Gene-editing technology developer Feng Zhang awarded $500,000 Lemelson-MIT Prize

Feng Zhang, a pioneer of the revolutionary CRISPR gene-editing technology, TAL effector proteins, and optogenetics, is the recipient of the 2017 $500,000 Lemelson-MIT Prize, the largest cash prize for invention in the United States. Zhang is a core member of the Broad Institute of MIT and Harvard, an investigator at the McGovern Institute for Brain Research, the James and Patricia Poitras Professor in Neuroscience at MIT, and associate professor in the departments of Brain and Cognitive Sciences and Biological Engineering at MIT.

Zhang and his team were first to develop and demonstrate successful methods for using an engineered CRISPR-Cas9 system to edit genomes in living mouse and human cells and have turned CRISPR technology into a practical and shareable collection of tools for robust gene editing and epigenomic manipulation. CRISPR, short for Clustered Regularly Interspaced Short Palindromic Repeats, has been harnessed by Zhang and his team as a groundbreaking gene-editing tool that is simple and versatile to use. A key tenet of Zhang’s is to encourage further development and research through open sharing of tools and scientific collaboration. Zhang believes that wide use of CRISPR-based tools will further our understanding of biology, allowing scientists to identify genetic differences that contribute to diseases and, eventually, provide the basis for new therapeutic techniques.

Zhang’s lab has trained thousands of researchers to use CRISPR technology, and since 2013 he has shared over 40,000 plasmid samples with labs around the world both directly and through the nonprofit Addgene, enabling wide use of his CRISPR tools in their research.

Zhang began working in a gene therapy laboratory at the age of 16 and has played key roles in the development of multiple technologies. Prior to harnessing CRISPR-Cas9, Zhang engineered microbial TAL effectors (TALEs) for use in mammalian cells, working with colleagues at Harvard University, authoring multiple publications on the subject and becoming a co-inventor on several patents on TALE-based technologies. Zhang was also a key member of the team at Stanford University that harnessed microbial opsins for developing optogenetics, which uses light signals and light-sensitive proteins to monitor and control activity in brain cells. This technology can help scientists understand how cells in the brain affect mental and neurological illnesses. Zhang has co-authored multiple publications on optogenetics and is a co-inventor on several patents related to this technology.

Zhang’s numerous scientific discoveries and inventions, as well as his commitment to mentorship and collaboration, earned him the Lemelson-MIT Prize, which honors outstanding mid-career inventors who improve the world through technological invention and demonstrate a commitment to mentorship in science, technology, engineering and mathematics (STEM).

“Feng’s creativity and dedication to problem-solving impressed us,” says Stephanie Couch, executive director of the Lemelson-MIT Program. “Beyond the breadth of his own accomplishments, Feng and his lab have also helped thousands of scientists across the world access the new technology to advance their own scientific discoveries.”

“It is a tremendous honor to receive the Lemelson-MIT Prize and to join the company of so many incredibly impactful inventors who have won this prize in years past,” says Zhang. “Invention has always been a part of my life; I think about new problems every day and work to solve them creatively. This prize is a testament to the passionate work of my team and the support of my family, teachers, colleagues and counterparts around the world.”

The $500,000 prize, which bears no restrictions in how it can be used, is made possible through the support of The Lemelson Foundation, the world’s leading funder of invention in service of social and economic change.

“We are thrilled to honor Dr. Zhang, who we commend for his advancements in genetics, and more importantly, his willingness to share his discoveries to advance the work of others around the world,” says Dorothy Lemelson, chair of The Lemelson Foundation. “Zhang’s work is inspiring a new generation of inventors to tackle the biggest problems of our time.”

Zhang will speak at EmTech MIT, the annual conference on emerging technologies hosted by MIT Technology Review at the MIT Media Lab on Tuesday, Nov. 7.

The Lemelson-MIT Program is now seeking nominations for the 2018 $500,000 Lemelson-MIT Prize. Please contact the Lemelson-MIT Program at awards-lemelson@mit.edu for more information or visit the MIT-Lemelson Prize website.

