Mehrdad Jazayeri selected as an HHMI investigator

The Howard Hughes Medical Institute (HHMI) has named McGovern Institute neuroscientist Mehrdad Jazayeri as one of 26 new HHMI investigators—a group of visionary scientists who HHMI will support with more than $300 million over the next seven years.

Support from HHMI is intended to give its investigators, who work at institutions across the United States, the time and resources they need to push the boundaries of the biological sciences. Jazayeri, whose work integrates neurobiology with cognitive science and machine learning, plans to use that support to explore how the brain enables rapid learning and flexible behavior—central aspects of intelligence that have been difficult to study using traditional neuroscience approaches.

Jazayeri says he is delighted and honored by the news. “This is a recognition of my lab’s past accomplishments and the promise of the exciting research we want to embark on,” he says. “I am looking forward to engaging with this wonderful community and making new friends and colleagues while we elevate our science to the next level.”

An unexpected path

Jazayeri, who has been an investigator at the McGovern Institute since 2013, has already made a series of groundbreaking discoveries about how physiological processes in the brain give rise to the abilities of the mind. “That’s what we do really well,” he says. “We expose the computational link between abstract mental concepts, like belief, and electrical signals in the brain,” he says.

Jazayeri’s expertise and enthusiasm for this work grew out a curiosity that was sparked unexpectedly several years after he’d abandoned university education. He’d pursued his undergraduate studies in electrical engineering, a path with good job prospects in Iran where he lived. But an undergraduate program at Sharif University of Technology in Tehran left him disenchanted. “It was an uninspiring experience,” he says. “It’s a top university and I went there excited, but I lost interest as I couldn’t think of a personally meaningful application for my engineering skills. So, after my undergrad, I started a string of random jobs, perhaps to search for my passion.”

A few years later, Jazayeri was trying something new, happily living and working at a banana farm near the Caspian Sea. The farm schedule allowed for leisure in the evenings, which he took advantage of by delving into boxes full of books that an uncle regularly sent him from London. The books were an unpredictable, eclectic mix. Jazayeri read them all—and it was those that talked about the brain that most captured his imagination.

Until then, he had never had much interest in biology. But when he read about neurological disorders and how scientists were studying the brain, he was captivated. The subject seemed to merge his inherent interest in philosophy with an analytical approach that he also loved. “These books made me think that you actually can understand this system at a more concrete level…you can put electrodes in the brain and listen to what neurons say,” he says. “It had never even occurred to me to think about those things.”

He wanted to know more. It took time to find a graduate program in neuroscience that would accept a student with his unconventional background, but eventually the University of Toronto accepted him into a master’s program after he crammed for and passed an undergraduate exam testing his knowledge of physiology. From there, he went on to earn a PhD in neuroscience from New York University studying visual perception, followed by a postdoctoral fellowship at the University of Washington where he studied time perception.

In 2013, Jazayeri joined MIT’s Department of Brain and Cognitive Sciences. At MIT, conversations with new colleagues quickly enriched the way he thought about the brain. “It is fascinating to listen to cognitive scientists’ ideas about the mind,” he says. “They have a rich and deep understanding of the mind but the language they use to describe the mind is not the language of the brain. Bridging this gap in language between neuroscience and cognitive science is at the core of research in my lab.”

His lab’s general approach has been to collect data on neural activity from humans and animals as they perform tasks that call on specific aspects of the mind. “We design tasks that are as simple as possible but get at the crux of the problems in cognitive science,” he explains. “Then we build models that help us connect abstract concepts and theories in cognitive science to signals and dynamics of neural activity in the brain.”

It’s an interdisciplinary approach that even calls on many of the engineering approaches that had failed to inspire him as a student. Students and postdocs in the lab bring a diverse set of knowledge and skills, and together the team has made significant contributions to neuroscience, cognitive science, and computational science.

With animals trained to reproduce a rhythm, they’ve shown how neurons adjust the speed of their signals to predict when something will occur, and what happens when the actual timing of a stimulus deviates from the brain’s expectations.

Studies of time interval predictions have also helped the team learn how the brain weighs different pieces of information as it assesses situations and makes decisions. This process, called Bayesian integration, shapes our beliefs and our confidence in those beliefs. “These are really fundamental concepts in cognitive sciences, and we can now say how neurons exactly do that,” he says.

More recently, by teaching animals to navigate a virtual environment, Jazayeri’s team has found activity in the brain that appears to call up a cognitive map of a space even when its features are not visible. The discovery helps reveal how the brain builds internal models and uses them to interact with the world.

A new paradigm

Jazayeri is proud of these achievements. But he knows that when it comes to understanding the power and complexity of cognition, something is missing.

“Two really important hallmarks of cognition are the ability to learn rapidly and generalize flexibly. If somebody can do that, we say they’re intelligent,” he says. It’s an ability we have from an early age. “If you bring a kid a bunch of toys, they don’t need several years of training, they just can play with the toys right away in very creative ways,” he says. In the wild, many animals are similarly adept at problem solving and finding uses for new tools. But when animals are trained for many months on a single task, as typically happens in a lab, they don’t behave as intelligently. “They become like an expert that does one thing well, but they’re no longer very flexible,” he says.

Figuring out how the brain adapts and acts flexibly in real-world situations in going to require a new approach. “What we have done is that we come up with a task, and then change the animal’s brain through learning to match our task,” he says. “What we now want to do is to add a new paradigm to our work, one in which we will devise the task such that it would match the animal’s brain.”

As an HHMI investigator, Jazayeri plans to take advantage of a host of new technologies to study the brain’s involvement in ecologically relevant behaviors. That means moving beyond the virtual scenarios and digital platforms that have been so widespread in neuroscience labs, including his own, and instead letting animals interact with real objects and environments. “The animal will use its eyes and hands to engage with physical objects in the real world,” he says.

To analyze and learn about animals’ behavior, the team plans detailed tracking of hand and eye movements, and even measurements of sensations that are felt through the hands as animals explore objects and work through problems. These activities are expected to engage the entire brain, so the team will broadly record and analyze neural activity.

Designing meaningful experiments and making sense of the data will be a deeply interdisciplinary endeavor, and Jazayeri knows working with a collaborative community of scientists will be essential. He’s looking forward to sharing the enormous amount of relevant data his lab expects to collect with the research community and getting others involved. Likewise, as a dedicated mentor, he is committed to training scientists who will continue and expand the work in the future.

He is enthusiastic about the opportunity to move into these bigger questions about cognition and intelligence, and support from HHMI comes at an opportune moment. “I think we have now built the infrastructure and conceptual frameworks to think about these problems, and technology for recording and tracking animals has developed a great deal, so we can now do more naturalistic experiments,” he says.

