NIH awards initial $46 million for BRAIN Initiative research

The National Institutes of Health announced today its first wave of investments totaling $46 million in fiscal year 14 funds to support the goals of the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. More than 100 investigators in 15 states and several countries will work to develop new tools and technologies to understand neural circuit function and capture a dynamic view of the brain in action. These new tools and this deeper understanding will ultimately catalyze new treatments and cures for devastating brain disorders and diseases that are estimated by the World Health Organization to affect more than one billion people worldwide. Six MIT projects were funded, including four projects led by McGovern Institute researchers.

“The human brain is the most complicated biological structure in the known universe. We’ve only just scratched the surface in understanding how it works — or, unfortunately, doesn’t quite work when disorders and disease occur,” said NIH Director Francis S. Collins, M.D., Ph.D. “There’s a big gap between what we want to do in brain research and the technologies available to make exploration possible. These initial awards are part of a 12-year scientific plan focused on developing the tools and technologies needed to make the next leap in understanding the brain. This is just the beginning of an ambitious journey and we’re excited about the possibilities.”

Creating a wearable scanner to image the human brain in motion, using lasers to guide nerve cell firing, recording the entire nervous system in action, stimulating specific circuits with radio waves, and identifying complex circuits with DNA barcodes are among the 58 projects announced today. The majority of the grants focus on developing transformative technologies that will accelerate fundamental neuroscience research and include:

• classifying the myriad cell types in the brain
• producing tools and techniques for analyzing brain cells and circuits
• creating next-generation human brain imaging technology
• developing methods for large-scale recordings of brain activity
• integrating experiments with theories and models to understand the functions of specific brain circuits

“How do the billions of cells in our brain control our thoughts, feelings, and movements? That’s ultimately what the BRAIN Initiative is about,” said Thomas R. Insel, M.D., director of the NIH’s National Institute of Mental Health. “Understanding this will greatly help us meet the rising challenges that brain disorders pose for the future health of the nation.”

Last year, President Obama launched the BRAIN Initiative as a large-scale effort to equip researchers with fundamental insights necessary for treating a wide variety of brain disorders like Alzheimer’s, schizophrenia, autism, epilepsy, and traumatic brain injury. Four federal agencies — NIH, the National Science Foundation, the Food and Drug Administration and the Defense Advanced Research Projects Agency — stepped up to the “grand challenge” and committed more than $110 million to the Initiative for fiscal year 2014. Planning for the NIH component of the BRAIN initiative is guided by the long-term scientific plan, “BRAIN 2025: A Scientific Vision” that details seven high-priority research areas.

Later today, the White House is hosting a conference on the BRAIN Initiative where new Federal and private sector commitments will be unveiled in support of this ambitious and important effort.

“We are at a critical juncture for brain research, and these audacious projects are from some of the brightest researchers in neuroscience collaborating with physicists and engineers,” said Story Landis, Ph.D., director of the NIH’s National Institute of Neurological Disorders and Stroke.

For a list of all the projects, please visit: http://braininitiative.nih.gov/nih-brain-awards.htm

For more information about the BRAIN Initiative, please visit: http://www.nih.gov/science/brain/

###
About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Feng Zhang shares Gabbay Award for CRISPR research

Feng Zhang of MIT and the Broad Institute, Jennifer Doudna of the University of California, Berkeley and the Howard Hughes Medical Institute, and Emmanuelle Charpentier of Umeå University have been awarded Brandeis University’s 17th Annual Jacob Heskel Gabbay Award in Biotechnology and Medicine.

The researchers are being honored for their work on the CRISPR/cas system, a genome editing technology that allows scientists to make precise changes to a DNA sequence — an advance that is expected to transform many areas of biomedical research and may ultimately form the basis of new treatments for human genetic disease.