Feng Zhang Wins the 2017 Blavatnik National Award for Young Scientists

The Blavatnik Family Foundation and the New York Academy of Sciences today announced the 2017 Laureates of the Blavatnik National Awards for Young Scientists. Starting with a pool of 308 nominees – the most promising scientific researchers aged 42 years and younger nominated by America’s top academic and research institutions – a distinguished jury first narrowed their selections to 30 Finalists, and then to three outstanding Laureates, one each from the disciplines of Life Sciences, Chemistry and Physical Sciences & Engineering. Each Laureate will receive $250,000 – the largest unrestricted award of its kind for early career scientists and engineers. This year’s Blavatnik National Laureates are:

Feng Zhang, PhD, Core Member, Broad Institute of MIT and Harvard; Associate Professor of Brain and Cognitive Sciences and Biomedical Engineering, MIT; Robertson Investigator, New York Stem Cell Foundation; James and Patricia Poitras ’63 Professor in Neuroscience, McGovern Institute for Brain Research at MIT. Dr. Zhang is being recognized for his role in developing the CRISPR-Cas9 gene-editing system and demonstrating pioneering uses in mammalian cells, and for his development of revolutionary technologies in neuroscience.

Melanie S. Sanford, PhD, Moses Gomberg Distinguished University Professor and Arthur F. Thurnau Professor of Chemistry, University of Michigan. Dr. Sanford is being celebrated for developing simpler chemical approaches – with less environmental impact – to the synthesis of molecules that have applications ranging from carbon dioxide recycling to drug discovery.

Yi Cui, PhD, Professor of Materials Science and Engineering, Photon Science and Chemistry, Stanford University and SLAC National Accelerator Laboratory. Dr. Cui is being honored for his technological innovations in the use of nanomaterials for environmental protection and the development of sustainable energy sources.

“The work of these three brilliant Laureates demonstrates the exceptional science being performed at America’s premiere research institutions and the discoveries that will make the lives of future generations immeasurably better,” said Len Blavatnik, Founder and Chairman of Access Industries, head of the Blavatnik Family Foundation, and an Academy Board Governor.

“Each of our 2017 National Laureates is shifting paradigms in areas that profoundly affect the way we tackle the health of our population and our planet — improved ways to store energy, “greener” drug and fuel production, and novel tools to correct disease-causing genetic mutations,” said Ellis Rubinstein, President and CEO of the Academy and Chair of the Awards’ Scientific Advisory Council. “Recognition programs like the Blavatnik Awards provide incentives and resources for rising stars, and help them to continue their important work. We look forward to learning where their innovations and future discoveries will take us in the years ahead.”

The annual Blavatnik Awards, established in 2007 by the Blavatnik Family Foundation and administered by the New York Academy of Sciences, recognize exceptional young researchers who will drive the next generation of innovation by answering today’s most complex and intriguing scientific questions.

McGovern Institute awards 2017 Scolnick Prize to Catherine Dulac

The McGovern Institute for Brain Research at MIT announced today that Catherine Dulac of Harvard University is the winner of the 2017 Edward M. Scolnick Prize in Neuroscience. She was awarded the prize for her contributions to the understanding of how pheromones control brain function and behavior and the characterization of neuronal circuits underlying sex-specific behaviors. The Scolnick Prize is awarded annually by the McGovern Institute to recognize outstanding advances in any field of neuroscience.

Dulac is the Higgins Professor in the Department of Molecular and Cellular Biology at Harvard University, where she served as Department Chair from 2007-2013. She is also an investigator of the Howard Hughes Medical Institute. She received her PhD from Pierre and Marie Curie University in Paris, where she studied mechanisms of neural crest development with Nicole le Douarin at the College de France. She moved to the US in 1992 as a postdoctoral fellow in the laboratory of Richard Axel at Columbia University, and joined the Harvard faculty in 1996.

Catherine DulacDulac is best known for her discovery of pheromone receptors and downstream brain circuits controlling sex-specific behaviors. Pheromones are volatile chemical signals that play a major role in controlling mammalian behaviors, in particular social and sexual behaviors such as aggression and reproduction. Unlike odorants, which give rise to the perception of smell, and which can be learned and flexibly associated with different stimuli, the responses to pheromones are fixed and stereotypic. Pheromone responses were known to require the vomeronasal organ (VNO), a specialized part of the olfactory epithelium within the nose, but until Dulac’s work, the molecular identity of the receptors and the neuronal circuits that underlie pheromone-evoked responses had been elusive.

In work that began while she was a postdoc, Dulac set out to identify these receptors, developing novel methods for analyzing RNA from individual sensory neurons. This pioneering work not only led her to the discovery of a large family of pheromone receptor genes, but also demonstrated the feasibility of analyzing the transcriptomes of individual neurons, an approach that is now widely used to study the brain’s extraordinary complexity.

