generative AI models that can go beyond what we can do as humans, such as tools that can sense someone’s emotions by using electromagnetic signals to understand how a person’s breathing and heart rate are changing.

But one key to integrating AI like this into the real world safely is to ensure that we can trust it, Tegmark said. If we know an AI tool will meet the specifications we insist on, then “we no longer have to be afraid of building really powerful systems that go out and do things for us in the world,” he said.

Ariel Furst and Fan Wang receive 2023 National Institutes of Health awards

The National Institutes of Health (NIH) has awarded grants to MIT’s Ariel Furst and Fan Wang, through its High-Risk, High-Reward Research program. The NIH High-Risk, High-Reward Research program awarded 85 new research grants to support exceptionally creative scientists pursuing highly innovative behavioral and biomedical research projects.

Ariel Furst was selected as the recipient of the NIH Director’s New Innovator Award, which has supported unusually innovative research since 2007. Recipients are early-career investigators who are within 10 years of their final degree or clinical residency and have not yet received a research project grant or equivalent NIH grant.

Furst, the Paul M. Cook Career Development Assistant Professor of Chemical Engineering at MIT, invents technologies to improve human and environmental health by increasing equitable access to resources. Her lab develops transformative technologies to solve problems related to health care and sustainability by harnessing the inherent capabilities of biological molecules and cells. She is passionate about STEM outreach and increasing the participation of underrepresented groups in engineering.

After completing her PhD at Caltech, where she developed noninvasive diagnostics for colorectal cancer, Furst became an A. O. Beckman Postdoctoral Fellow at the University of California at Berkeley. There she developed sensors to monitor environmental pollutants. In 2022, Furst was awarded the MIT UROP Outstanding Faculty Mentor Award for her work with undergraduate researchers. She is a now a 2023 Marion Milligan Mason Awardee, a CIFAR Azrieli Global Scholar for Bio-Inspired Solar Energy, and an ARO Early Career Grantee. She is also a co-founder of the regenerative agriculture company, Seia Bio.

Fan Wang received the Pioneer Award, which has been challenging researchers at all career levels to pursue new directions and develop groundbreaking, high impact approaches to a broad area of biomedical and behavioral sciences since 2004.

Wang, a professor in the Department of Brain and Cognitive Sciences and an investigator in the McGovern Institute for Brain Research, is uncovering the neural circuit mechanisms that govern bodily sensations, like touch, pain, and posture, as well as the mechanisms that control sensorimotor behaviors. Researchers in the Wang lab aim to generate an integrated understanding of the sensation-perception-action process, hoping to find better treatments for diseases like chronic pain, addiction, and movement disorders. Wang’s lab uses genetic, viral, in vivo large-scale electrophysiology and imaging techniques to gain traction in these pursuits.

Wang obtained her PhD at Columbia University, working with Professor Richard Axel. She conducted her postdoctoral work at Stanford University with Mark Tessier-Lavigne, and then subsequently joined Duke University as faculty in 2003. Wang was later appointed as the Morris N. Broad Distinguished Professor of Neurobiology at the Duke University School of Medicine. In January 2023, she joined the faculty of the MIT School of Science and the McGovern Institute.

The High-Risk, High-Reward Research program is funded through the NIH Common Fund, which supports a series of exceptionally high-impact programs that cross NIH Institutes and Centers.

“The HRHR program is a pillar for innovation here at NIH, providing support to transformational research, with advances in biomedical and behavioral science,” says Robert W. Eisinger, acting director of the Division of Program Coordination, Planning, and Strategic Initiatives, which oversees the NIH Common Fund. “These awards align with the Common Fund’s mandate to support science expected to have exceptionally high and broadly applicable impact.”

NIH issued eight Pioneer Awards, 58 New Innovator Awards, six Transformative Research Awards, and 13 Early Independence Awards in 2023. Funding for the awards comes from the NIH Common Fund; the National Institute of General Medical Sciences; the National Institute of Mental Health; the National Library of Medicine; the National Institute on Aging; the National Heart, Lung, and Blood Institute; and the Office of Dietary Supplements.

Twelve with MIT ties elected to the National Academy of Medicine for 2023

The National Academy of Medicine announced the election of 100 new members to join their esteemed ranks in 2023, among them five MIT faculty members and seven additional affiliates.

MIT professors Daniel Anderson, Regina Barzilay, Guoping Feng, Darrell Irvine, and Morgen Shen were among the new members. Justin Hanes PhD ’96, Said Ibrahim MBA ’16, and Jennifer West ’92, along with three former students in the Harvard-MIT Program in Health Sciences and Technology (HST) — Michael Chiang, Siddhartha Mukherjee, and Robert Vonderheide — were also elected, as was Yi Zhang, an associate member of The Broad Institute of MIT and Harvard.

Election to the academy is considered one of the highest honors in the fields of health and medicine and recognizes individuals who have demonstrated outstanding professional achievement and commitment to service, the academy noted in announcing the election of its new members.

MIT faculty

Daniel G. Anderson, professor in the Department of Chemical Engineering and the Institute for Medical Engineering and Science, was elected “for pioneering the area of non-viral gene therapy and cellular delivery. His work has resulted in fundamental scientific advances; over 500 papers, patents, and patent applications; and the creation of companies, products, and technologies that are now in the clinic.” Anderson is an affiliate of the Broad Institute of MIT and Harvard and of the Ragon Institute at MGH, MIT and Harvard.

Regina Barzilay, the School of Engineering Distinguished Professor for AI and Health within the Department of Electrical Engineering and Computer Science at MIT, was elected “for the development of machine learning tools that have been transformational for breast cancer screening and risk assessment, and for the development of molecular design tools broadly utilized for drug discovery.” Barzilay is the AI faculty lead within the MIT Abdul Latif Jameel Clinic for Machine Learning in Health and an affiliate of the Computer Science and Artificial Intelligence Laboratory and Institute for Medical Engineering and Science.