Feng Zhang wins NSF’s Alan T. Waterman Award

The National Science Foundation (NSF) named Feng Zhang the 2014 recipient of its Alan T. Waterman Award. This award is NSF’s highest honor that annually recognizes an outstanding researcher under the age of 35 and funds his or her research in any field of science or engineering. Zhang’s research focuses on understanding how the brain works.

“It is a great pleasure to honor Feng Zhang with this award for his young, impressive career,” said NSF Director France Córdova. “It is exciting to support his continued fundamental research, which is certain to impact the field of brain research. Imagine a future free of schizophrenia, autism and other brain disorders that wreak havoc on individuals, families and society. Feng’s research moves us in that direction.”

Zhang seeks to understand the molecular machinery of brain cells through the development and application of innovative technologies. He created and is continuing to perfect tools that afford researchers precise control over biological activities occurring inside the cell. With these tools, researchers can deepen their understanding of how the genome works, and how it influences the development and function of the brain. Zhang also examines failures within the systems that cause disease.

Two different lines of fundamental research and technology development are helping him do that: optogenetics and genome engineering. With Edward Boyden and Karl Deisseroth at Stanford University, he developed optogenetics to study brain circuits, a technique in which light is used to affect signaling and gene expression of neurons involved in complex behaviors. Zhang also developed the CRISPR system to enable new, cheaper, more effective ways to “edit” animal genomes–that is, to identify and cut a short DNA sequence underlying a disorder so that it may be deleted or substituted out for other genetic material. Although Zhang’s main area of focus is the brain, the potential applications of CRISPR technology extend well beyond neuroscience.

“This is an immensely exciting time for the field because of the tremendous potential of tools like CRISPR, which allows us to modify the genomes of mammalian cells,” Zhang said. “One of my long-term goals is to better understand the molecular mechanisms of brain function and identify new ways to treat devastating neurological disorders.”

Since high school, Zhang has devoted his time, energy and intellectual prowess to developing ways to study and repair the nervous system. Today, he is one of 11 core faculty members at the Broad Institute of MIT and Harvard; an investigator at MIT’s McGovern Institute for Brain Research; and the W. M. Keck Career Development Professor with a joint appointment in MIT’s Departments of Brain and Cognitive Sciences and Biological Engineering.

Zhang is widely recognized for his pioneering work in optogenetics and genome editing. He shared the Perl/UNC Neuroscience Prize with Karl Deisseroth and Edward Boyden in 2012. In 2013, MIT Technology Review recognized him as a “pioneer” and one of its 35 Innovators Under 35; Popular Science magazine placed Zhang on its Brilliant 10, an annual list of the most promising scientific innovators. Nature also named him as one of the “ten people who mattered” in 2013 for his work on developing the CRISPR system for genome editing in mammalian cells.

The Waterman award will be presented to Zhang at an evening ceremony at the U.S. Department of State in Washington, D.C., on May 6. At that event, the National Science Board will also present its 2014 Vannevar Bush award to mathematician Richard Tapia and Public Service awards to bioethicist Arthur Caplan and to the AAAS Science & Technology Policy Fellowships Program.

Plans are underway for Zhang to deliver a lecture at a meeting of the National Science Board at NSF and to meet with students at Thomas Jefferson High School for Science and Technology during his visit this spring.

Patrick J. McGovern, 1937-2014

Patrick McGovern was born in 1937 in Queens, New York, and grew up in New York and Philadelphia. He became interested in the brain as a teenager, when he came across a book titled “Giant Brains, or Machines that Think” in the Philadelphia public library. As he recalled in an interview some 50 years later, “It was the first book that talked about computers and their role as an amplifier of the human mind,” and it sparked a lifelong interest in science and technology. In 1955 Pat was admitted to MIT, where he majored in biophysics. He studied neurophysiology, and recalls using a glass electrode to study electrical activity in tadpoles. He also became involved in student newspapers, and after graduating from MIT in the class of 1959, he was hired as an assistant editor for a new magazine, “Computers and Automation,” founded by Ed Berkeley, the author of the book that had so intrigued him ten years earlier.