Soon after starting her own lab at Harvard, Dulac discovered a second family of pheromone receptors. Both families are distinct from odorant receptors and are expressed in characteristic spatial patterns within the VNO. Dulac went on to study the mechanism of pheromone action, identifying the ion channel TRPC2 as an essential player in the response of VNO neurons to pheromone signaling. By genetically manipulating this signaling pathway in mice, Dulac was able to show that inputs from the VNO are necessary for gender identification and for the sex-specificity of social behaviors, including mating, aggression and parenting. She was also able to trace the connections from the VNO to the brain systems that control these behaviors, and to characterize specific neuronal populations that are necessary and sufficient for specific social behaviors. In one study, for example, she identified a population of neurons within the hypothalamus that induce parenting behaviors while suppressing aggression toward the offspring that would otherwise be triggered in males by signals from the VNO.

In another recent line of work, Dulac has studied genomic imprinting, an epigenetic phenomenon by which certain genes are differentially expressed depending on whether they were inherited from the mother or the father. Dulac’s work has revealed that imprinting of brain genes is much more common than previously realized, with important implications for basic biology and for the epidemiology of brain disorders.
Among her many honors and awards, Dulac is a fellow of the American Academy of Arts and Sciences, a Chevalier de la Legion d’Honneur, a member of the French Academy of Sciences, and a member of the US National Academy of Sciences.

The McGovern Institute will award the Scolnick Prize to Dr. Dulac on Monday March 13. At 4:00pm she will deliver a lecture entitled “The Neurobiology of Social Behavior Circuits,” to be followed by a reception, at the McGovern Institute in the Brain and Cognitive Sciences Complex, 43 Vassar Street (building 46, room 3002) in Cambridge. The event is free and open to the public.

Feng Zhang named 2016 Tang Prize Laureate

Feng Zhang, a core institute member of the Broad Institute, an investigator at the McGovern Institute for Brain Research at MIT, and W. M. Keck Career Development Associate Professor in MIT’s Department of Brain and Cognitive Sciences with a joint appointment in Biological Engineering, has been named a 2016 Tang Prize Laureate in Biopharmaceutical Science for his role in developing the CRISPR-Cas9 gene-editing system and demonstrating pioneering uses in eukaryotic cells.

The Tang Prize is a biennial international award granted by judges convened by Academia Sinica, Taiwan’s top academic research institution.

In January 2013 Zhang and his team were first to report CRISPR-based genome editing in mammalian cells, in what has become the most-cited paper in the CRISPR field. Zhang shares the award with Emmanuelle Charpentier of the Max Planck Institute and Jennifer A. Doudna of the University of California at Berkeley.

“To be recognized with the Tang Prize is an incredible honor for our team and it demonstrates the impact of the entire CRISPR field, which began with microbiologists and will continue for years to come as we advance techniques for genome editing,” Zhang said. “Thanks to the scientific community’s commitment to collaboration and an emphasis on sharing across institutions and borders, the last few years have seen a revolution in our ability to understand cancer, autoimmune disease, mental health and infectious disease. We are entering a remarkable period in our understanding of human health.”

Although Zhang is well-known for his work with CRISPR, the 34-year-old scientist has a long track record of innovation. As a graduate student at Stanford University, Zhang worked with Karl Deisseroth and Edward Boyden, who is now also a professor at MIT, to develop optogenetics, in which neuronal activity can be controlled with light. The three shared the Perl-UNC Prize in Neuroscience in 2012 as recognition of these efforts. Zhang has also received the National Science Foundation’s Alan T. Waterman Award (2014), the Jacob Heskel Gabbay Award in Biotechnology and Medicine (2014, shared with Charpentier and Doudna), the Tsuneko & Reiji Okazaki Award (2015), the Human Genome Organization (HUGO) Chen New Investigator Award (2016), and the Canada Gairdner International Award (2016, shared with Charpentier and Doudna, as well as Rodolphe Barrangou from North Carolina State University and Philippe Horvath from DuPont Nutrition & Health).

One of Zhang’s long-term goals is to use genome-editing technologies to better understand the nervous system and develop new approaches to the treatment of neurological and psychiatric diseases. The Zhang lab has shared CRISPR-Cas9 components in response to more than 30,000 requests from academic laboratories around the world and has trained thousands of researchers in the use of CRISPR-Cas9 genome-editing technology through in-person events and online opportunities. In his current research, he and his students and postdoctoral fellows continue to improve and expand the gene-editing toolbox.