Guoping Feng, the associate director of the McGovern Institute for Brain Research, James W. (1963) and Patricia T. Professor of Neuroscience in MIT’s Department of Brain and Cognitive Sciences, and an affiliate of the Broad Institute of MIT and Harvard, was elected “for his breakthrough discoveries regarding the pathological mechanisms of neurodevelopmental and psychiatric disorders, providing foundational knowledges and molecular targets for developing effective therapeutics for mental illness such as OCD, ASD, and ADHD.”

Darrell J. Irvine ’00, the Underwood-Prescott Professor of Biological Engineering and Materials Science at MIT and a member of the Koch Institute for Integrative Cancer Research, was elected “for the development of novel methods for delivery of immunotherapies and vaccines for cancer and infectious diseases.”

Morgan Sheng, professor of neuroscience in the Department of Brain and Cognitive Sciences, with affiliations in the McGovern Institute and The Picower Institute for Learning and Memory at MIT, as well as the Broad Institute of MIT and Harvard, was elected “for transforming the understanding of excitatory synapses. He revealed the postsynaptic density as a protein network controlling synaptic signaling and morphology; established the paradigm of signaling complexes organized by PDZ scaffolds; and pioneered the concept of localized regulation of mitochondria, apoptosis, and complement for targeted synapse elimination.”

Additional MIT affiliates

Michael F. Chiang, a former student in the Harvard-MIT Program in Health Sciences and Technology (HST) who is now director of the National Eye Institute of the National Institutes of Health, was honored “for pioneering applications of biomedical informatics to ophthalmology in artificial intelligence, telehealth, pediatric retinal disease, electronic health records, and data science, including methodological and diagnostic advances in AI for pediatric retinopathy of prematurity, and for contributions to developing and implementing the largest ambulatory care registry in the United States.”

Justin Hanes PhD ’96, who earned his PhD from the MIT Department of Chemical Engineering and is now a professor at Johns Hopkins University, was honored “for pioneering discoveries and inventions of innovative drug delivery technologies, especially mucosal, ocular, and central nervous system drug delivery systems; and for international leadership in research and education at the interface of engineering, medicine, and entrepreneurship, leading to clinical translation of drug delivery technologies.”

Said Ibrahim MBA ’16, a graduate of the MIT Sloan School of Management who is now a senior vice president and chair, department of medicine at the Zucker School of Medicine at Hofstra/Northwell, was honored for influential “health services research on racial disparities in elective joint replacement that has provided a national model for advancing health equity research beyond the identification of inequities and toward their remediation, and for his research that has been leveraged to engage diverse and innovative emerging scholars.”

Siddhartha Mukherjee, a former student in HST who is now an associate professor of medicine at Columbia University School of Medicine, was honored “for contributing important research in the immunotherapy of myeloid malignancies, such as acute myeloid leukemia, for establishing international centers for immunotherapy for childhood cancers, and for the discovery of tissue-resident stem cells.”

Robert H. Vonderheide, a former student in HST who is now a professor and vice dean at the Perelman School of Medicine and vice president of cancer programs at the University of Pennsylvania Health System, was honored “for developing immune combination therapies for patients with pancreatic cancer by driving proof-of-concept from lab to clinic, then leading national, randomized clinical trials for therapy, maintenance, and interception; and for improving access of minority individuals to clinical trials while directing an NCI comprehensive cancer center.”

Jennifer West ’92, a graduate of the MIT Department of Chemical Engineering who is now a professor of biomedical engineering and dean of the School of Engineering and Applied Science at the University of Virginia at Charlottesville, was honored “for the invention, development, and translation of novel biomaterials including bioactive, photopolymerizable hydrogels and theranostic nanoparticles.”

Yi Zhang, associate member of the Broad Institute, was honored “for making fundamental contributions to the epigenetics field through systematic identification and characterization of chromatin modifying enzymes, including EZH2, JmjC, and Tet. His proof-of-principle work on EZH2 inhibitors led to the founding of Epizyme and eventual making of tazemetostat, a drug approved for epithelioid sarcoma and follicular lymphoma.”

“It is my honor to welcome this truly exceptional class of new members to the National Academy of Medicine,” said NAM President Victor J. Dzau. “Their contributions to health and medicine are unparalleled, and their leadership and expertise will be essential to helping the NAM tackle today’s urgent health challenges, inform the future of health care, and ensure health equity for the benefit of all around the globe.”

Four McGovern Investigators receive NIH BRAIN Initiative grants

In the human brain, 86 billion neurons form more than 100 trillion connections with other neurons at junctions called synapses. Scientists at the McGovern Institute are working with their collaborators to develop technologies to map these connections across the brain, from mice to humans.

Today, the National Institutes of Health (NIH) announced a new program to support research projects that have the potential to reveal an unprecedented and dynamic picture of the connected networks in the brain. Four of these NIH-funded research projects will take place in McGovern labs.

BRAIN Initiative

In 2013, the Obama administration announced the Brain Research Through Advancing Innovative Neurotechnologies® (BRAIN) Initiative, a public-private research effort to support the development and application of new technologies to understand brain function.

Today, the NIH announced its third project supported by the BRAIN Initiative, called BRAIN Initiative Connectivity Across Scales (BRAIN CONNECTS). The new project complements two previous large-scale projects, which together aim to transform neuroscience research by generating wiring diagrams that can span entire brains across multiple species. These detailed wiring diagrams can help uncover the logic of the brain’s neural code, leading to a better understanding of how this circuitry makes us who we are and how it could be rewired to treat brain diseases.