After four years as a magazine editor, Pat left to found his own company, now known as International Data Group (IDG), which under his leadership grew to become the world’s foremost publisher of computer-related news, information and research. IDG today is a multi-billion-dollar business, with 2013 revenues of over $3.5 billion. The story of Pat’s career at IDG has been often told, and his business accomplishments have been recognized with many honors, including lifetime achievement awards from American Business Media and from the Magazine Publishers of America. Yet despite his success and his imposing physical presence, Pat retained a modest demeanor and never cultivated the trappings of great wealth. Instead, he focused his energies on leadership of the company (of which he remained chairman until the time of his death) and increasingly in his later years, on his philanthropic priorities.

His career and fortune were made in computer technology, but never lost sight of his early dream to understand the brain, which he often described as the world’s most complex computer. When he studied neurophysiology at MIT in the 1950s, the tools were not adequate to the enormous challenge of understanding how the human brain works, but by the 1990s, technological progress had been so dramatic that the field had been transformed almost beyond recognition. A scientific understanding of the brain, while still a daunting challenge, was no longer within the realm of science fiction, but was a real prospect for the future.

Pat’s dream was shared by his wife Lore Harp McGovern, a Silicon Valley entrepreneur whose interests included healthcare, education and hi-tech. In the late 1990s they decided that the time was right to establish a new institute for brain research, and after consultations with many leading scientists and universities, they decided that the new institute would be at MIT.

Pat and Lore had both been longstanding MIT supporters; Pat was a member of the MIT Corporation, and Lore was chair of the Board of Associates at the affiliated Whitehead Institute. But they always emphasized that their choice of MIT was not simply a matter of loyalty to Pat’s alma mater. They felt that MIT was the right choice because of its alignment with their vision of a multidisciplinary, outward-looking institute that would engage the widest possible range of scientific talents in support of its mission to understand the brain. One goal was to understand the basis of brain disorders and to lay the foundation for new treatments for conditions such as psychiatric and neurodegenerative diseases – a goal that Pat and Lore considered vitally important, given the enormous suffering and economic costs that are inflicted by these disorders. But their vision was not confined to disease research; they also understood the brain to be the source of our humanity, our creative achievements and our conflicts, and they saw the possibility that understanding these things in scientific terms could transform the world for the better.

The McGovern Institute for Brain Research was formally established in 2000, with a commitment of $350 million from Pat and Lore, one of the largest philanthropic gifts in the history of higher education. Nobel laureate and Institute Professor Phillip A. Sharp, was named founding director, and Robert Desimone succeeded Sharp as director in 2004. In the fall of 2005, the McGovern Institute moved into spacious facilities in MIT’s Brain and Cognitive Sciences Complex, one of the most distinctive landmarks on the MIT campus and among the largest neuroscience research buildings in the world.

The McGovern Institute has continued to thrive since it moved to its new home, expanding in size and scope as it has hired new faculty and built new laboratories. Most importantly, it has produced a steady stream of discoveries about the working of the brain, in areas ranging from the genetic control of brain development to the neural basis of human thought and emotion. This progress was deeply gratifying to Pat and Lore, who visited regularly to attend the institute’s board meetings and scientific events, mingling with faculty and researchers and engaging deeply in discussions of their new findings. Throughout his life, Pat retained an extraordinary ability to absorb new information, and researchers were frequently impressed at his ability to cite detailed facts and figures about the brain. He was a tireless advocate for the institute and its mission, hosting many visits and tours, and inspiring others to follow his philanthropic example. He was, and Lore remains, an enormous source of inspiration and encouragement to the researchers at the institute.

Throughout Pat’s business career, his vision was global, and he took great pride in the fact that IDG was one of the first Western companies to establish a business presence in China after the end of the Cultural Revolution. It is thus fitting that Pat and Lore’s philanthropic vision also extended to China; since 2011, three new IDG/McGovern Institutes have been established in Beijing, at Tsinghua University, Peking (“Beida”) University and Beijing Normal University.