“Professor Zhang’s lab has become a global hub for CRISPR research,” said MIT Provost Martin Schmidt. “His group has shared CRISPR-Cas9 components with tens of thousands of scientists, and has trained many more in the use of CRISPR-Cas9 technology. The Tang Prize is a fitting recognition of all that Professor Zhang has done, and continues to do, to advance this field.”

“CRISPR is a powerful new tool that is transforming biological science while promising revolutionary advances in health care,” said Michael Sipser, dean of the School of Science and Donner Professor of Mathematics at MIT. “We are delighted that Feng Zhang, together with Jennifer Doudna and Emmanuelle Charpentier, have been recognized with the Tang Prize.”

“It is wonderful that the Academia Sinica has chosen to recognize the CRISPR field with this year’s Tang Prize,” said Eric Lander, founding director of the Broad Institute. “On behalf of my colleagues at the Broad and MIT, I wish to congratulate Feng, as well as Emmanuelle Charpentier and Jennifer Doudna, along with the many teams of scientists and all others who have contributed to these transformational discoveries.”

Founded in 2012 by Samuel Yin, the Tang Prize is a non-governmental, non-profit educational foundation that awards outstanding contributions in four fields: sustainable development, biopharmaceutical science, sinology, and rule of law. Nomination and selection of laureates is conducted by the Academia Sinica. Each award cycle, the academy convenes four autonomous selection committees, each consisting of an assembly of international experts, until a consensus on the recipients is reached. Recipients are chosen on the basis of the originality of their work along with their contributions to society, irrespective of nationality, ethnicity, gender, and political affiliation.

This year marks the second awarding of the prize. This year’s awardees will receive the medal, diploma, and cash prize at an award ceremony on September 25 in Taipei. Recipients in each Tang Prize category receive a total of approximately $1.24 million (USD) and a grant of approximately $311,000 (USD). The cash prize and grants are divided equally among joint recipients in each category.

 

Feng Zhang receives 2016 Canada Gairdner International Award

Feng Zhang, a core institute member of the Broad Institute, an investigator at the McGovern Institute for Brain Research at MIT, and W. M. Keck Career Development Associate Professor in MIT’s Department of Brain and Cognitive Sciences, has been named a recipient of the 2016 Canada Gairdner International Award — Canada’s most prestigious scientific prize — for his role in developing the CRISPR-Cas9 gene-editing system.

In January 2013 Zhang and his team were first to report CRISPR-based genome editing in mammalian cells, in what has become the most-cited paper in the CRISPR field. He is one of five scientists the Gairdner Foundation is honoring for work with CRISPR. Zhang shares the award with Rodolphe Barrangou from North Carolina State University; Emmanuelle Charpentier of the Max Planck Institute; Jennifer Doudna of the University of California at Berkeley and Phillipe Horvath from DuPont Nutrition and Health.

“The Gairdner Award is a tremendous recognition for my entire team, and it is a great honor to share this recognition with other pioneers in the CRISPR field,” Zhang says. “In the next decade, the understanding and the discoveries that scientists are going to be able to make using the CRISPR-Cas9 system will lead to new innovations that will translate into new therapeutics and new products that can benefit our lives.”

Although Zhang is well-known for his work with CRISPR, the 34-year-old scientist has a long track record of innovation. As a graduate student at Stanford University, Zhang worked with Karl Deisseroth and Edward Boyden, who is now also a professor at MIT, to develop optogenetics, in which neuronal activity can be controlled with light. The three shared the Perl-UNC Prize in Neuroscience in 2012 as recognition of these efforts. Zhang has also received the National Science Foundation’s Alan T. Waterman Award (2014), the Jacob Heskel Gabbay Award in Biotechnology and Medicine (2014, shared with Charpentier and Doudna), the Tsuneko & Reiji Okazaki Award (2015), and the Human Genome Organization (HUGO) Chen New Investigator Award (2016).

One of Zhang’s long-term goals is to use genome-editing technologies to better understand the nervous system and develop new approaches to the treatment of psychiatric disease. The Zhang lab has shared CRISPR-Cas9 components in response to nearly 30,000 requests from academic laboratories around the world and has trained thousands of researchers in the use of CRISPR-Cas9 genome-editing technology through in-person events and online opportunities. In his current research, he continues to improve and expand the gene-editing toolbox. “I feel incredibly fortunate and excited to work with an incredible team of students and postdocs to continue advancing our ability to edit and understand the genome,” Zhang says.