His passion for his work is one of many passions in his life. His love for family, friends, and art are just as deep, and making space to experience everything is a lifelong struggle. But he knows his zeal is infectious. “I think my love for science is probably one of the best motivators of people around me,” he says.

License plates of MIT

What does your license plate say about you?

In the United States, more than 9 million vehicles carry personalized “vanity” license plates, in which preferred words, digits, or phrases replace an otherwise random assignment of letters and numbers to identify a vehicle. While each state and the District of Columbia maintains its own rules about appropriate selections, creativity reigns when choosing a unique vanity plate. What’s more, the stories behind them can be just as fascinating as the people who use them.

It might not come as a surprise to learn that quite a few MIT community members have participated in such vehicular whimsy. Read on to meet some of them and learn about the nerdy, artsy, techy, and MIT-related plates that color their rides.

A little piece of tech heaven

One of the most recognized vehicles around campus is Samuel Klein’s 1998 Honda Civic. More than just the holder of a vanity plate, it’s an art car — a vehicle that’s been custom-designed as a way to express an artistic idea or theme. Klein’s Civic is covered with hundreds of 5.5-inch floppy disks in various colors, and it sports disks, computer keys, and other techy paraphernalia on the interior. With its double-entendre vanity plate, “DSKDRV” (“disk drive”), the art car initially came into being on the West Coast.

Klein, a longtime affiliate of the MIT Media Lab, MIT Press, and MIT Libraries, first heard about the car from fellow Wikimedian and current MIT librarian Phoebe Ayers. An artistic friend of Ayers’, Lara Wiegand, had designed and decorated the car in Seattle but wanted to find a new owner. Klein was intrigued and decided to fly west to check the Civic out.

“I went out there, spent a whole afternoon seeing how she maintained the car and talking about engineering and mechanisms and the logistics of what’s good and bad,” Klein says. “It had already gone through many iterations.”

Klein quickly decided he was up to the task of becoming the new owner. As he drove the car home across the country, it “got a wide range of really cool responses across different parts of the U.S.”

Back in Massachusetts, Klein made a few adjustments: “We painted the hubcaps, we added racing stripes, we added a new generation of laser-etched glass circuits and, you know, I had my own collection of antiquated technology disks that seemed to fit.”

The vanity plate also required a makeover. In Washington state it was “DISKDRV,” but, Klein says, “we had to shave the license plate a bit because there are fewer letters in Massachusetts.”

Today, the car has about 250,000 miles and an Instagram account. “The biggest challenge is just the disks have to be resurfaced, like a lizard, every few years,” says Klein, whose partner, an MIT research scientist, often parks it around campus. “There’s a small collection of love letters for the car. People leave the car notes. It’s very sweet.”

Marking his place in STEM history

Omar Abudayyeh ’12, PhD ’18, a recent McGovern Fellow at the McGovern Institute for Brain Research at MIT who is now an assistant professor at Harvard Medical School, shares an equally riveting story about his vanity plate, “CRISPR,” which adorns his sport utility vehicle.

The plate refers to the genome-editing technique that has revolutionized biological and medical research by enabling rapid changes to genetic material. As an MIT graduate student in the lab of Professor Feng Zhang, a pioneering contributor to CRISPR technologies, Abudayyeh was highly involved in early CRISPR development for DNA and RNA editing. In fact, he and Jonathan Gootenberg ’13, another recent McGovern Fellow and assistant professor at Harvard Medical School who works closely with Abudayyeh, discovered many novel CRISPR enzymes, such as Cas12 and Cas13, and applied these technologies for both gene therapy and CRISPR diagnostics.

So how did Abudayyeh score his vanity plate? It was all due to his attendance at a genome-editing conference in 2022, where another early-stage CRISPR researcher, Samuel Sternberg, showed up in a car with New York “CRISPR” plates. “It became quite a source of discussion at the conference, and at one of the breaks, Sam and his labmates egged us on to get the Massachusetts license plate,” Abudayyeh explains. “I insisted that it must be taken, but I applied anyway, paying the 70 dollars and then receiving a message that I would get a letter eight to 12 weeks later about whether the plate was available or not. I then returned to Boston and forgot about it until a couple months later when, to my surprise, the plate arrived in the mail.”

While Abudayyeh continues his affiliation with the McGovern Institute, he and Gootenberg recently set up a lab at Harvard Medical School as new faculty members. “We have continued to discover new enzymes, such as Cas7-11, that enable new frontiers, such as programmable proteases for RNA sensing and novel therapeutics, and we’ve applied CRISPR technologies for new efforts in gene editing and aging research,” Abudayyeh notes.

As for his license plate, he says, “I’ve seen instances of people posting about it on Twitter or asking about it in Slack channels. A number of times, people have stopped me to say they read the Walter Isaacson book on CRISPR, asking how I was related to it. I would then explain my story — and describe how I’m actually in the book, in the chapters on CRISPR diagnostics.”

Displaying MIT roots, nerd pride

For some, a connection to MIT is all the reason they need to register a vanity plate — or three. Jeffrey Chambers SM ’06, PhD ’14, a graduate of the Department of Aeronautics and Astronautics, shares that he drives with a Virginia license plate touting his “PHD MIT.” Professor of biology Anthony Sinskey ScD ’67 owns several vehicles sporting vanity plates that honor Course 20, which is today the Department of Biological Engineering but has previously been known by Food Technology, Nutrition and Food Science, and Applied Biological Sciences. Sinskey says he has both “MIT 20” and “MIT XX” plates in Massachusetts and New Hampshire.

At least two MIT couples have had dual vanity plates. Says Laura Kiessling ’83, professor of chemistry: “My plate is ‘SLEX.’ This is the abbreviation for a carbohydrate called sialyl Lewis X. It has many roles, including a role in fertilization (sperm-egg binding). It tends to elicit many different reactions from people asking me what it means. Unless they are scientists, I say that my husband [Ron Raines ’80, professor of biology] gave it to me as an inside joke. My husband’s license plate is ‘PROTEIN.’”

Professor of the practice emerita Marcia Bartusiak of MIT Comparative Media Studies/Writing and her husband, Stephen Lowe PhD ’88, previously shared a pair of related license plates. When the couple lived in Virginia, Lowe working as a mathematician on the structure of spiral galaxies and Bartusiak a young science writer focused on astronomy, they had “SPIRAL” and “GALAXY” plates. Now retired in Massachusetts, while they no longer have registered vanity plates, they’ve named their current vehicles “Redshift” and “Blueshift.”