Like the McGovern Institute at MIT, the new institutes in China are focused on fundamental research in neuroscience as well as translational work on disease applications. Pat always saw brain disorders as global problems that required global solutions, and one of his greatest hopes was that the new institutes would help accelerate the international cooperation that he saw as essential to the ultimate goal of understanding the human brain in health and disease.

Pat’s wife Lore has been a full partner throughout the McGovern Institute’s 14-year history, serving on the governing board of the institute along with Pat and his daughter Elizabeth McGovern. All of us at the institute offer our deepest condolences to Lore, to their four children, and to all of Pat’s family members and friends. He will be greatly missed.

See below for a photo gallery of Pat McGovern.

Photos: Justin Knight

McGovern Institute to honor neurogenetics researcher Huda Zoghbi

The McGovern Institute for Brain Research at MIT announced today that Huda Y. Zoghbi, of Baylor College of Medicine and Texas Children’s Hospital, is the winner of the 2014 Edward M. Scolnick Prize in Neuroscience. The Prize is awarded annually by the McGovern Institute to recognize outstanding advances in the field of neuroscience.

“Huda Zoghbi has been a pioneer in the study of human genetic disease,” says Robert Desimone, director of the McGovern Institute and chair of the selection committee. “Her work has provided fundamental insights into the mechanisms of hereditary neurodegenerative and neuropsychiatric diseases, and has pointed the way to new treatments for these disorders.”

Zoghbi studied medicine in her native Lebanon and later in the US, where she specialized in pediatric neurology. Following her residency she trained as a molecular geneticist with Arthur Beaudet at Baylor College of Medicine, where she became a faculty member in 1988. She is currently an investigator with the Howard Hughes Medical Institute.

Zoghbi’s first major scientific contribution was the identification in 1993 of the gene responsible for spinocerebellar ataxia type 1 (SCA1), a progressive neurodegenerative disease with an unusual pattern of inheritance. In collaboration with Harry Orr at the University of Minnesota, Zoghbi showed that SCA1, like Huntington’s disease, is caused by a pathological expansion of a repeated three-nucleotide sequence. The more times this is repeated, the earlier the onset of disease and the more severe the symptoms. The number of repeats can increase from one generation to the next, meaning that children are often more severely affected than the parent. Zoghbi continues to study SCA1, and her recent work has focused on identifying genetic factors that slow the progression of the disease, a strategy that she hopes will also be applicable to other neurodegenerative disorders.

Zoghbi is perhaps best known for her pioneering work on Rett syndrome, a genetic neurological disease that affects young girls (males with the condition usually die in infancy). Girls born with the disease develop normally for one or two years, but then begin to show progressive loss of motor skills, speech, and other cognitive abilities.

Zoghbi first encountered children with Rett syndrome during her residency, and decided to search for its genetic cause. This was a challenging task; the disease was not widely recognized at the time and was often misdiagnosed, and family studies were difficult because the majority of cases were caused by isolated sporadic mutations. Zoghbi persisted despite these challenges, and after a 16-year search, she succeeded in identifying the Rett gene in 1999. This discovery provided a definitive genetic diagnosis for the condition, and also opened the door to a biological understanding and a search for treatment. Zoghbi demonstrated that Rett syndrome is caused by deficiency in a protein called MeCP2, which binds methylated DNA and regulates the expression of many other genes. The gene lies on the X chromosome, and in females one of the two X chromosomes is randomly inactivated in each cell; thus each patient with the Rett mutation has a different pattern of healthy and mutant cells, explaining some of the variability of Rett symptoms.

Identification of the Rett gene allowed researchers to make equivalent mutations in mouse models, which develop progressive neurological symptoms strikingly similar to those of human patients. This in turn laid the groundwork for further studies by Zoghbi and many other labs, and to the development of new therapeutic strategies that are now undergoing clinical trials.