“CRISPR is a revolutionary breakthrough that will advance the frontiers of science and enable us to meet the health challenges of the 21st century in ways we are only beginning to imagine,” says Michael Sipser, dean of MIT’s School of Science and the Barton L. Weller Professor of Mathematics. “I am exceedingly proud of the contributions Feng has made to MIT and the greater community of scientists, and extend my heartfelt congratulations to him and his colleagues.”

“CRISPR is a great example of how the scientific community can come together and make stunning progress in a short period of time,” says Eric Lander, founding director of the Broad Institute. “On behalf of my colleagues at the Broad and MIT, I wish to congratulate Feng and all the winners of this prestigious award, as well as the teams of scientists and all others who have contributed to these transformational discoveries.”

The Canada Gairdner International Awards, created in 1959, are given annually to recognize and reward the achievements of medical researchers whose work contributes significantly to the understanding of human biology and disease. The awards provide a $100,000 (CDN) prize to each scientist for their work. Each year, the five honorees of the International Awards are selected after a rigorous two-part review, with the winners voted by secret ballot by a medical advisory board composed of 33 eminent scientists from around the world.

The Broad Institute of MIT and Harvard was launched in 2004 to empower this generation of creative scientists to transform medicine. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods, and data openly to the entire scientific community.

Founded by MIT, Harvard, Harvard-affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff, and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, visit: http://www.broadinstitute.org.

Edward Boyden wins BBVA Foundation Frontiers of Knowledge Award

Edward S. Boyden, a professor of media arts and sciences, biological engineering, and brain and cognitive sciences at MIT, has won the BBVA Foundation Frontiers of Knowledge Award in Biomedicine for his role in the development of optogenetics, a technique for controlling brain activity with light. Gero Miesenböck of the University of Oxford and Karl Deisseroth of Stanford University were also honored with the prize for their role in developing and refining the technique.

The BBVA Foundation Frontiers of Knowledge Awards are given annually for “outstanding contributions and radical advances in a broad range of scientific, technological and artistic areas.” The €400.000 prize in the category of biomedicine will be shared among the three neuroscientists.

“If we imagine the brain as a computer, optogenetics is a keyboard that allows us to send extremely precise commands,” says Boyden, a a faculty member at the MIT Media Lab with a joint appointment at MIT’s McGovern Institute for Brain Research. “It is a tool whereby we can control the brain with exquisite precision.”

Boyden joins an illustrious list of prize laureates including physicist Stephen Hawking and artificial intelligence pioneer Marvin Minsky of MIT, who died on January 24.

The BBVA Foundation will host the winners at an awards ceremony on June 21, 2016 at the foundation’s headquarters in Madrid, Spain.

About the BBVA Foundation Frontiers of Knowledge Awards

The BBVA Foundation promotes, funds and disseminates world-class scientific research and artistic creation, in the conviction that science, culture and knowledge hold the key to better opportunities for all world citizens. The Foundation designs and implements its programs in partnership with some of the leading scientific and cultural organizations in Spain and abroad, striving to identify and prioritize those projects with the power to significantly advance the frontiers of the known world.

The juries in each of eight categories are made up of leading international experts in their respective fields, who arrive at their decisions in a wholly independent manner, applying internationally recognized metrics of excellence. The BBVA Foundation is aided in the organization of the awards by the Spanish National Research Council (CSIC).

Ed Boyden wins 2016 Breakthrough Prize in Life Sciences

MIT researchers took home several awards last night at the 2016 Breakthrough Prize ceremony at NASA’s Ames Research Center in Mountain View, California.

Edward Boyden, an associate professor of media arts and sciences, biological engineering, and brain and cognitive sciences, was one of five scientists honored with the Breakthrough Prize in Life Sciences, given for “transformative advances toward understanding living systems and extending human life.” He will receive $3 million for the award.

MIT physicists also contributed to a project that won the Breakthrough Prize in Fundamental Physics. That prize went to five experiments investigating the oscillation of subatomic particles known as neutrinos. More than 1,300 contributing physicists will share in the recognition for their work, according to the award announcement. Those physicists include MIT associate professor of physics Joseph Formaggio and his team, as well as MIT assistant professor of physics Lindley Winslow.

Larry Guth, an MIT professor of mathematics, was honored with the New Horizons in Mathematics Prize, which is given to promising junior researchers who have already produced important work in mathematics. Liang Fu, an assistant professor of physics, was honored with the New Horizons in Physics Prize, which is awarded to promising junior researchers who have already produced important work in fundamental physics.