Still other community members have plates that make a nod to their hobbies — such as Department of Earth, Atmospheric and Planetary Sciences and AeroAstro Professor Sara Seager’s “ICANOE” — or else playfully connect with fellow drivers. Julianna Mullen, communications director in the Plasma Science and Fusion Center, says of her “OMGWHY” plate: “It’s just an existential reminder of the importance of scientific inquiry, especially in traffic when someone cuts you off so they can get exactly two car lengths ahead. Oh my God, why did they do it?”

Are you an MIT affiliate with a unique vanity plate? We’d love to see it!

Symposium highlights scale of mental health crisis and novel methods of diagnosis and treatment

Digital technologies, such as smartphones and machine learning, have revolutionized education. At the McGovern Institute for Brain Research’s 2024 Spring Symposium, “Transformational Strategies in Mental Health,” experts from across the sciences — including psychiatry, psychology, neuroscience, computer science, and others — agreed that these technologies could also play a significant role in advancing the diagnosis and treatment of mental health disorders and neurological conditions.

Co-hosted by the McGovern Institute, MIT Open Learning, McClean Hospital, the Poitras Center for Psychiatric Disorders Research at MIT, and the Wellcome Trust, the symposium raised the alarm about the rise in mental health challenges and showcased the potential for novel diagnostic and treatment methods.

“We have to do something together as a community of scientists and partners of all kinds to make a difference.” – John Gabrieli

John Gabrieli, the Grover Hermann Professor of Health Sciences and Technology at MIT, kicked off the symposium with a call for an effort on par with the Manhattan Project, which in the 1940s saw leading scientists collaborate to do what seemed impossible. While the challenge of mental health is quite different, Gabrieli stressed, the complexity and urgency of the issue are similar. In his later talk, “How can science serve psychiatry to enhance mental health?,” he noted a 35 percent rise in teen suicide deaths between 1999 and 2000 and, between 2007 and 2015, a 100 percent increase in emergency room visits for youths ages 5 to 18 who experienced a suicide attempt or suicidal ideation.

“We have no moral ambiguity, but all of us speaking today are having this meeting in part because we feel this urgency,” said Gabrieli, who is also a professor of brain and cognitive sciences, the director of the Integrated Learning Initiative (MITili) at MIT Open Learning, and a member of the McGovern Institute. “We have to do something together as a community of scientists and partners of all kinds to make a difference.”

An urgent problem

In 2021, U.S. Surgeon General Vivek Murthy issued an advisory on the increase in mental health challenges in youth; in 2023, he issued another, warning of the effects of social media on youth mental health. At the symposium, Susan Whitfield-Gabrieli, a research affiliate at the McGovern Institute and a professor of psychology and director of the Biomedical Imaging Center at Northeastern University, cited these recent advisories, saying they underscore the need to “innovate new methods of intervention.”

Other symposium speakers also highlighted evidence of growing mental health challenges for youth and adolescents. Christian Webb, associate professor of psychology at Harvard Medical School, stated that by the end of adolescence, 15-20 percent of teens will have experienced at least one episode of clinical depression, with girls facing the highest risk. Most teens who experience depression receive no treatment, he added.

Adults who experience mental health challenges need new interventions, too. John Krystal, the Robert L. McNeil Jr. Professor of Translational Research and chair of the Department of Psychiatry at Yale University School of Medicine, pointed to the limited efficacy of antidepressants, which typically take about two months to have an effect on the patient. Patients with treatment-resistant depression face a 75 percent likelihood of relapse within a year of starting antidepressants. Treatments for other mental health disorders, including bipolar and psychotic disorders, have serious side effects that can deter patients from adherence, said Virginie-Anne Chouinard, director of research at McLean OnTrackTM, a program for first episode psychosis at McLean Hospital.

New treatments, new technologies

Emerging technologies, including smartphone technology and artificial intelligence, are key to the interventions that symposium speakers shared.

In a talk on AI and the brain, Dina Katabi, the Thuan and Nicole Pham Professor of Electrical Engineering and Computer Science at MIT, discussed novel ways to detect Parkinson’s and Alzheimer’s, among other diseases. Early-stage research involved developing devices that can analyze how movement within a space impacts the surrounding electromagnetic field, as well as how wireless signals can detect breathing and sleep stages.

“I realize this may sound like la-la land,” Katabi said. “But it’s not! This device is used today by real patients, enabled by a revolution in neural networks and AI.”

Parkinson’s disease often cannot be diagnosed until significant impairment has already occurred. In a set of studies, Katabi’s team collected data on nocturnal breathing and trained a custom neural network to detect occurrences of Parkinson’s. They found the network was over 90 percent accurate in its detection. Next, the team used AI to analyze two sets of breathing data collected from patients at a six-year interval. Could their custom neural network identify patients who did not have a Parkinson’s diagnosis on the first visit, but subsequently received one? The answer was largely yes: Machine learning identified 75 percent of patients who would go on to receive a diagnosis.

Detecting high-risk patients at an early stage could make a substantial difference for intervention and treatment. Similarly, research by Jordan Smoller, professor of psychiatry at Harvard Medical School and director of the Center for Precision Psychiatry at Massachusetts General Hospital, demonstrated that AI-aided suicide risk prediction model could detect 45 percent of suicide attempts or deaths with 90 percent specificity, about two to three years in advance.

Other presentations, including a series of lightning talks, shared new and emerging treatments, such as the use of ketamine to treat depression; the use of smartphones, including daily text surveys and mindfulness apps, in treating depression in adolescents; metabolic interventions for psychotic disorders; the use of machine learning to detect impairment from THC intoxication; and family-focused treatment, rather than individual therapy, for youth depression.

Advancing understanding

The frequency and severity of adverse mental health events for children, adolescents, and adults demonstrate the necessity of funding for mental health research — and the open sharing of these findings.

Niall Boyce, head of mental health field building at the Wellcome Trust — a global charitable foundation dedicated to using science to solve urgent health challenges — outlined the foundation’s funding philosophy of supporting research that is “collaborative, coherent, and focused” and centers on “What is most important to those most affected?” Wellcome research managers Anum Farid and Tayla McCloud stressed the importance of projects that involve people with lived experience of mental health challenges and “blue sky thinking” that takes risks and can advance understanding in innovative ways. Wellcome requires that all published research resulting from its funding be open and accessible in order to maximize their benefits.

Whether through therapeutic models, pharmaceutical treatments, or machine learning, symposium speakers agreed that transformative approaches to mental health call for collaboration and innovation.

“Understanding mental health requires us to understand the unbelievable diversity of humans,” Gabrieli said. “We have to use all the tools we have now to develop new treatments that will work for people for whom our conventional treatments don’t.”