BRAIN CONNECTS at McGovern

The initial round of BRAIN CONNECTS awards will support researchers at more than 40 university and research institutions across the globe with 11 grants totaling $150 million over five years. Four of these grants have been awarded to McGovern researchers Guoping Feng, Ila Fiete, Satra Ghosh, and Ian Wickersham, whose projects are outlined below:

BRAIN CONNECTS: Comprehensive regional projection map of marmoset with single axon and cell type resolution
Team: Guoping Feng (McGovern Institute, MIT), Partha Mitra (Cold Spring Harbor Laboratory), Xiao Wang (Broad Institute), Ian Wickersham (McGovern Institute, MIT)

Summary: This project will establish an integrated experimental-computational platform to create the first comprehensive brain-wide mesoscale connectivity map in a non-human primate (NHP), the common marmoset (Callithrix jacchus). It will do so by tracing axonal projections of RNA barcode-identified neurons brain-wide in the marmoset, utilizing a sequencing-based imaging method that also permits simultaneous transcriptomic cell typing of the identified neurons. This work will help bridge the gap between brain-wide mesoscale connectivity data available for the mouse from a decade of mapping efforts using modern techniques and the absence of comparable data in humans and NHPs.

BRAIN CONNECTS: A center for high-throughput integrative mouse connectomics
Team: Jeff Lichtman (Harvard University), Ila Fiete (McGovern Institute, MIT), Sebastian Seung (Princeton University), David Tank (Princeton University), Hongkui Zeng (Allen Institute), Viren Jain (Google), Greg Jeffries (Oxford University)

Summary: This project aims to produce a large-scale synapse-level brain map (connectome) that includes all the main areas of the mouse hippocampus. This region is of clinical interest because it is an essential part of the circuit underlying spatial navigation and memory and the earliest impairments and degeneration related to Alzheimer’s disease.

BRAIN CONNECTS: The center for Large-scale Imaging of Neural Circuits (LINC)
Team: Anastasia Yendiki (MGH), Satra Ghosh (McGovern, MIT), Suzanne Haber (University of Rochester), Elizabeth Hillman (Columbia University)

Summary: This project will generate connectional diagrams of the monkey and human brain at unprecedented resolutions. These diagrams will be linked both to the neuroanatomic literature and to in vivo neuroimaging techniques, bridging between the rigor of the former and the clinical relevance of the latter. The data to be generated by this project will advance our understanding of brain circuits that are implicated in motor and psychiatric disorders, and that are targeted by deep-brain stimulation to treat these disorders.

BRAIN CONNECTS: Mapping brain-wide connectivity of neuronal types using barcoded connectomics
Team: Xiaoyin Chen (Allen Institute), Ian Wickersham (McGovern Institute, MIT), and Justus Kebschull of JHU

Summary: This project aims to optimize and develop barcode sequencing-based neuroanatomical techniques to achieve brain-wide, high-throughput, highly multiplexed mapping of axonal projections and synaptic connectivity of neuronal types at cellular resolution in primate brains. The team will work together to apply these techniques to generate an unprecedented multi-resolution map of brain-wide projections and synaptic inputs of neurons in the macaque visual cortex at cellular resolution.

 

Nuevo podcast de neurociencia en español celebra su tercera temporada

Sylvia Abente, neuróloga clínica de la Universidad Nacional de Asunción (Paraguay), investiga la variedad de síntomas que son característicos de la epilepsia. Trabaja con los pueblos indígenas de Paraguay, y su dominio del español y el guaraní, los dos idiomas oficiales de Paraguay, le permite ayudar a los pacientes a encontrar las palabras que ayuden a describir sus síntomas de epilepsia para poder tratarlos.

Juan Carlos Caicedo Mera, neurocientífico de la Universidad Externado de Colombia, utiliza modelos de roedores para investigar los efectos neurobiológicos del estrés en los primeros años de vida. Ha desempeñado un papel decisivo en despertar la conciencia pública sobre los efectos biológicos y conductuales del castigo físico a edades tempranas, lo que ha propiciado cambios políticos encaminados a reducir su prevalencia como práctica cultural en Colombia.

Woman interviews a man at a table with a camera recording the interview in the foreground.
Jessica Chomik-Morales (right) interviews Pedro Maldonado at the Biomedical Neuroscience Institute of Chile at the University of Chile. Photo: Jessica Chomik-Morales

Estos son solo dos de los 33 neurocientíficos de siete países latinoamericanos que Jessica Chomik-Morales entrevistó durante 37 días para la tercera temporada de su podcast en español “Mi Última Neurona,” que se estrenará el 18 de septiembre a las 5:00 p. m. en YouTube. Cada episodio dura entre 45 y 90 minutos.

“Quise destacar sus historias para disipar la idea errónea de que la ciencia de primer nivel solo puede hacerse en Estados Unidos y Europa,” dice Chomik-Morales, “o que no se consigue en Sudamérica debido a barreras financieras y de otro tipo.”

Chomik-Morales, graduada universitaria de primera generación que creció en Asunción (Paraguay) y Boca Ratón (Florida), es ahora investigadora académica de post licenciatura en el MIT. Aquí trabaja con Laura Schulz, profesora de Ciencia Cognitiva, y Nancy Kanwisher, investigadora del McGovern Institute y la profesora Walter A. Rosenblith de Neurociencia Cognitiva, utilizando imágenes cerebrales funcionales para investigar de qué forma el cerebro explica el pasado, predice el futuro e interviene sobre el presente a traves del razonamiento causal.