“By challenging conventional thinking and expanding knowledge over the long term, scientists can solve the biggest problems of our time,” said Mark Zuckerberg, chairman and CEO of Facebook, and one of the prizes’ founders. “The Breakthrough Prize honors achievements in science and math so we can encourage more pioneering research and celebrate scientists as the heroes they truly are.”

Optogenetics

Boyden was honored for the development and implementation of optogenetics, a technique in which scientists can control neurons by shining light on them. Karl Deisseroth, a Stanford University professor who worked with Boyden to pioneer the technique, was also honored with one of the life sciences prizes.

Optogenetics relies on light-sensitive proteins, originally isolated from bacteria and algae. About 10 years ago, Boyden and Deisseroth began engineering neurons to express these proteins, allowing them to selectively stimulate or silence them with pulses of light. More recently, Boyden has developed additional proteins that are even more sensitive to light and can respond to different colors.

Scientists around the world have used optogenetics to reveal the brain circuitry underlying normal neural function as well as neurological disorders such as autism, obsessive-compulsive disorder, and depression.

Boyden is a member of the MIT Media Lab and MIT’s McGovern Institute for Brain Research.

Neutrino oscillations

The Breakthrough Prize in Fundamental Physics was awarded to five research projects investigating the nature of neutrinos: Daya Bay (China); KamLAND (Japan); K2K/T2K (Japan); Sudbury Neutrino Observatory (Canada); and Super-Kamiokande (Japan). Researchers with these experiments were recognized “for the fundamental discovery of neutrino oscillations, revealing a new frontier beyond, and possibly far beyond, the standard model of particle physics.”

Formaggio and his team at MIT have been collaborating on the Sudbury Neutrino Observatory (SNO) project since 2005. Research at the observatory, 2 kilometers underground in a mine near Sudbury, Ontario, demonstrated that neutrinos change their type — or “flavor” — on their way to Earth from the sun.

Winslow has been a collaborator on KamLAND, located in a mine in Japan, since 2001. Using antineutrinos from nuclear reactors, this experiment demonstrated that the change in flavor was energy-dependent. The combination of these results solved the solar neutrino puzzle and proved that neutrinos have mass.

The MIT SNO group has participated heavily on the analysis of neutrino data, particularly during that experiment’s final measurement phase. The MIT KamLAND group is involved with the next phase, KamLAND-Zen, which is searching for a rare nuclear process that if observed, would make neutrinos their own antiparticles.

Reaching new horizons

Guth, who will receive a $100,000 prize, was honored for his “ingenious and surprising solutions to long standing open problems in symplectic geometry, Riemannian geometry, harmonic analysis, and combinatorial geometry.”

Guth’s work at MIT focuses on combinatorics, or the study of discrete structures, and how sets of lines intersect each other in space. He also works in the area of harmonic analysis, studying how sound waves interact with each other.

Guth’s father, MIT physicist Alan Guth, won the inaugural Breakthrough Prize in Fundamental Physics in 2015.

Fu will share a New Horizons in Physics Prize with two other researchers: B. Andrei Bernevig of Princeton University and Xiao-Liang Qi of Stanford University. The physicists were honored for their “outstanding contributions to condensed matter physics, especially involving the use of topology to understand new states of matter.”

Fu works on theories of topological insulators — a new class of materials whose surfaces can freely conduct electrons even though their interiors are electrical insulators — and topological superconductors. Such materials may provide insight into quantum physics and have possible applications in creating transistors based on the spin of particles rather than their charge.

Yesterday’s prize ceremony was hosted by producer/actor/director Seth MacFarlane; awards were presented by the prize sponsors and by celebrities including actors Russell Crowe, Hilary Swank, and Lily Collins. The Breakthrough Prizes were founded by Sergey Brin and Anne Wojcicki, Jack Ma and Cathy Zhang, Yuri and Julia Milner, and Mark Zuckerberg and Priscilla Chan.

“Breakthrough Prize laureates are making fundamental discoveries about the universe, life, and the mind,” Yuri Milner said. “These fields of investigation are advancing at an exponential pace, yet the biggest questions remain to be answered.”

MIT researchers to win awards from the Society for Neuroscience

Three neuroscientists at MIT have been selected to receive awards from the Society for Neuroscience (SfN).