Nancy Kanwisher Shares 2024 Kavli Prize in Neuroscience

The Norwegian Academy of Science and Letters today announced the 2024 Kavli Prize Laureates in the fields of astrophysics, nanoscience, and neuroscience. The 2024 Kavli Prize in Neuroscience honors Nancy Kanwisher, the Walter A. Rosenblith Professor of Cognitive Neuroscience at MIT and an investigator at the McGovern Institute, along with UC Berkeley neurobiologist Doris Tsao, and Rockefeller University neuroscientist Winrich Freiwald for their discovery of a highly localized and specialized system for representation of faces in human and non-human primate neocortex. The neuroscience laureates will share $1 million USD.

“Kanwisher, Freiwald, and Tsao together discovered a localized and specialized neocortical system for face recognition,” says Kristine Walhovd, Chair of the Kavli Neuroscience Committee. “Their outstanding research will ultimately further our understanding of recognition not only of faces, but objects and scenes.”

Overcoming failure

As a graduate student at MIT in the early days of functional brain imaging, Kanwisher was fascinated by the potential of the emerging technology to answer a suite of questions about the human mind. But a lack of brain imaging resources and a series of failed experiments led Kanwisher consider leaving the field for good. She credits her advisor, MIT Professor of Psychology Molly Potter, for supporting her through this challenging time and for teaching her how to make powerful inferences about the inner workings of the mind from behavioral data alone.

After receiving her PhD from MIT, Kanwisher spent a year studying nuclear strategy with a MacArthur Foundation Fellowship in Peace and International Security, but eventually returned to science by accepting a faculty position at Harvard University where she could use the latest brain imaging technology to pursue the scientific questions that had always fascinated her.

Zeroing in on faces

Recognizing faces is important for social interaction in many animals. Previous work in human psychology and animal research had suggested the existence of a functionally specialized system for face recognition, but this system had not clearly been identified with brain imaging technology. It is here that Kanwisher saw her opportunity.

Using a new method at the time, called functional magnetic resonance imaging or fMRI, Kanwisher’s team scanned people while they looked at faces and while they looked at objects, and searched for brain regions that responded more to one than the other. They found a small patch of neocortex, now called the fusiform face area (FFA), that is dedicated specifically to the task of face recognition. She found individual differences in the location of this area and devised an analysis technique to effectively localize specialized functional regions in the brain. This technique is now widely used and applied to domains beyond the face recognition system. Notably, Kanwisher’s first FFA paper was co-authored with Josh McDermott, who was an undergrad at Harvard University at the time, and is now an associate investigator at the McGovern Institute and holds a faculty position alongside Kanwisher in MIT’s Department of Brain and Cognitive Sciences.

A group of five scientists standing and smiling in front of a whiteboard.
The Kanwisher lab at Harvard University circa 1996. From left to right: Nancy Kanwisher, Josh McDermott (then an undergrad), Marvin Chun (postdoc), Ewa Wojciulik (postdoc), and Jody Culham (grad student). Photo: Nancy Kanwisher

From humans to monkeys

Inspired by Kanwisher´s findings, Winrich Freiwald and Doris Tsao together used fMRI to localize similar face patches in macaque monkeys. They mapped out six distinct brain regions, known as the face patch system, including these regions’ functional specialization and how they are connected. By recording the activity of individual brain cells, they revealed how cells in some face patches specialize in faces with particular views.

Tsao proceeded to identify how the face patches work together to identify a face, through a specific code that enables single cells to identify faces by assembling information of facial features. For example, some cells respond to the presence of hair, others to the distance between the eyes. Freiwald uncovered that a separate brain region, called the temporal pole, accelerates our recognition of familiar faces, and that some cells are selectively responsive to familiar faces.

“It was a special thrill for me when Doris and Winrich found face patches in monkeys using fMRI,” says Kanwisher, whose lab at MIT’s McGovern Institute has gone on to uncover many other regions of the human brain that engage in specific aspects of perception and cognition. “They are scientific heroes to me, and it is a thrill to receive the Kavli Prize in neuroscience jointly with them.”

“Nancy and her students have identified neocortical subregions that differentially engage in the perception of faces, places, music and even what others think,” says McGovern Institute Director Robert Desimone. “We are delighted that her groundbreaking work into the functional organization of the human brain is being honored this year with the Kavli Prize.”

Together, the laureates, with their work on neocortical specialization for face recognition, have provided basic principles of neural organization which will further our understanding of how we perceive the world around us.

About the Kavli Prize

The Kavli Prize is a partnership among The Norwegian Academy of Science and Letters, The Norwegian Ministry of Education and Research, and The Kavli Foundation (USA). The Kavli Prize honors scientists for breakthroughs in astrophysics, nanoscience and neuroscience that transform our understanding of the big, the small and the complex. Three one-million-dollar prizes are awarded every other year in each of the three fields. The Norwegian Academy of Science and Letters selects the laureates based on recommendations from three independent prize committees whose members are nominated by The Chinese Academy of Sciences, The French Academy of Sciences, The Max Planck Society of Germany, The U.S. National Academy of Sciences, and The Royal Society, UK.

Honoring a visionary

Today marks the 10th anniversary of the passing of Pat McGovern, an extraordinary visionary and philanthropist whose legacy continues to inspire and impact the world. As the founder of International Data Group (IDG)—a premier information technology organization—McGovern was not just a pioneering figure in the technology media world, but also a passionate advocate for using technology for the greater good.

Under McGovern’s leadership, IDG became a global powerhouse, launching iconic publications such as Computerworld, Macworld, and PCWorld. His foresight also led to the creation of IDG Ventures, a network of venture funds around the world, including the notable IDG Capital in Beijing.

Beyond his remarkable business acumen, McGovern, with his wife, Lore, co-founded the McGovern Institute for Brain Research at MIT in 2000. This institute has been at the forefront of neuroscience research, contributing to groundbreaking advancements in perception, attention, memory, and artificial intelligence (AI), as well as discoveries with direct translational impact, such as CRISPR technology. CRISPR discoveries made at the McGovern Institute are now licensed for the first clinical application of genome editing in sickle cell disease.

Pat McGovern’s commitment to bettering humanity is further evidenced by the Patrick J. McGovern Foundation, which works in partnership with public, private, and social institutions to drive progress on our most pressing challenges through the use of artificial intelligence, data science, and key emerging technologies.

Remembering Pat McGovern

On this solemn anniversary, we reflect on Pat McGovern’s enduring influence through the words of those who knew him best.

Lore Harp McGovern
Co-founder and board member of the McGovern Institute for Brain Research

“Technology was Pat’s medium, the platform on which he built his amazing company 60 years ago. But it was people who truly motivated Pat, and he empowered and encouraged them to reach for the stars. He lived by the motto, ‘let’s try it,’ and believed that nothing was out bounds. His goal was to help create a more just and peaceful world, and establishing the McGovern Institute was our way to give back meaningfully to this world. I know he would be so proud of what has been achieved and what is yet to come.”