“El podcast está dirigido al público en general y es apto para todas las edades,” afirma. “Se explica la neurociencia de forma fácil para inspirar a los jóvenes en el sentido de que ellos también pueden llegar a ser científicos y para mostrar la amplia variedad de investigaciones que se realizan en los países de origen de los escuchas.”

El viaje de toda una vida

“Mi Última Neurona” comenzó como una idea en 2021 y creció rápidamente hasta convertirse en una serie de conversaciones con destacados científicos hispanos, entre ellos L. Rafael Reif, ingeniero electricista venezolano-estadounidense y 17.º presidente del MIT.

Woman interviews man at a table while another man adjusts microphone.
Jessica Chomik-Morales (left) interviews the 17th president of MIT, L. Rafael Reif (right), for her podcast while Héctor De Jesús-Cortés (center) adjusts the microphone. Photo: Steph Stevens

Con las relaciones profesionales que estableció en las temporadas uno y dos, Chomik-Morales amplió su visión y reunió una lista de posibles invitados en América Latina para la tercera temporada. Con la ayuda de su asesor científico, Héctor De Jesús-Cortés, un investigador Boricua de posdoctorado del MIT, y el apoyo financiero del McGovern Institute, el Picower Institute for Learning and Memory, el Departamento de Ciencias Cerebrales y Cognitivas, y las Iniciativas Internacionales de Ciencia y Tecnología del MIT, Chomik-Morales organizó entrevistas con científicos en México, Perú, Colombia, Chile, Argentina, Uruguay y Paraguay durante el verano de 2023.

Viajando en avión cada cuatro o cinco días, y consiguiendo más posibles participantes de una etapa del viaje a la siguiente por recomendación, Chomik-Morales recorrió más de 10,000 millas y recopiló 33 historias para su tercera temporada. Las áreas de especialización de los científicos abarcan toda una variedad de temas, desde los aspectos sociales de los ciclos de sueño y vigilia hasta los trastornos del estado de ánimo y la personalidad, pasando por la lingüística y el lenguaje en el cerebro o el modelado por computadoras como herramienta de investigación.

“Si alguien estudia la depresión y la ansiedad, quiero hablar sobre sus opiniones con respecto a diversas terapias, incluidos los fármacos y también las microdosis con alucinógenos,” dice Chomik-Morales. “Estas son las cosas de las que habla la gente.” No le teme a abordar temas delicados, como la relación entre las hormonas y la orientación sexual, porque “es importante que la gente escuche a los expertos hablar de estas cosas,” comenta.

El tono de las entrevistas va de lo informal (“el investigador y yo somos como amigos”, dice) a lo pedagógico (“de profesor a alumno”). Lo que no cambia es la accesibilidad (se evitan términos técnicos) y las preguntas iniciales y finales en cada entrevista. Para empezar: “¿Cómo ha llegado hasta aquí? ¿Qué le atrajo de la neurociencia?”. Para terminar: “¿Qué consejo le daría a un joven estudiante latino interesado en Ciencias, Ingeniería, Tecnología y Matemáticas[1]?

Permite que el marco de referencia de sus escuchas sea lo que la guíe. “Si no entendiera algo o pensara que se podría explicar mejor, diría: ‘Hagamos una pausa’. ¿Qué significa esta palabra?”, aunque ella conociera la definición. Pone el ejemplo de la palabra “MEG” (magnetoencefalografía): la medición del campo magnético generado por la actividad eléctrica de las neuronas, que suele combinarse con la resonancia magnética para producir imágenes de fuentes magnéticas. Para aterrizar el concepto, preguntaría: “¿Cómo funciona? ¿Este tipo de exploración hace daño al paciente?”.

Allanar el camino para la creación de redes globales

El equipo de Chomik-Morales era escaso: tres micrófonos Yeti y una cámara de video Canon conectada a su computadora portátil. Las entrevistas se realizaban en salones de clase, oficinas universitarias, en la casa de los investigadores e incluso al aire libre, ya que no había estudios insonorizados disponibles. Ha estado trabajando con el ingeniero de sonido David Samuel Torres, de Puerto Rico, para obtener un sonido más claro.

Ninguna limitación tecnológica podía ocultar la importancia del proyecto para los científicos participantes.

Two women talking at a table in front of a camera.
Jessica Chomik-Morales (left) interviews Josefina Cruzat (right) at Adolfo Ibañez University in Chile. Photo: Jessica Chomik-Morales

“Mi Última Neurona” muestra nuestro conocimiento diverso en un escenario global, proporcionando un retrato más preciso del panorama científico en América Latina,” dice Constanza Baquedano, originaria de Chile. “Es un avance hacia la creación de una representación más inclusiva en la ciencia”. Baquendano es profesora adjunta de psicología en la Universidad Adolfo Ibáñez, en donde utiliza electrofisiología y mediciones electroencefalográficas y conductuales para investigar la meditación y otros estados contemplativos. “Estaba ansiosa por ser parte de un proyecto que buscara brindar reconocimiento a nuestras experiencias compartidas como mujeres latinoamericanas en el campo de la neurociencia.”

“Comprender los retos y las oportunidades de los neurocientíficos que trabajan en América Latina es primordial,” afirma Agustín Ibáñez, profesor y director del Instituto Latinoamericano de Salud Cerebral (BrainLat) de la Universidad Adolfo Ibáñez de Chile. “Esta región, que se caracteriza por tener importantes desigualdades que afectan la salud cerebral, también presenta desafíos únicos en el campo de la neurociencia,” afirma Ibáñez, quien se interesa principalmente en la intersección de la neurociencia social, cognitiva y afectiva. “Al centrarse en América Latina, el podcast da a conocer las historias que frecuentemente no se cuentan en la mayoría de los medios. Eso tiende puentes y allana el camino para la creación de redes globales.”