The implications of this work extend beyond Rett syndrome (a relatively rare condition). Many Rett patients show symptoms of autism, and one hope is that understanding these symptoms may lead to new treatments that will be effective not only for people with Rett syndrome but also for other more common cases of autism. Zoghbi’s recent work has focused on identifying the cell types and brain circuits that are responsible for the autistic-like behaviors of the mouse Rett model, which may represent promising targets for future therapeutic intervention.

In addition to running her own laboratory, Zoghbi is the founding director of the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital. She has received numerous awards and honors for her work, including election to both the Institute of Medicine and the National Academy of Sciences.
The McGovern Institute will award the Scolnick Prize to Dr. Zoghbi on Wednesday April 30, 2014. At 4:00 pm she will deliver a lecture entitled “A neural tipping point: MeCP2 and neuropsychiatric disorders,” to be followed by a reception, at the McGovern Institute in the Brain and Cognitive Sciences Complex, 43 Vassar Street (building 46, room 3002) in Cambridge. The event is free and open to the public.

About the Edward M. Scolnick Prize in Neuroscience:
The Scolnick Prize, awarded annually by the McGovern Institute, is named in honor of Dr. Edward M. Scolnick, who stepped down as President of Merck Research Laboratories in December 2002 after holding Merck’s top research post for 17 years. Dr. Scolnick is now a core member of the Broad Institute, where he is chief scientist at the Stanley Center for Psychiatric Research. He also serves as a member of the McGovern Institute’s governing board. The prize, which is endowed through a gift from Merck to the McGovern Institute, consists of a $100,000 award, plus an inscribed gift. Previous winners are Thomas Jessell (Columbia University), Roger Nicoll (University of California, San Francisco), Bruce McEwen (Rockefeller University), Lily and Yuh-Nung Jan (University of California, San Francisco), Jeremy Nathans (Johns Hopkins University), Michael Davis (Emory University), David Julius (University of California, San Francisco), Michael Greenberg (Harvard Medical School), Judith Rapoport (National Institute of Mental Health) and Mark Konishi (California Institute of Technology).

Editas Medicine to develop new class of genome editing therapeutics

Editas Medicine, a transformative genome editing company, today announced it has secured a $43 million Series A financing led by Flagship Ventures, Polaris Partners and Third Rock Ventures with participation from Partners Innovation Fund. Following an explosion of high profile publications on CRISPR/Cas9 and TALENs, genome editing has emerged as one of the most exciting new areas of scientific research. These recent advances have made it possible to modify, in a targeted way, almost any gene in the human body with the ability to directly turn on, turn off or edit disease-causing genes. Editas’ mission is to translate its genome editing technology into a novel class of human therapeutics that enable precise and corrective molecular modification to treat the underlying cause of a broad range of diseases at the genetic level.

“Editas is exclusively positioned to leverage the very latest in genome editing to develop life-changing medicines for patients,” said Kevin Bitterman, Ph.D., interim president, Editas Medicine and principal, Polaris Partners. “Our suite of foundational intellectual property, combined with the proprietary know-how of our founding team and our financial resources, will enable us to rapidly translate these groundbreaking discoveries into important medicines.”