Robert Desimone
Director of the McGovern Institute for Brain Research

“Pat McGovern had a vision for an international community of scientists and students drawn together to collaborate on understanding the brain.  This vision has been realized in the McGovern Institute, and we are now seeing the profound advances in our understanding of the brain and even clinical applications that Pat predicted would follow.”

Hugo Shong
Chairman of IDG Capital

“Pat’s impact on technology, science and research is immeasurable. A man of tremendous vision, he grew IDG out of Massachusetts and made it into one of the world’s most recognized brands in its space, forging partnerships and winning friends wherever he went. He applied that very same vision and energy to the McGovern Institute and the Patrick J. McGovern Foundation, in support of their impressive and necessary causes. I know he would be extremely proud of what both organizations have achieved thus far, and particularly how their work has broken technological frontiers and bettered the lives of millions.”

Vilas Dhar
President of the Patrick J. McGovern Foundation

“Patrick J. McGovern was more than a tech mogul; he was a visionary who believed in the power of information to empower people and improve societies. His work has had a profound effect on public policy and education, laying the groundwork for a more informed and connected world and guiding our work to ensure that artificial intelligence is used to sustain a human-centered world that creates economic and social opportunity for all.  On a personal level, Pat’s leadership was characterized by a genuine care for his employees and a belief in their potential. He created a culture of curiosity, encouraging humanity to explore, innovate, and dream big. His spirit lives on in every philanthropic activity we undertake.”

Genevieve Juillard
CEO of IDG 

The legacy of Pat McGovern is felt not just in Boston, but around the world—by the thousands of IDG customers and by people like me who have the privilege to work at IDG, 60 years after he founded it. His innovative spirit and unwavering commitment to excellence continue to inspire and guide us.”

Sudhir Sethi
Founder and Chairman of Chiratae Ventures (formally IDG Ventures)

“Pat McGovern was a visionary who foresaw the potential of technology in India and nurtured the ecosystem as an active participant. Pat enabled a launchpad for Chiratae Ventures, empowering our journey to become the leading home-grown venture capital fund in India today. Pat is a role model to entrepreneurs worldwide, and we honor his legacy with our annual ‘Chiratae Ventures Patrick J. McGovern Awards’ that celebrate courage and the spirit of entrepreneurship.”

Marc Benioff
Founder and CEO of Salesforce
wrote in the book “Future Forward that “Pat McGovern was a gift to us all, a trailblazing visionary who showed an entire generation of entrepreneurs what it means to be a principle-based leader and how to lead with higher values.”

Pat McGovern’s memory lives on not just in the institutions and innovations he fostered, but in the countless lives he touched and transformed. Today, we celebrate a man who saw the future and helped us all move towards it with hope and determination.

Simons Center’s collaborative approach propels autism research, at MIT and beyond

The secret to the success of MIT’s Simons Center for the Social Brain is in the name. With a founding philosophy of “collaboration and community” that has supported scores of scientists across more than a dozen Boston-area research institutions, the SCSB advances research by being inherently social.

SCSB’s mission is “to understand the neural mechanisms underlying social cognition and behavior and to translate this knowledge into better diagnosis and treatment of autism spectrum disorders.” When Director Mriganka Sur founded the center in 2012 in partnership with the Simons Foundation Autism Research Initiative (SFARI) of Jim and Marilyn Simons, he envisioned a different way to achieve urgently needed research progress than the traditional approach of funding isolated projects in individual labs. Sur wanted SCSB’s contribution to go beyond papers, though it has generated about 350 and counting. He sought the creation of a sustained, engaged autism research community at MIT and beyond.

“When you have a really big problem that spans so many issues  a clinical presentation, a gene, and everything in between  you have to grapple with multiple scales of inquiry,” says Sur, the Newton Professor of Neuroscience in MIT’s Department of Brain and Cognitive Sciences (BCS) and The Picower Institute for Learning and Memory. “This cannot be solved by one person or one lab. We need to span multiple labs and multiple ways of thinking. That was our vision.”

In parallel with a rich calendar of public colloquia, lunches, and special events, SCSB catalyzes multiperspective, multiscale research collaborations in two programmatic ways. Targeted projects fund multidisciplinary teams of scientists with complementary expertise to collectively tackle a pressing scientific question. Meanwhile, the center supports postdoctoral Simons Fellows with not one, but two mentors, ensuring a further cross-pollination of ideas and methods.

Complementary collaboration

In 11 years, SCSB has funded nine targeted projects. Each one, by design, involves a deep and multifaceted exploration of a major question with both fundamental importance and clinical relevance. The first project, back in 2013, for example, marshaled three labs spanning BCS, the Department of Biology, and The Whitehead Institute for Biomedical Research to advance understanding of how mutation of the Shank3 gene leads to the pathophysiology of Phelan-McDermid Syndrome by working across scales ranging from individual neural connections to whole neurons to circuits and behavior.

Other past projects have applied similarly integrated, multiscale approaches to topics ranging from how 16p11.2 gene deletion alters the development of brain circuits and cognition to the critical role of the thalamic reticular nucleus in information flow during sleep and wakefulness. Two others produced deep examinations of cognitive functions: how we go from hearing a string of words to understanding a sentence’s intended meaning, and the neural and behavioral correlates of deficits in making predictions about social and sensory stimuli. Yet another project laid the groundwork for developing a new animal model for autism research.

SFARI is especially excited by SCSB’s team science approach, says Kelsey Martin, executive vice president of autism and neuroscience at the Simons Foundation. “I’m delighted by the collaborative spirit of the SCSB,” Martin says. “It’s wonderful to see and learn about the multidisciplinary team-centered collaborations sponsored by the center.”

New projects

In the last year, SCSB has launched three new targeted projects. One team is investigating why many people with autism experience sensory overload and is testing potential interventions to help. The scientists hypothesize that patients experience a deficit in filtering out the mundane stimuli that neurotypical people predict are safe to ignore. Studies suggest the predictive filter relies on relatively low-frequency “alpha/beta” brain rhythms from deep layers of the cortex moderating the higher frequency “gamma” rhythms in superficial layers that process sensory information.

Together, the labs of Charles Nelson, professor of pediatrics at Boston Children’s Hospital (BCH), and BCS faculty members Bob Desimone, the Doris and Don Berkey Professor of Neuroscience at MIT and director of the McGovern Institute, and Earl K. Miller, the Picower Professor, are testing the hypothesis in two different animal models at MIT and in human volunteers at BCH. In the animals they’ll also try out a new real-time feedback system invented in Miller’s lab that can potentially correct the balance of these rhythms in the brain. And in an animal model engineered with a Shank3 mutation, Desimone’s lab will test a gene therapy, too.