Por su parte, Chomik-Morales confía en que su podcast generará un gran número de seguidores en América Latina. “Estoy muy agradecida por el espléndido patrocinio del MIT,” dice Chomik-Morales. “Este es el proyecto más gratificante que he hecho en mi vida.”

__

[1] En inglés Science, Technology, Engineering and Mathematics (STEM)

New Spanish-language neuroscience podcast flourishes in third season

A Spanish version of this news story can be found here. (Una versión en español de esta noticia se puede encontrar aquí.)

___

Sylvia Abente, a clinical neurologist at the Universidad Nacional de Asunción in Paraguay, investigates the range of symptoms that characterize epilepsy. She works with indigenous peoples in Paraguay, and her fluency in Spanish and Guarni—the two official languages of Paraguay—allows her to help patients find the words to describe their epilepsy symptoms so she can treat them.

Juan Carlos Caicedo Mera, a neuroscientist at the Universidad Externado de Colombia, uses rodent models to research the neurobiological effects of early life stress. He has been instrumental in raising public awareness about the biological and behavioral effects of early-age physical punishment, leading to policy changes aimed at reducing its prevalence as a cultural practice in Colombia.

Woman interviews a man at a table with a camera recording the interview in the foreground.
Jessica Chomik-Morales (right) interviews Pedro Maldonado at the Biomedical Neuroscience Institute of Chile at the University of Chile. Photo: Jessica Chomik-Morales

Those are just two of the 33 neuroscientists in seven Latin American countries that Jessica Chomik-Morales interviewed over 37 days for the expansive third season of her Spanish-language podcast, “Mi Ultima Neurona” (“My Last Neuron”), which launches Sept. 18 at 5 p.m. on YouTube. Each episode runs between 45 and 90 minutes.

“I wanted to shine a spotlight on their stories to dispel the misconception that excellent science can only be done in America and Europe,” says Chomik-Morales, “or that it isn’t being produced in South America because of financial and other barriers.”

A first-generation college graduate who grew up in Asunción, Paraguay and Boca Raton, Florida, Chomik-Morales is now a postbaccalaureate research scholar at MIT. Here she works with Laura Schulz, professor of cognitive science, and Nancy Kanwisher, McGovern Institute investigator and the Walter A. Rosenblith Professor of Cognitive Neuroscience, using functional brain imaging to investigate how the brain explains the past, predicts the future, and intervenes on the present.

“The podcast is for the general public and is suitable for all ages,” she says. “It explains neuroscience in a digestable way to inspire young people that they, too, can become scientists and to show the rich variety of reseach that is being done in listeners’ home countries.”

Journey of a lifetime

“Mi Ultima Neurona” began as an idea in 2021 and grew rapidly into a collection of conversations with prominent Hispanic scientists, including L. Rafael Reif, a Venezuelan-American electrical engineer and the 17th president of MIT.

Woman interviews man at a table while another man adjusts microphone.
Jessica Chomik-Morales (left) interviews the 17th president of MIT, L. Rafael Reif (right), for her podcast while Héctor De Jesús-Cortés (center) adjusts the microphone. Photo: Steph Stevens

Building upon the professional relationships she built in seasons one and two, Chomik-Morales broadened her vision, and assembled a list of potential guests in Latin America for season three.  With research help from her scientific advisor, Héctor De Jesús-Cortés, an MIT postdoc from Puerto Rico, and financial support from the McGovern Institute, the Picower Institute for Learning and Memory, the Department of Brain and Cognitive Sciences, and MIT International Science and Technology Initiatives, Chomik-Morales lined up interviews with scientists in Mexico, Peru, Colombia, Chile, Argentina, Uruguay, and Paraguay during the summer of 2023.

Traveling by plane every four or five days, and garnering further referrals from one leg of the trip to the next through word of mouth, Chomik-Morales logged over 10,000 miles and collected 33 stories for her third season. The scientists’ areas of specialization run the gamut— from the social aspects of sleep/wake cycles to mood and personality disorders, from linguistics and language in the brain to computational modeling as a research tool.

“This is the most fulfilling thing I’ve ever done.” – Jessica Chomik-Morales

“If somebody studies depression and anxiety, I want to touch on their opinions regarding various therapies, including drugs, even microdosing with hallucinogens,” says Chomik-Morales. “These are the things people are talking about.” She’s not afraid to broach sensitive topics, like the relationship between hormones and sexual orientation, because “it’s important that people listen to experts talk about these things,” she says.

The tone of the interviews range from casual (“the researcher and I are like friends,” she says) to pedagogic (“professor to student”). The only constants are accessibility—avoiding technical terms—and the opening and closing questions in each one. To start: “How did you get here? What drew you to neuroscience?” To end: “What advice would you give a young Latino student who is interested in STEM?”

She lets her listeners’ frame of reference be her guide. “If I didn’t understand something or thought it could be explained better, I’d say, ‘Let’s pause. ‘What does this word mean?’ ” even if she knew the definition herself. She gives the example of the word “MEG” (magnetoencephalography)—the measurement of the magnetic field generated by the electrical activity of neurons, which is usually combined with magnetic resonance imaging to produce magnetic source imaging. To bring the concept down to Earth, she’d ask: “How does it work? Does this kind of scan hurt the patient?’ ”

Paving the way for global networking

Chomik-Morales’s equipment was spare: three Yeti microphones and a Canon video camera connected to her laptop computer. The interviews took place in classrooms, university offices, at researchers’ homes, even outside—no soundproof studios were available. She has been working with sound engineer David Samuel Torres, from Puerto Rico, to clarify the audio.

No technological limitations could obscure the significance of the project for the participating scientists.