Leading Foundational Science & Team

The company’s five founders have published much of the foundational work that has elevated genome editing technology to a level where it can now be optimized and developed for therapeutic use. Feng Zhang, Ph.D., core member of the Broad Institute, Investigator at the McGovern Institute for Brain Research and joint assistant professor in the Departments of Brain and Cognitive Sciences and Biological Engineering at Massachusetts Institute of Technology; George Church, Ph.D., founding core faculty member at the Wyss Institute for Biologically Inspired Engineering at Harvard University and Robert Winthrop professor of genetics at Harvard Medical School; and Jennifer Doudna, Ph.D., Howard Hughes Medical Institute investigator and professor of biochemistry, biophysics and structural biology at the University of California, Berkeley, are eminent academic leaders who described and invented key elements of the CRISPR/Cas technology. Keith Joung, M.D., Ph.D., associate chief of pathology for research and associate pathologist at Massachusetts General Hospital and associate professor of pathology at Harvard Medical School, is a pioneer in the development and translation of genome editing technologies. David Liu, Ph.D., Howard Hughes Medical Institute investigator and professor of chemistry and chemical biology at Harvard University, is a renowned protein evolution and engineering biologist.

The company has generated substantial patent filings and has access to intellectual property covering foundational genome editing technologies, as well as essential advancements and enablements that will uniquely allow the company to translate early findings into viable human therapeutic products.

Dr. Zhang commented, “Advances in genome editing have opened the door for an entirely new and promising approach to treating disease by correcting causative errors directly in a patient’s genome. Editas is optimizing and refining existing genome editing technology to create a versatile platform for the development of potential human therapeutics.”

Genome Editing

CRISPR (clustered, regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) and TALENs (transcription activator-like effector nucleases) comprise novel gene editing methods that overcome the challenges associated with previous technologies. Early published research on CRISPR/Cas9, coupled with a growing body of work on TALENs, suggests the potential to pursue therapeutic indications that have previously been intractable to traditional gene therapy, gene knock-down or other genome modification techniques. The CRISPR/Cas9 system, the most recent and exciting approach to emerge, acts by a mechanism in which the Cas9 protein binds to specific RNA molecules. The RNA molecules then guide the Cas9 complex to the exact location in the genome that requires repair. CRISPR/Cas9 uniquely enables highly efficient knock-out, knock-down or selective editing of defective genes in the context of their natural promoters, unlocking the ability to treat the root cause of a broad range of diseases.

“Editas is poised to bring genome editing to fruition as a new therapeutic modality, essentially debugging errors in the human software that cause disease,” said Alexis Borisy, director, Editas Medicine and partner, Third Rock Ventures. “Our CRISPR/Cas9 technology is favorably differentiated due to its ability to pursue almost the entire genome, allowing broad therapeutic application and the targeting of defective genes in a highly specific, selective and efficient manner.”

Management and Board

In collaboration with its founders, Editas has assembled a leadership team and board of directors comprised of experienced investors and industry veterans with proven track records for building exceptional life sciences companies. In addition to Dr. Bitterman, the Editas leadership team includes Alexandra Glucksmann, Ph.D., interim chief operating officer and former founding employee and SVP of research and development at Cerulean Pharma; and Lou Tartaglia, Ph.D., interim chief scientific officer and partner, Third Rock Ventures.

The board of directors is composed of leaders from the Editas syndicate including Mr. Borisy; Douglas Cole, M.D., general partner, Flagship Ventures; and Terry McGuire, co-founder and general partner, Polaris Partners.

“The gene editing approaches on which Editas is based represent some of the most exciting and promising scientific breakthroughs in recent years, making it possible, for the first time, to correct the genomic defects responsible for a broad range of diseases,” said Dr. Cole. “The Editas syndicate has come together as a collaborative team dedicated to supporting and advancing the company’s revolutionary approach to improve patients’ lives. Our funds’ collective strength provides Editas the resources to translate this groundbreaking work into important therapeutics.”

About Flagship Ventures

Realizing entrepreneurial innovation is the mission of Flagship Ventures. The firm operates through two synergistic units: VentureLabs™ which invents and launches transformative companies, and Venture Capital, which finances and develops innovative, early-stage companies. Founded in 2000, and based in Cambridge, Massachusetts, Flagship Ventures manages over $900 million in capital. The Flagship team is active in three principal business sectors: therapeutics, health technologies and sustainability/clean technology. For more information, please visit www.flagshipventures.com.