“None of us could do all aspects of this project on our own,” says Miller, an investigator in the Picower Institute. “It could only come about because the three of us are working together, using different approaches.”

Right from the start, Desimone says, close collaboration with Nelson’s group at BCH has been essential. To ensure his and Miller’s measurements in the animals and Nelson’s measurements in the humans are as comparable as possible, they have tightly coordinated their research protocols.

“If we hadn’t had this joint grant we would have chosen a completely different, random set of parameters than Chuck, and the results therefore wouldn’t have been comparable. It would be hard to relate them,” says Desimone, who also directs MIT’s McGovern Institute for Brain Research. “This is a project that could not be accomplished by one lab operating in isolation.”

Another targeted project brings together a coalition of seven labs — six based in BCS (professors Evelina Fedorenko, Edward Gibson, Nancy Kanwisher, Roger Levy, Rebecca Saxe, and Joshua Tenenbaum) and one at Dartmouth College (Caroline Robertson) — for a synergistic study of the cognitive, neural, and computational underpinnings of conversational exchanges. The study will integrate the linguistic and non-linguistic aspects of conversational ability in neurotypical adults and children and those with autism.

Fedorenko said the project builds on advances and collaborations from the earlier language Targeted Project she led with Kanwisher.

“Many directions that we started to pursue continue to be active directions in our labs. But most importantly, it was really fun and allowed the PIs [principal investigators] to interact much more than we normally would and to explore exciting interdisciplinary questions,” Fedorenko says. “When Mriganka approached me a few years after the project’s completion asking about a possible new targeted project, I jumped at the opportunity.”

Gibson and Robertson are studying how people align their dialogue, not only in the content and form of their utterances, but using eye contact. Fedorenko and Kanwisher will employ fMRI to discover key components of a conversation network in the cortex. Saxe will examine the development of conversational ability in toddlers using novel MRI techniques. Levy and Tenenbaum will complement these efforts to improve computational models of language processing and conversation.

The newest Targeted Project posits that the immune system can be harnessed to help treat behavioral symptoms of autism. Four labs — three in BCS and one at Harvard Medical School (HMS) — will study mechanisms by which peripheral immune cells can deliver a potentially therapeutic cytokine to the brain. A study by two of the collaborators, MIT associate professor Gloria Choi and HMS associate professor Jun Huh, showed that when IL-17a reaches excitatory neurons in a region of the mouse cortex, it can calm hyperactivity in circuits associated with social and repetitive behavior symptoms. Huh, an immunologist, will examine how IL-17a can get from the periphery to the brain, while Choi will examine how it has its neurological effects. Sur and MIT associate professor Myriam Heiman will conduct studies of cell types that bridge neural circuits with brain circulatory systems.

“It is quite amazing that we have a core of scientists working on very different things coming together to tackle this one common goal,” Choi says. “I really value that.”

Multiple mentors

While SCSB Targeted Projects unify labs around research, the center’s Simons Fellowships unify labs around young researchers, providing not only funding, but a pair of mentors and free-flowing interactions between their labs. Fellows also gain opportunities to inform and inspire their fundamental research by visiting with patients with autism, Sur says.

“The SCSB postdoctoral program serves a critical role in ensuring that a diversity of outstanding scientists are exposed to autism research during their training, providing a pipeline of new talent and creativity for the field,” adds Martin, of the Simons Foundation.

Simons Fellows praise the extra opportunities afforded by additional mentoring. Postdoc Alex Major was a Simons Fellow in Miller’s lab and that of Nancy Kopell, a mathematics professor at Boston University renowned for her modeling of the brain wave phenomena that the Miller lab studies experimentally.

“The dual mentorship structure is a very useful aspect of the fellowship” Major says. “It is both a chance to network with another PI and provides experience in a different neuroscience sub-field.”

Miller says co-mentoring expands the horizons and capabilities of not only the mentees but also the mentors and their labs. “Collaboration is 21st century neuroscience,” Miller says. “Some our studies of the brain have gotten too big and comprehensive to be encapsulated in just one laboratory. Some of these big questions require multiple approaches and multiple techniques.”

Desimone, who recently co-mentored Seng Bum (Michael Yoo) along with BCS and McGovern colleague Mehrdad Jazayeri in a project studying how animals learn from observing others, agrees.

“We hear from postdocs all the time that they wish they had two mentors, just in general to get another point of view,” Desimone says. “This is a really good thing and it’s a way for faculty members to learn about what other faculty members and their postdocs are doing.”

Indeed, the Simons Center model suggests that research can be very successful when it’s collaborative and social.

Margaret Livingstone awarded the 2024 Scolnick Prize in Neuroscience

Today the McGovern Institute at MIT announces that the 2024 Edward M. Scolnick Prize in Neuroscience will be awarded to Margaret Livingstone, Takeda Professor of Neurobiology at Harvard Medical School. The Scolnick Prize is awarded annually by the McGovern Institute, for outstanding achievements in neuroscience.

“Margaret Livingstone’s driven curiosity and original experimental approaches have led to fundamental advances in our understanding of visual perception,” says Robert Desimone, director of the McGovern Institute and chair of the selection committee. “In particular, she has made major advances in resolving a long-standing debate over whether the brain domains and neurons that are specifically tuned to detect facial features are present from birth or arise from experience. Her developmental research shows that the cerebral cortex already contains topographic sensory maps at birth but that domain-specific maps, for example to recognize facial-features, require experience and sensory input to develop normally.”

“Margaret Livingstone’s driven curiosity and original experimental approaches have led to fundamental advances in our understanding of visual perception.” — Robert Desimone

Livingstone received a BS from MIT in 1972 and, under the mentorship of Edward Kravitz, a PhD in neurobiology from Harvard University in 1981. Her doctoral research in lobsters showed that the biogenic amines serotonin and octopamine control context-dependent behaviors such as offensive versus defensive postures. She followed up on this discovery as a postdoctoral fellow by researching biogenic amine signaling in learning and memory, with Prof. William Quinn at Princeton University. Using learning and memory mutants created in the fruit fly model she identified defects in dopamine-synthesizing enzymes and calcium-dependent enzymes that produce cAMP. Her results supported the then burgeoning idea that biogenic amines signal through second messengers enable behavioral plasticity.