Two women talking at a table in front of a camera.
Jessica Chomik-Morales (left) interviews Josefina Cruzat (right) at Adolfo Ibañez University in Chile. Photo: Jessica Chomik-Morales

“‘Mi Ultima Neurona’ showcases our diverse expertise on a global stage, providing a more accurate portrayal of the scientific landscape in Latin America,” says Constanza Baquedano, who is from Chile. “It’s a step toward creating a more inclusive representation in science.” Baquendano is an assistant professor of psychology at Universidad Adolfo Ibáñez, where she uses electrophysiology and electroencephalographic and behavioral measurements to investigate meditation and other contemplative states. “I was eager to be a part of a project that aimed to bring recognition to our shared experiences as Latin American women in the field of neuroscience.”

“Understanding the challenges and opportunities of neuroscientists working in Latin America is vital,”says Agustín Ibañez, professor and director of the Latin American Brain Health Institute (BrainLat) at Universidad Adolfo Ibáñez in Chile. “This region, characterized by significant inequalities affecting brain health, also presents unique challenges in the field of neuroscience,” says Ibañez, who is primarily interested in the intersection of social, cognitive, and affective neuroscience. “By focusing on Latin America, the podcast brings forth the narratives that often remain untold in the mainstream. That bridges gaps and paves the way for global networking.”

For her part, Chomik-Morales is hopeful that her podcast will generate a strong following in Latin America. “I am so grateful for the wonderful sponsorship from MIT,” says Chomik-Morales. “This is the most fulfilling thing I’ve ever done.”

Fourteen MIT School of Science professors receive tenure for 2022 and 2023

In 2022, nine MIT faculty were granted tenure in the School of Science:

Gloria Choi examines the interaction of the immune system with the brain and the effects of that interaction on neurodevelopment, behavior, and mood. She also studies how social behaviors are regulated according to sensory stimuli, context, internal state, and physiological status, and how these factors modulate neural circuit function via a combinatorial code of classic neuromodulators and immune-derived cytokines. Choi joined the Department of Brain and Cognitive Sciences after a postdoc at Columbia University. She received her bachelor’s degree from the University of California at Berkeley, and her PhD from Caltech. Choi is also an investigator in The Picower Institute for Learning and Memory.

Nikta Fakhri develops experimental tools and conceptual frameworks to uncover laws governing fluctuations, order, and self-organization in active systems. Such frameworks provide powerful insight into dynamics of nonequilibrium living systems across scales, from the emergence of thermodynamic arrow of time to spatiotemporal organization of signaling protein patterns and discovery of odd elasticity. Fakhri joined the Department of Physics in 2015 following a postdoc at University of Göttingen. She completed her undergraduate degree at Sharif University of Technology and her PhD at Rice University.

Geobiologist Greg Fournier uses a combination of molecular phylogeny insights and geologic records to study major events in planetary history, with the hope of furthering our understanding of the co-evolution of life and environment. Recently, his team developed a new technique to analyze multiple gene evolutionary histories and estimated that photosynthesis evolved between 3.4 and 2.9 billion years ago. Fournier joined the Department of Earth, Atmospheric and Planetary Sciences in 2014 after working as a postdoc at the University of Connecticut and as a NASA Postdoctoral Program Fellow in MIT’s Department of Civil and Environmental Engineering. He earned his BA from Dartmouth College in 2001 and his PhD in genetics and genomics from the University of Connecticut in 2009.

Daniel Harlow researches black holes and cosmology, viewed through the lens of quantum gravity and quantum field theory. His work generates new insights into quantum information, quantum field theory, and gravity. Harlow joined the Department of Physics in 2017 following postdocs at Princeton University and Harvard University. He obtained a BA in physics and mathematics from Columbia University in 2006 and a PhD in physics from Stanford University in 2012. He is also a researcher in the Center for Theoretical Physics.

A biophysicist, Gene-Wei Li studies how bacteria optimize the levels of proteins they produce at both mechanistic and systems levels. His lab focuses on design principles of transcription, translation, and RNA maturation. Li joined the Department of Biology in 2015 after completing a postdoc at the University of California at San Francisco. He earned an BS in physics from National Tsinghua University in 2004 and a PhD in physics from Harvard University in 2010.

Michael McDonald focuses on the evolution of galaxies and clusters of galaxies, and the role that environment plays in dictating this evolution. This research involves the discovery and study of the most distant assemblies of galaxies alongside analyses of the complex interplay between gas, galaxies, and black holes in the closest, most massive systems. McDonald joined the Department of Physics and the Kavli Institute for Astrophysics and Space Research in 2015 after three years as a Hubble Fellow, also at MIT. He obtained his BS and MS degrees in physics at Queen’s University, and his PhD in astronomy at the University of Maryland in College Park.

Gabriela Schlau-Cohen combines tools from chemistry, optics, biology, and microscopy to develop new approaches to probe dynamics. Her group focuses on dynamics in membrane proteins, particularly photosynthetic light-harvesting systems that are of interest for sustainable energy applications. Following a postdoc at Stanford University, Schlau-Cohen joined the Department of Chemistry faculty in 2015. She earned a bachelor’s degree in chemical physics from Brown University in 2003 followed by a PhD in chemistry at the University of California at Berkeley.

Phiala Shanahan’s research interests are focused around theoretical nuclear and particle physics. In particular, she works to understand the structure and interactions of hadrons and nuclei from the fundamental degrees of freedom encoded in the Standard Model of particle physics. After a postdoc at MIT and a joint position as an assistant professor at the College of William and Mary and senior staff scientist at the Thomas Jefferson National Accelerator Facility, Shanahan returned to the Department of Physics as faculty in 2018. She obtained her BS from the University of Adelaide in 2012 and her PhD, also from the University of Adelaide, in 2015.