Tomaso Poggio, a founding member of the McGovern Institute for Brain Research at MIT, will receive the Swartz Prize for Theoretical and Computational Neuroscience; Feng Zhang, a member of the McGovern Institute and an assistant professor in the Department of Brain and Cognitive Sciences, will receive the Young Investigator Award; and Sung-Yon Kim, a Simons postdoctoral fellow of the Life Sciences Research Foundation at MIT, will receive the Donald B. Lindsley Prize in Behavioral Neuroscience.
 
The awards will be presented during Neuroscience 2014, the SfN’s annual meeting in Washington, D.C.

Swartz Prize for Theoretical and Computational Neuroscience
 

The $25,000 Swartz Prize for Theoretical and Computational Neuroscience, supported by the Swartz Foundation, recognizes an individual who has produced a significant cumulative contribution to theoretical models or computational methods in neuroscience.

“Dr. Poggio’s contributions to the development of computational and theoretical models of the human visual system have served to advance our understanding of how human systems learn from experience,” said Carol Mason, president of SfN. “It is an honor to recognize him as a founder and driving force in the field of computational neuroscience.”

Poggio, the Eugene McDermott Professor in the Department of Brain and Cognitive Sciences and the director of the Center for Brains, Minds and Machines, develops computational models of the brain to understand human intelligence. Specifically, he has developed models that mimic the ways that humans learn to recognize objects, such as faces, and actions, such as motion — applications now present in digital cameras and some cars. Poggio is currently working to develop more complex models that mimic the forward as well as feedback signals that the human brain uses during visual recognition. The ultimate goal of this research is to better understand how the brain works and to apply this technology to build intelligent machines.


Young Investigator Award
 

The SfN has also named two winners of this year’s Young Investigator Award: Feng Zhang of MIT and Diana Bautista of the University of California at Berkeley.

The $15,000 award recognizes the outstanding achievements and contributions by a young neuroscientist who has recently received his or her advanced professional degree.

“Drs. Zhang and Bautista are two young neuroscientists who have demonstrated remarkable dedication to their work,” Mason said. “Their creative research is advancing their respective fields, and their commitment to helping other scientists succeed is an inspiration to us all.”

Zhang, who is also a core member of the Broad Institute of MIT and Harvard and the W. M. Keck Career Development Professor in Biomedical Engineering, uses synthetic biology methods to study brain disease.
 
As a graduate student at Stanford University, Zhang was instrumental in advancing the development of optogenetic technology, which allows researchers to manipulate genetically modified neurons with light. More recently, Zhang was a leader in the development of the CRISPR-Cas9 method for genome editing – a powerful new technology with many applications in biomedical research, including the potential to treat human genetic disease.

Donald B. Lindsley Prize in Behavioral Neuroscience
 


The SfN will award the Donald B. Lindsley Prize to Sung-Yon Kim, a postdoc in Kwanghun Chung’s lab at the Picower Institute for Learning and Memory.

Supported by The Grass Foundation, the prize recognizes an outstanding PhD thesis in the area of general behavioral neuroscience.
 
Kim, who earned his PhD at Stanford University, used optogenetics to study the brain circuits underlying anxiety.

“The Society is pleased to honor Dr. Kim’s groundbreaking research in the neuroanatomical basis of anxiety behavior,” said Mason. “His approach to behavioral neuroscience will likely have a broad and lasting impact on biology and medicine.”

Fifteen MIT scientists receive NIH BRAIN Initiative grants

Today, the National Institutes of Health (NIH) announced their first round of BRAIN Initiative award recipients. Six teams and 15 researchers from the Massachusetts Institute of Technology were recipients.

Mriganka Sur, principal investigator at the Picower Institute for Learning and Memory and the Paul E. Newton Professor of Neuroscience in MIT’s Department of Brain and Cognitive Sciences (BCS) leads a team studying cortical circuits and information flow during memory-guided perceptual decisions. Co-principal investigators include Emery Brown, BCS professor of computational neuroscience and the Edward Hood Taplin Professor of Medical Engineering; Kwanghun Chung, Picower Institute principal investigator and assistant professor in the Department of Chemical Engineering and the Institute for Medical Engineering and Science (IMES); and Ian Wickersham, research scientist at the McGovern Institute for Brain Research and head of MIT’s Genetic Neuroengineering Group.