About Polaris Partners

Founded in 1996, Polaris Partners has more than $3.5 billion in capital under management which we invest into a diverse portfolio of technology and healthcare companies throughout their lifecycles. From the earliest startup phases through the growth equity stages, Polaris Partners takes minority and majority positions alongside outstanding management teams to help grow industry leading companies like Ascend, Avila, Ironwood, Receptos, LogMeIn and Akamai. With offices in Boston, San Francisco and Dublin, Polaris partners with an unparalleled network of repeat CEOs, entrepreneurs, top scientists and emerging innovators who are positioned to make a significant impact in their fields and vastly improve the way in which we all live and work. The result: Hundreds of growing companies, thousands of jobs generated, and billions of dollars of value created. For more information, visit: www.polarispartners.com.

About Third Rock Ventures

Third Rock Ventures is a leading healthcare venture firm focused on investing and launching companies that make a difference in people’s lives. The Third Rock team has a unique vision for ideating and building transformative healthcare companies. Working closely with our strategic partners and entrepreneurs, Third Rock has an extensive track record for managing the value creation path to deliver exceptional performance. For more information, please visit the firm’s website at www.thirdrockventures.com.

About Partners Innovation Fund

The Partners Innovation Fund is the strategic venture fund for Partners HealthCare, founded by the Massachusetts General Hospital and Brigham and Women’s Hospital. The mission of the fund is to provide the necessary support to commercialize innovations in medical informatics, diagnostics, drugs and devices that emerge from the Partners HealthCare investigator community.

Five graduate students awarded McGovern fellowships

This year, five graduate students have been awarded fellowships made possible by McGovern supporters.

Leah Acker, a fifth year graduate student in the labs of Ed Boyden and Robert Desimone, has been awarded a 2013-14 Friends of the McGovern Fellowship. Leah is focused on understanding the basis of neural dynamics underlying complex behaviors in primate models. She is developing extremely precise optogenetic technologies for observing neural circuits that give rise to high level cognitive functions such as attention. Leah hopes her work will lead to the development of new treatments for brain disorders.

Graduate student Yinqing Li, a member of Feng Zhang‘s lab, has been awarded a Friends of the McGovern Fellowship for his work sequencing the connectome, a comprehensive map of neural connections in the brain. Yinqing’s research has involved developing novel technologies for barcoding individual neurons with unique identifiers, and then pooling, amplifying, and preparing individual neurons for next-generation sequencing. His work has the promise to fundamentally change the way systems neuroscientists learn about the connections underlying neural circuit function.

The Mark Gorenberg ’76 Fellowship has been awarded to Leyla Isik, a fourth year graduate student studying with Tomaso Poggio, for her research into the visual system. Bridging neuroscience and computer science, Leyla uses sophisticated computer simulations and magnetoencephalography (MEG) imaging of humans to develop improved computer algorithms for object recognition. Leyla has developed a methodology that enables a machine to identity which image a human subject is looking at on the basis of his or her MEG data, and is currently performing new experiments to understand how humans recognize these images under complex viewing conditions (such as in a cluttered background, or at different positions or viewpoints). Leyla hopes to use these insights to develop a new computational model that simulates how humans develop invariant object recognition

Tatsuo Okubo, a graduate student in Michale Fee‘s lab, is this year’s recipient of the Huburt Schoemaker Fellowship. Tots’ research is focused on understanding the brain circuitry underlying the development of complex learned behaviors. Using young songbirds just learning to sing as a model, Tots is investigating the role of the premotor area HVC in the avian brain, which is analogous to Broca’s area in the human brain. Tots employs sophisticated electrophysiological recording techniques while the bird is singing to observe the process of learning at the level of individual neurons. His goal is to understand how the activity pattern in the premotor area changes during song learning, and he hopes this research will give insight into learning complex behavior in general such as language acquisition in humans.