Omer Yilmaz explores the impact of dietary interventions on stem cells, the immune system, and cancer within the intestine. By better understanding how intestinal stem cells adapt to diverse diets, his group hopes to identify and develop new strategies that prevent and reduce the growth of cancers involving the intestinal tract. Yilmaz joined the Department of Biology in 2014 and is now also a member of Koch Institute for Integrative Cancer Research. After receiving his BS from the University of Michigan in 1999 and his PhD and MD from University of Michigan Medical School in 2008, he was a resident in anatomic pathology at Massachusetts General Hospital and Harvard Medical School until 2013.

In 2023, five MIT faculty were granted tenure in the School of Science:

Physicist Riccardo Comin explores the novel phases of matter that can be found in electronic solids with strong interactions, also known as quantum materials. His group employs a combination of synthesis, scattering, and spectroscopy to obtain a comprehensive picture of these emergent phenomena, including superconductivity, (anti)ferromagnetism, spin-density-waves, charge order, ferroelectricity, and orbital order. Comin joined the Department of Physics in 2016 after postdoctoral work at the University of Toronto. He completed his undergraduate studies at the Universita’ degli Studi di Trieste in Italy, where he also obtained a MS in physics in 2009. Later, he pursued doctoral studies at the University of British Columbia, Canada, earning a PhD in 2013.

Netta Engelhardt researches the dynamics of black holes in quantum gravity and uses holography to study the interplay between gravity and quantum information. Her primary focus is on the black hole information paradox, that black holes seem to be destroying information that, according to quantum physics, cannot be destroyed. Engelhardt was a postdoc at Princeton University and a member of the Princeton Gravity Initiative prior to joining the Department of Physics in 2019. She received her BS in physics and mathematics from Brandeis University and her PhD in physics from the University of California at Santa Barbara. Engelhardt is a researcher in the Center for Theoretical Physics and the Black Hole Initiative at Harvard University.

Mark Harnett studies how the biophysical features of individual neurons endow neural circuits with the ability to process information and perform the complex computations that underlie behavior. As part of this work, his lab was the first to describe the physiological properties of human dendrites. He joined the Department of Brain and Cognitive Sciences and the McGovern Institute for Brain Research in 2015. Prior, he was a postdoc at the Howard Hughes Medical Institute’s Janelia Research Campus. He received his BA in biology from Reed College in Portland, Oregon and his PhD in neuroscience from the University of Texas at Austin.

Or Hen investigates quantum chromodynamic effects in the nuclear medium and the interplay between partonic and nucleonic degrees of freedom in nuclei. Specifically, Hen utilizes high-energy scattering of electron, neutrino, photon, proton and ion off atomic nuclei to study short-range correlations: temporal fluctuations of high-density, high-momentum, nucleon clusters in nuclei with important implications for nuclear, particle, atomic, and astrophysics. Hen was an MIT Pappalardo Fellow in the Department of Physics from 2015 to 2017 before joining the faculty in 2017. He received his undergraduate degree in physics and computer engineering from the Hebrew University and earned his PhD in experimental physics at Tel Aviv University.

Sebastian Lourido is interested in learning about the vulnerabilities of parasites in order to develop treatments for infectious diseases and expand our understanding of eukaryotic diversity. His lab studies many important human pathogens, including Toxoplasma gondii, to model features conserved throughout the phylum. Lourido was a Whitehead Fellow at the Whitehead Institute for Biomedical Research until 2017, when he joined the Department of Biology and became a Whitehead Member. He earned his BS from Tulane University in 2004 and his PhD from Washington University in St. Louis in 2012.

Thirty-four community members receive 2023 MIT Excellence Awards, Collier Medal, and Staff Award for Distinction in Service

Twenty-four individuals and one team were awarded MIT Excellence Awards — the highest awards for staff at the Institute — at a well-attended and energetic ceremony the afternoon of June 8 in Kresge Auditorium. In addition to the Excellence Awards, two community members were honored with the Collier Medal and Staff Award for Distinction in Service.

The Excellence Awards, Collier Medal, and Staff Award for Distinction in Service recognize the extraordinary dedication of staff and community members who represent all areas of the Institute, both on campus and at the Lincoln Laboratory.

The Collier Medal honors the memory of Officer Sean Collier, who gave his life protecting and serving the MIT community, and celebrates an individual or group whose actions demonstrate the importance of community. The Staff Award for Distinction in Service, now in its second year, is presented to a staff member whose service to the Institute results in a positive lasting impact on the community.

The 2023 MIT Excellence Award recipients and their award categories are:

  • Sustaining MIT: Erin Genereux; Rachida Kernis; J. Bradley Morrison, and the Tip Box Recycling Team (John R. Collins, Michael A. DeBerio, Normand J. Desrochers III, Mitchell S. Galanek, David M. Pavone, Ryan Samz, Rosario Silvestri, and Lu Zhong);
  • Innovative Solutions: Abram Barrett, Nicole H. W. Henning
  • Bringing Out the Best: Patty Eames, Suzy Maholchic Nelson
  • Serving Our Community: Mahnaz El-Kouedi, Kara Flyg, Timothy J. Meunier, Marie A. Stuppard, Roslyn R. Wesley
  • Embracing Diversity, Equity, and Inclusion: Farrah A. Belizaire
  • Outstanding Contributor: Diane Ballestas, Robert J. Bicchieri, Lindsey Megan Charles, Benoit Desbiolles, Dennis C. Hamel, Heather Anne Holland, Gregory L. Long, Linda Mar, Mary Ellen Sinkus, Sarah E. Willis, and Phyl A. Winn
  • The 2023 Collier Medal recipient was Martin Eric William Nisser, a graduate student fellow in the Department of Electrical Engineering and Computer Science/Computer Science and Artificial Intelligence Laboratory and the School of Engineering/MIT Schwarzman College of Computing.
  • The 2023 recipient of the Staff Award for Distinction in Service was Kimberly A. Haberlin, chief of staff in the Chancellor’s Office.