Elly Nedivi, Picower Institute principal investigator and professor in BCS and the Department of Biology, leads a team studying new methods for high-speed monitoring of sensory-driven synaptic activity across all inputs to single living neurons in the context of the intact cerebral cortex. Her co-principal investigator is Peter So, professor of mechanical and biological engineering, and director of the MIT Laser Biomedical Research Center.

Ian Wickersham will lead a team looking at novel technologies for nontoxic transsynaptic tracing. His co-principal investigators include Robert Desimone, director of the McGovern Institute and the Doris and Don Berkey Professor of Neuroscience in BCS; Li-Huei Tsai, director of the Picower Institute and the Picower Professor of Neuroscience in BCS; and Kay Tye, Picower Institute principal investigator and assistant professor of neuroscience in BCS.

Robert Desimone will lead a team studying vascular interfaces for brain imaging and stimulation. Co-principal investigators include Ed Boyden, associate professor at the MIT Media Lab, McGovern Institute, and departments of BCS and Biological Engineering; head of MIT’s Synthetic Neurobiology Group, and co-director of MIT’s Center for Neurobiological Engineering; and Elazer Edelman, the Thomas D. and Virginia W. Cabot Professor of Health Sciences and Technology in IMES and director of the Harvard-MIT Biomedical Engineering Center. Collaborators on this project include: Rodolfo Llinas (New York University), George Church (Harvard University), Jan Rabaey (University of California at Berkeley), Pablo Blinder (Tel Aviv University), Eric Leuthardt (Washington University/St. Louis), Michel Maharbiz (Berkeley), Jose Carmena (Berkeley), Elad Alon (Berkeley), Colin Derdeyn (Washington University in St. Louis), Lowell Wood (Bill and Melinda Gates Foundation), Xue Han (Boston University), and Adam Marblestone (MIT).

Ed Boyden will be co-principal investigator with Mark Bathe, associate professor of biological engineering, and Peng Yin of Harvard on a project to study ultra-multiplexed nanoscale in situ proteomics for understanding synapse types.

Alan Jasanoff, associate professor of biological engineering and director of the MIT Center for Neurobiological Engineering, will lead a team looking at calcium sensors for molecular fMRI. Stephen Lippard, the Arthur Amos Noyes Professor of Chemistry, is co-principal investigator.

In addition, Sur and Wickersham also received BRAIN Early Concept Grants for Exploratory Research (EAGER) from the National Science Foundation (NSF). Sur will focus on massive-scale multi-area single neuron recordings to reveal circuits underlying short-term memory. Wickersham, in collaboration with Li-Huei Tsai, Kay Tye, and Robert Desimone, will develop cell-type specific optogenetics in wild-type animals. Additional information about NSF support of the BRAIN initiative can be found at NSF.gov/brain.

The BRAIN Initiative, spearheaded by President Obama in April 2013, challenges the nation’s leading scientists to advance our sophisticated understanding of the human mind and discover new ways to treat, prevent, and cure neurological disorders like Alzheimer’s, schizophrenia, autism, and traumatic brain injury. The scientific community is charged with accelerating the invention of cutting-edge technologies that can produce dynamic images of complex neural circuits and illuminate the interaction of lightning-fast brain cells. The new capabilities are expected to provide greater insights into how brain functionality is linked to behavior, learning, memory, and the underlying mechanisms of debilitating disease. BRAIN was launched with approximately $100 million in initial investments from the NIH, the National Science Foundation, and the Defense Advanced Research Projects Agency (DARPA).

BRAIN Initiative scientists are engaged in a challenging and transformative endeavor to explore how our minds instantaneously processes, store, and retrieve vast quantities of information. Their discoveries will unlock many of the remaining mysteries inherent in the brain’s billions of neurons and trillions of connections, leading to a deeper understanding of the underlying causes of many neurological and psychiatric conditions. Their findings will enable scientists and doctors to develop the groundbreaking arsenal of tools and technologies required to more effectively treat those suffering from these devastating disorders.

Feng Zhang shares Gabbay Award for CRISPR research

Feng Zhang of MIT and the Broad Institute, Jennifer Doudna of the University of California, Berkeley and the Howard Hughes Medical Institute, and Emmanuelle Charpentier of Umeå University have been awarded Brandeis University’s 17th Annual Jacob Heskel Gabbay Award in Biotechnology and Medicine.

The researchers are being honored for their work on the CRISPR/cas system, a genome editing technology that allows scientists to make precise changes to a DNA sequence — an advance that is expected to transform many areas of biomedical research and may ultimately form the basis of new treatments for human genetic disease.