The Janet and Sheldon (1959) Razin Fellowship has been awarded to Joshua Manning, a graduate student in John Gabrieli‘s Lab. Josh’s goal is to use neuroimaging to understand decision making, risk taking, and sense of reward in the brains of healthy people as well as individuals with psychiatric disorders. He is working with sophisticated computer models, MRI scans, and personality and cognitive data to develop a better sense of the brain basis of psychiatric illnesses. Josh hopes to advance our knowledge of the neurological root of behaviors linked to impatience and impulsivity in individuals with brain disorders such as anxiety and attention deficit hyperactivity disorder.

Feng Zhang named to Popular Science Brilliant 10

Popular Science magazine has named two MIT junior faculty members — Pedro Reis and Feng Zhang — to its 2013 Brilliant 10 list of young stars in science and technology. The list will appear in the magazine’s October issue.

Popular Science prides itself on revealing the innovations and ideas that are laying today’s groundwork for tomorrow’s breakthroughs, and the Brilliant 10 is one of the most exciting ways we do that,” says Jake Ward, editor-in-chief. “This collection of 10 brilliant young researchers is our chance to honor the most promising work — and the most hardworking people — in science and technology today. This year’s winners are particularly distinguished and I’m proud to welcome them all as members of the 2013 Brilliant 10.”

Pedro Reis, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering and Mechanical Engineering, studies the mechanics of slender structures, with a particular focus on devising new ways of turning mechanical failure into functionality.

Over the past few years, Reis, 35, has published a number of eclectic and impactful papers in prominent journals. In 2009 he reported on the delamination of thin films adhered to soft foundations, which is relevant for stretchable electronics. He explained why adhesive films tear into triangular shapes, a problem that applies to both the everyday peeling of adhesive tape from a roll and the manufacturing of tapered graphene nanoribbons. Motivated by the closing of aquatic flowers, he recently discovered a new mechanism for passively pipetting liquids using a petal-shaped object. And last year inspired by a toy, Reis introduced the Buckliball, a new class of structures that uses buckling to provide origami-like folding capabilities to curved structures with potential uses for encapsulation and soft robotics.

In other work undertaken just for fun, Reis and colleagues reported in 2010 that when cats lap fluids (milk or water, for example), they take advantage of a perfect balance between gravity and inertia.

Feng Zhang, 31, is the W.M. Keck Career Development Professor in Biomedical Engineering, an assistant professor in the department of Brain and Cognitive Sciences, a member of the McGovern Institute for Brain Research and a core member of the Broad Institute. He received the award for his work on genome editing. Earlier this year he reported a powerful new way to make targeted mutations in genomic DNA, based on a bacterial system known as CRISPR. The new method will greatly accelerate the development of animal models of human genetic diseases, and may eventually make it possible to correct genetic mutations in patients. Zhang, a pioneer in optogenetics, has also recently invented a new method for controlling gene expression with light, in which light-sensitive plant proteins are engineered to create an “optical switch” that can turn other genes on or off at will.

This is the 12th annual Brilliant 10 list. Ten MIT researchers were included on previous lists.

McGovern Institute gets new brain scanner

After months of planning and construction, we are delighted to report that we have installed a new 3-tesla MRI scanner for human neuroimaging. The $2M scanner, a Siemens Magnetom Trio, was delivered to the Martinos Imaging Center on July 25, 2013.

The core of the scanner is a large electromagnet, weighing around 13 tons and containing superconducting coils that are chilled in liquid helium to within a few degrees of absolute zero. It is housed in a custom-built room, with a specially reinforced floor to support the scanner’s weight, and with some 5000 steel panels to shield the system from RF interference.

The acquisition of the new scanner was made possible by Bruce Dayton, Jeffrey and Nancy Halis, the Simons Foundation, and an anonymous donor.  The scanner is expected to be fully operational by the fall, and will be used for a wide range of studies on brain function, in both children and adults.

Click here to view a photo album of the MRI installation.