Presenters included President Sally Kornbluth; Vice President for Human Resources Ramona Allen; Provost Cynthia Barnhart; School of Engineering Dean Anantha Chandrakasan; MIT Police Chief John DiFava and MIT Police Captain Andrew Turco; Institute Community and Equity Officer John Dozier; Lincoln Laboratory Director Eric Evans; and Chancellor Melissa Nobles. As always, an animated and supportive audience with signs, pompoms, and glow bracelets filled the auditorium with cheers for the honorees.

Visit the MIT Human Resources website for more information about the award categories, selection process, recipients, and to view the archive video of the event.

Tackling the MIT campus’s top energy consumers, building by building

When staff in MIT’s Department of Facilities would visualize energy use and carbon-associated emissions by campus buildings, Building 46 always stood out — attributed to its energy intensity, which accounted for 8 percent of MIT’s total campus energy use. This high energy draw was not surprising, as the building is home of the Brain and Cognitive Sciences Complex and a large amount of lab space, but it also made the building a perfect candidate for an energy performance audit to seek out potential energy saving opportunities.

This audit revealed that several energy efficiency updates to the building mechanical systems infrastructure, including optimization of the room-by-room ventilation rates, could result in an estimated 35 percent reduction of energy use, which would in turn lower MIT’s total greenhouse gas emissions by an estimated 2 percent — driving toward the Institute’s 2026 goal of net-zero and 2050 goal of elimination of direct campus emissions.

Building energy efficiency projects are not new for MIT. Since 2010, MIT has been engaged in a partnership agreement with utility company Eversource establishing the Efficiency Forward program, empowering MIT to invest in more than 300 energy conservation projects to date and lowering energy consumption on campus for a total calculated savings of approximately 70 million kilowatt hours and 4.2 million therms. But at 418,000 gross square feet, Building 46 is the first energy efficiency project of its size on the campus.

“We’ve never tackled a whole building like this — it’s the first capital project that is technically an energy project,” explains Siobhan Carr, energy efficiency program manager, who was part of the team overseeing the energy audit and lab ventilation performance assessment in the building. “That gives you an idea of the magnitude and complexity of this.”

The project started with the full building energy assessment and lab ventilation risk audit. “We had a team go through every corner of the building and look at every possible opportunity to save energy,” explains Jessica Parks, senior project manager for systems performance and turnover in campus construction. “One of the biggest issues we saw was that there’s a lot of dry lab spaces which are basically offices, but they’re all getting the same ventilation as if they were a high-intensity lab.” Higher ventilation and more frequent air exchange rates draw more energy. By optimizing for the required ventilation rates, there was an opportunity to save energy in nearly every space in the building.

In addition to the optimized ventilation, the project team will convert fume hoods from constant volume to variable volume and install equipment to help the building systems run more efficiently. The team also identified opportunities to work with labs to implement programs such as fume hood hibernation and unoccupied setbacks for temperature and ventilation. As different spaces in the building have varying needs, the energy retrofit will touch all 1,254 spaces in the building — one by one — to implement the different energy measures to reach that estimated 35 percent reduction in energy use.

Although time-consuming and complex, this room-by-room approach has a big benefit in that it has allowed research to continue in the space largely uninterrupted. With a few exceptions, the occupants of Building 46, which include the Department of Brain and Cognitive Sciences, The McGovern Institute for Brain Research, and The Picower Institute for Learning and Memory, have remained in place for the duration of the project. Partners in the MIT Environment, Health and Safety Office are instrumental to this balance of renovations and keeping the building operational during the optimization efforts and are one of several teams across MIT contributing to building efficiency efforts.

The completion date of the building efficiency project is set for 2024, but Carr says that some of the impact of this ongoing work may soon be seen. “We should start to see savings as we move through the building, and we expect to fully realize all of our projected savings a year after completion,” she says, noting that the length of time is required for a year-over-year perspective to see the full reduction in energy use.

The impact of the project goes far beyond the footprint of Building 46 as it offers insights and spurred actions for future projects — including buildings 76 and 68, the number two and three top energy users on campus. Both buildings recently underwent their own energy audits and lab ventilation performance assessments. The energy efficiency team is now crafting a plan for full-building approaches, much like Building 46. “To date, 46 has presented many learning opportunities, such as how to touch every space in a building while research continues, as well as how to overcome challenges encountered when working on existing systems,” explains Parks. “The good news is that we have developed solutions for those challenges and the teams have been proactively implementing those lessons in our other projects.”

Communication has proven to be another key for these large projects where occupants see the work happening and often play a role in answering questions about their unique space. “People are really engaged, they ask questions about the work, and we ask them about the space they’re in every day,” says Parks. “The Building 46 occupants have been wonderful partners as we worked in all of their spaces, which is paving the way for a successful project.”

The release of Fast Forward in 2021 has also made communications easier, notes Carr, who says the plan helps to frame these projects as part of the big picture — not just a construction interruption. “Fast Forward has brought a visibility into what we’re doing within [MIT] Facilities on these buildings,” she says. “It brings more eyes and ears, and people understand that these projects are happening throughout campus and not just in their own space — we’re all working to reduce energy and to reduce greenhouse gas across campus.”

The Energy Efficiency team will continue to apply that big-picture approach as ongoing building efficiency projects on campus are assessed to reach toward a 10 to 15 percent reduction in energy use and corresponding emissions over the next several years.