Nancy Kanwisher Shares 2024 Kavli Prize in Neuroscience

The Norwegian Academy of Science and Letters today announced the 2024 Kavli Prize Laureates in the fields of astrophysics, nanoscience, and neuroscience. The 2024 Kavli Prize in Neuroscience honors Nancy Kanwisher, the Walter A. Rosenblith Professor of Cognitive Neuroscience at MIT and an investigator at the McGovern Institute, along with UC Berkeley neurobiologist Doris Tsao, and Rockefeller University neuroscientist Winrich Freiwald for their discovery of a highly localized and specialized system for representation of faces in human and non-human primate neocortex. The neuroscience laureates will share $1 million USD.

“Kanwisher, Freiwald, and Tsao together discovered a localized and specialized neocortical system for face recognition,” says Kristine Walhovd, Chair of the Kavli Neuroscience Committee. “Their outstanding research will ultimately further our understanding of recognition not only of faces, but objects and scenes.”

Overcoming failure

As a graduate student at MIT in the early days of functional brain imaging, Kanwisher was fascinated by the potential of the emerging technology to answer a suite of questions about the human mind. But a lack of brain imaging resources and a series of failed experiments led Kanwisher consider leaving the field for good. She credits her advisor, MIT Professor of Psychology Molly Potter, for supporting her through this challenging time and for teaching her how to make powerful inferences about the inner workings of the mind from behavioral data alone.

After receiving her PhD from MIT, Kanwisher spent a year studying nuclear strategy with a MacArthur Foundation Fellowship in Peace and International Security, but eventually returned to science by accepting a faculty position at Harvard University where she could use the latest brain imaging technology to pursue the scientific questions that had always fascinated her.

Zeroing in on faces

Recognizing faces is important for social interaction in many animals. Previous work in human psychology and animal research had suggested the existence of a functionally specialized system for face recognition, but this system had not clearly been identified with brain imaging technology. It is here that Kanwisher saw her opportunity.

Using a new method at the time, called functional magnetic resonance imaging or fMRI, Kanwisher’s team scanned people while they looked at faces and while they looked at objects, and searched for brain regions that responded more to one than the other. They found a small patch of neocortex, now called the fusiform face area (FFA), that is dedicated specifically to the task of face recognition. She found individual differences in the location of this area and devised an analysis technique to effectively localize specialized functional regions in the brain. This technique is now widely used and applied to domains beyond the face recognition system. Notably, Kanwisher’s first FFA paper was co-authored with Josh McDermott, who was an undergrad at Harvard University at the time, and is now an associate investigator at the McGovern Institute and holds a faculty position alongside Kanwisher in MIT’s Department of Brain and Cognitive Sciences.

A group of five scientists standing and smiling in front of a whiteboard.
The Kanwisher lab at Harvard University circa 1996. From left to right: Nancy Kanwisher, Josh McDermott (then an undergrad), Marvin Chun (postdoc), Ewa Wojciulik (postdoc), and Jody Culham (grad student). Photo: Nancy Kanwisher

From humans to monkeys

Inspired by Kanwisher´s findings, Winrich Freiwald and Doris Tsao together used fMRI to localize similar face patches in macaque monkeys. They mapped out six distinct brain regions, known as the face patch system, including these regions’ functional specialization and how they are connected. By recording the activity of individual brain cells, they revealed how cells in some face patches specialize in faces with particular views.

Tsao proceeded to identify how the face patches work together to identify a face, through a specific code that enables single cells to identify faces by assembling information of facial features. For example, some cells respond to the presence of hair, others to the distance between the eyes. Freiwald uncovered that a separate brain region, called the temporal pole, accelerates our recognition of familiar faces, and that some cells are selectively responsive to familiar faces.

“It was a special thrill for me when Doris and Winrich found face patches in monkeys using fMRI,” says Kanwisher, whose lab at MIT’s McGovern Institute has gone on to uncover many other regions of the human brain that engage in specific aspects of perception and cognition. “They are scientific heroes to me, and it is a thrill to receive the Kavli Prize in neuroscience jointly with them.”

“Nancy and her students have identified neocortical subregions that differentially engage in the perception of faces, places, music and even what others think,” says McGovern Institute Director Robert Desimone. “We are delighted that her groundbreaking work into the functional organization of the human brain is being honored this year with the Kavli Prize.”

Together, the laureates, with their work on neocortical specialization for face recognition, have provided basic principles of neural organization which will further our understanding of how we perceive the world around us.