To test whether biogenic amines also control neuronal function in mammals, Livingstone moved back to Harvard Medical School in 1983 to study the effects of sleep on visual processing with David Hubel, who was studying neuronal activity in the nonhuman primate visual cortex. Over the course of a 20-year collaboration, Livingstone and Hubel showed that the visual system is functionally and anatomically divided into parallel pathways that detect and process the distinct visual features of color, motion, and orientation.

Livingstone quickly rose through the academic ranks at Harvard to be appointed as an instructor and then assistant professor in 1983, associate professor in 1986 and full professor in 1988. With her own laboratory, Livingstone began to explore the organization of face-perception domains in the inferotemporal cortex of nonhuman primates. By combining single-cell recording and fMRI brain imaging data from the same animal, her then graduate student Doris Tsao, in collaboration with Winrich Freiwald, showed that an abundance of individual neurons within the face-recognition domain are tuned to a combination of facial features. These results helped to explain the long-standing question of how individual neurons show such exquisite selectivity to specific faces.

Three images of Mona Lisa, side by side, each with a different filter slightly obscuring the face.
Mona Lisa’s smile has been described as mysterious and fleeting because it seems to disappear when viewers look directly at it. Livingstone showed that Mona Lisa’s smile is more apparent in our peripheral vision than our central (or foveal) vision because our peripheral vision is more sensitive to low spatial frequencies, or shadows and shadings of black and white. These shadows make her lips seem to turn upward into a subtle smile. The three images above show the painting filtered to reveal very low spatial frequency features (left, with the smile more apparent) to high spatial frequency features (right, with the smile being less visible). Image: Margaret Livingstone

In researching face patches, Livingstone became fascinated with the question of whether face-perception domains are present from birth, as many scientists thought at the time. Livingstone and her postdoc Michael Arcaro carried out experiments that showed that the development of face patches requires visual exposure to faces in the early postnatal period. Moreover, they showed that entirely unnatural symbol-specific domains can form in animals that experienced intensive visual exposure to symbols early in development. Thus, experience is both necessary and sufficient for the formation of feature-specific domains in the inferotemporal cortex. Livingtone’s results support a consistent principle for the development of higher-level cortex, from a hard-wired sensory topographic map present at birth to the formation of experience-dependent domains that detect combined, stimulus-specific features.

Livingstone is also known for her scientifically based exploration of the visual arts. Her book “Vision and Art: The Biology of Seeing,” which has sold more than 40,000 copies to date, explores how both the techniques artists use and our anatomy and physiology influence our perception of art. Livingstone has presented this work to audiences around the country, from Pixar Studios, MicroSoft and IBM to The Metropolitan Museum of Art, The National Gallery and The Hirshhorn Museum.

In 2014, Livingstone was awarded the Takeda Professorship of Neurobiology at Harvard Medical School. She was awarded the Mika Salpeter Lifetime Achievement Award from the Society for Neuroscience in 2011, the Grossman Award from the Society of Neurological Surgeons in 2013 and the Roberts Prize for Best Paper in Physics in Medicine and Biology in 2013 and 2016. Livingstone was elected fellow of the American Academy of Arts and Sciences in 2018 and of the National Academy of Science in 2020. She will be awarded the Scolnick Prize in the spring of 2024.

The promise of gene therapy

Portrait of Bob Desimone wearing a suit and tie.
McGovern Institute Director Robert Desimone. Photo: Steph Stevens

As we start 2024, I hope you can join me in celebrating a historic recent advance: the FDA approval of Casgevy, a bold new treatment for devastating sickle cell disease and the world’s first approved CRISPR gene therapy.

Developed by Vertex Pharmaceuticals and CRISPR Therapeutics, we are proud to share that this pioneering therapy licenses the CRISPR discoveries of McGovern scientist and Poitras Professor of Neuroscience Feng Zhang.

It is amazing to think that Feng’s breakthrough work adapting CRISPR-Cas9 for genome editing in eukaryotic cells was published only 11 years ago today in Science.

Incredibly, CRISPR-Cas9 rapidly transitioned from proof-of-concept experiments to an approved treatment in just over a decade.

McGovern scientists are determined to maintain the momentum!

 

Incredibly, CRISPR-Cas9 rapidly transitioned from proof-of-concept experiments to an approved treatment in just over a decade.

Our labs are creating new gene therapies that are already in clinical trials or preparing to enroll patients in trials. For instance, Feng Zhang’s team has developed therapies currently in clinical trials for lymphoblastic leukemia and beta thalassemia, while another McGovern researcher, Guoping Feng, the Poitras Professor of Brain and Cognitive Sciences at MIT, has made advancements that lay the groundwork for a new gene therapy to treat a severe form of autism spectrum disorder. It is expected to enter clinical trials later this year. Moreover, McGovern fellows Omar Abudayyeh and Jonathan Gootenberg created programmable genomic tools that are now licensed for use in monogenic liver diseases and autoimmune disorders.

These exciting innovations stem from your steadfast support of our high-risk, high-reward research. Your generosity is enabling our scientists to pursue basic research in other areas with potential therapeutic applications in the future, such as mechanisms of pain, addiction, the connections between the brain and gut, the workings of memory and attention, and the bi-directional influence of artificial intelligence on brain research. All of this fundamental research is being fueled by major new advances in technology, many of them developed here.

As we enter a new year filled with anticipation following our inaugural gene therapy, I want to express my heartfelt gratitude for your invaluable support in advancing our research programs. Your role in pushing our research to new heights is valued by all faculty, students, and researchers at the McGovern Institute. We can’t wait to share our continued progress with you.

Thank you again for partnering with us to make great scientific achievements possible.

With appreciation and best wishes,

Robert Desimone, PhD
Director, McGovern Institute
Doris and Don Berkey Professor of Neuroscience, MIT

Season’s Greetings from the McGovern Institute

This year’s holiday greeting (video above) was inspired by research conducted in John Gabrieli’s lab, which found that practicing mindfulness reduced children’s stress levels and negative emotions during the pandemic. These findings contribute to a growing body of evidence that practicing mindfulness can change patterns of brain activity associated with emotions and mental health.

Coloring is one form of mindfulness, or focusing awareness on the present. Visit our postcard collection to download and color your own brain-themed postcards and may the spirit of mindfulness bring you peace in the year ahead!

Video credits:
Joseph Laney (illustration)
JR Narrows, Space Lute (sound design)
Jacob Pryor (animation)

A mindful McGovern community

Mindfulness is the practice of maintaining a state of complete awareness of one’s thoughts, emotions, or experiences on a moment-to-moment basis. McGovern researchers have shown that practicing mindfulness reduces anxiety and supports emotional resilience.

In a survey distributed to the McGovern Institute community, 57% of the 74 researchers, faculty, and staff who responded, said that they practice mindfulness as a way to reduce anxiety and stress.

Here are a few of their stories.

Fernanda De La Torre

Portrait of a smiling woman leaning back against a railing.
MIT graduate student Fernanda De La Torre. Photo: Steph Stevens

Fernanda De La Torre is a graduate student in MIT’s Department of Brain and Cognitive Sciences, where she is advised by Josh McDermott.

Originally from Mexico, De La Torre took an unconventional path to her education in the United States, where she completed her undergraduate studies in computer science and math at Kansas State University. In 2019, she came to MIT as a postbaccalaureate student in the lab of Tomaso Poggio where she began working on deep-learning theory, an area of machine learning focused on how artificial neural networks modeled on the brain can learn to recognize patterns and learn.

A recent recipient of the prestigious Paul and Daisy Soros Fellowship for New Americans, De La Torre now studies multisensory integration during speech perception using deep learning models in Josh McDermott’s lab.

What kind of mindfulness do you practice, how often, and why?

Metta meditation is the type of meditation I come back to the most. I practice 2-3 times per week. Sometimes by joining Nikki Mirghafori’s Zoom calls or listening to her and other teachers’ recordings on AudioDharma. I practice because when I observe the patterns of my thoughts, I remember the importance of compassion, including self-compassion. In my experience, I find metta meditation is a wonderful way to cultivate the two: observation and compassion. 

When and why did you start practicing mindfulness?

My first meditation practice was as a first-year post-baccalaureate student here at BCS. Gal Raz (also pictured above) carried a lot of peace and attributed it to meditation; this sparked my curiosity. I started practicing more frequently last summer, after realizing my mental health was not in a good place.

How does mindfulness benefit your research at MIT?

This is hard to answer because I think the benefits of meditation are hard to measure. I find that meditation helps me stay centered and healthy, which can indirectly help the research I do. More directly, some of my initial grad school pursuits were fueled by thoughts during meditation but I ended up feeling that a lot of these concepts are hard to explore using non-philosophical approaches. So I think meditation is mainly a practice that helps my health, my relationships with others, and my relationship with work (this last one I find most challenging and personally unresolved). 

Adam Eisen

MIT graduate student Adam Eisen.

Adam Eisen is a graduate student in MIT’s Department of Brain and Cognitive Sciences, where he is co-advised by Ila Fiete (McGovern Institute) and Earl Miller (Picower Institute).

Eisen completed his undergraduate degree in Applied Mathematics & Computer Engineering at Queen’s University in Toronto, Canada. Prior to joining MIT, Eisen built computer vision algorithms at the solar aerial inspection company Heliolytics and worked on developing machine learning tools to predict disease outcomes from genetics at The Hospital for Sick Children.

Today, in the Fiete and Miller labs, Eisen develops tools for analyzing the flow of neural activity, and applies them to understand changes in neural states (such as from consciousness to anesthetic-induced unconsciousness).

What kind of mindfulness do you practice, how often, and why?

I mostly practice simple sitting meditation centered on awareness of senses and breathing. On a good week, I meditate about 3-5 times. The reason I practice are the benefits to my general experience of living. Whenever I’m in a prolonged period of consistent meditation, I’m shocked by how much more awareness I have about thoughts, feelings and sensations that are arising in my mind throughout the day. I’m also amazed by how much easier it is to watch my mind and body react to the context around me, without slipping into the usual patterns and habits. I also find mindful benefits in doing yoga, running and playing music, but the core is really centered on meditation practice.

When and why did you start practicing mindfulness?

I’ve been interested in mindfulness and meditation since undergrad as a path to investigating the nature of mind and thought – an interest which also led me into my PhD. I started practicing meditation more seriously at the start of the pandemic to get more first hand experience with what I had been learning about. I find meditation is one of those things where knowledge and theory can support the practice, but without the experiential component it’s very hard to really start to build an understanding of the core concepts at play.

How does mindfulness benefit your research at MIT?

Mindfulness has definitely informed the kinds of things I’m interested in studying and the questions I’d like to ask – largely in relation to the nature of conscious awareness and the flow of thoughts. Outside of that, I’d like to think that mindfulness benefits my general well-being and spiritual balance, which enables me to do better research.

 

Sugandha Sharma

Woman clasping hands in a yoga pose, looking directly into the camera.
MIT graduate student Sugandha Sharma. Photo: Steph Stevens

Sugandha (Su) Sharma is a graduate student in MIT’s Department of Brain and Cognitive Sciences (BCS), where she is co-advised by Ila Fiete (McGovern Institute) and Josh Tenenbaum (BCS).

Prior to joining MIT, she studied theoretical neuroscience at the University of Waterloo where she built neural models of context dependent decision making in the prefrontal cortex and spiking neuron models of bayesian inference, based on online learning of priors from life experience.

Today, in the Fiete and Tenenbaum labs, she studies the computational and theoretical principles underlying cognition and intelligence in the human brain.  She is currently exploring the coding principles in the hippocampal circuits implicated in spatial navigation, and their role in cognitive computations like structure learning and relational reasoning.

When did you start practicing mindfulness?

When I first learned to meditate, I was challenged to practice it every day for at least 3 months in a row. I took up the challenge, and by the end of it, the results were profound. My whole perspective towards life changed. It made me more empathetic — I could step in other people’s shoes and be mindful of their situations and feelings;  my focus shifted from myself to the big picture — it made me realize how insignificant my life was on the grand scale of the universe, and how it was worthless to be caught up in small things that I was usually worrying about. It somehow also brought selflessness to me. This experience hooked me to meditation and mindfulness for life!

What kind of mindfulness do you practice and why?

I practice mindfulness because it brings awareness. It helps me to be aware of myself, my thoughts, my actions, and my surroundings at each moment in my life, thus helping me stay in and enjoy the present moment. Awareness is of utmost importance since an aware mind always does the right thing. Imagine that you are angry, in that moment you have lost awareness of yourself. The moment you become aware of yourself; anger goes away. This is why sometimes counting helps to combat anger. If you start counting, that gives you time to think and become aware of yourself and your actions.

Meditating — sitting with my eyes closed and just observing (being aware of) my thoughts — is a yogic technique that helps me clear the noise in my mind and calm it down making it easier for me to be mindful not only while meditating, but also in general after I am done meditating. Over time, the thoughts vanish, and the mind becomes blank (noiseless). For this reason, practicing meditation regularly makes it easier for me to be mindful all the time.

An added advantage of yoga and meditation is that it helps combat stress by relaxing the mind and body. Many people don’t know what to do when they are stressed, but I am grateful to have this toolkit of yoga and meditation to deal with stressful situations in my life. They help me calm my mind in stressful situations and ensure that instead of reacting to a situation, I instead act mindfully and appropriately to make it right.