About the Kavli Prize

The Kavli Prize is a partnership among The Norwegian Academy of Science and Letters, The Norwegian Ministry of Education and Research, and The Kavli Foundation (USA). The Kavli Prize honors scientists for breakthroughs in astrophysics, nanoscience and neuroscience that transform our understanding of the big, the small and the complex. Three one-million-dollar prizes are awarded every other year in each of the three fields. The Norwegian Academy of Science and Letters selects the laureates based on recommendations from three independent prize committees whose members are nominated by The Chinese Academy of Sciences, The French Academy of Sciences, The Max Planck Society of Germany, The U.S. National Academy of Sciences, and The Royal Society, UK.

What is consciousness?

In the hit T.V. show “Westworld,” Dolores Abernathy, a golden-tressed belle, lives in the days when Manifest Destiny still echoed in America. She begins to notice unusual stirrings shaking up her quaint western town—and soon discovers that her skin is synthetic, and her mind, metal. She’s a cyborg meant to entertain humans. The key to her autonomy lies in reaching consciousness.

Shows like “Westworld” and other media probe the idea of consciousness, attempting to nail down a definition of the concept. However, though humans have ruminated on consciousness for centuries, we still don’t have a solid definition (even the Merriam-Webster dictionary lists five). One framework suggests that consciousness is any experience, from eating a candy bar to heartbreak. Another argues that it is how certain stimuli influence one’s behavior.

MIT graduate student Adam Eisen.

While some search for a philosophical explanation, MIT graduate student Adam Eisen seeks a scientific one.

Eisen studies consciousness in the labs of Ila Fiete, an associate investigator at the McGovern Institute, and Earl Miller, an investigator at the Picower Institute for Learning and Memory. His work melds seemingly opposite fields, using mathematical models to quantitatively explain, and thereby ground, the loftiness of consciousness.

In the Fiete lab, Eisen leverages computational methods to compare the brain’s electrical signals in an awake, conscious state to those in an unconscious state via anesthesia—which dampens communication between neurons so people feel no pain or become unconscious.

“What’s nice about anesthesia is that we have a reliable way of turning off consciousness,” says Eisen.

“So we’re now able to ask: What’s the fluctuation of electrical activity in a conscious versus unconscious brain? By characterizing how these states vary—with the precision enabled by computational models—we can start to build a better intuition for what underlies consciousness.”

Theories of consciousness

How are scientists thinking about consciousness? Eisen says that there are four major theories circulating in the neuroscience sphere. These theories are outlined below.

Global workspace theory

Consider the placement of your tongue in your mouth. This sensory information is always there, but you only notice the sensation when you make the effort to think about it. How does this happen?

“Global workspace theory seeks to explain how information becomes available to our consciousness,” he says. “This is called access consciousness—the kind that stores information in your mind and makes it available for verbal report. In this view, sensory information is broadcasted to higher-level regions of the brain by a process called ignition.” The theory proposes that widespread jolts of neuronal activity or “spiking” are essential for ignition, like how a few claps can lead to an audience applause. It’s through ignition that we reach consciousness.

Eisen’s research in anesthesia suggests, though, that not just any spiking will do. There needs to be a balance: enough activity to spark ignition, but also enough stability such that the brain doesn’t lose its ability to respond to inputs and produce reliable computations to reach consciousness.

Higher order theories

Let’s say you’re listening to “Here Comes The Sun” by The Beatles. Your brain processes the medley of auditory stimuli; you hear the bouncy guitar, upbeat drums, and George Harrison’s perky vocals. You’re having a musical experience—what it’s like to listen to music. According to higher-order theories, such an experience unlocks consciousness.

“Higher-order theories posit that a conscious mental state involves having higher-order mental representations of stimuli—usually in the higher levels of the brain responsible for cognition—to experience the world,” Eisen says.

Integrated information theory

“Imagine jumping into a lake on a warm summer day. All components of that experience—the feeling of the sun on your skin and the coolness of the water as you submerge—come together to form your ‘phenomenal consciousness,’” Eisen says. If the day was slightly less sunny or the water a fraction warmer, he explains, the experience would be different.

“Integrated information theory suggests that phenomenal consciousness involves an experience that is irreducible, meaning that none of the components of that experience can be separated or altered without changing the experience itself,” he says.

Attention schema theory

Attention schema theory, Eisen explains, says ‘attention’ is the information that we are focused on in the world, while ‘awareness’ is the model we have of our attention. He cites an interesting psychology study to disentangle attention and awareness.

In the study, the researchers showed human subjects a mixed sequence of two numbers and six letters on a computer. The participants were asked to report back what the numbers were. While they were doing this task, faintly detectable dots moved across the screen in the background. The interesting part, Eisen notes, is that people weren’t aware of the dots—that is, they didn’t report that they saw them. But despite saying they didn’t see the dots, people performed worse on the task when the dots were present.

“This suggests that some of the subjects’ attention was allocated towards the dots, limiting their available attention for the actual task,” he says. “In this case, people’s awareness didn’t track their attention. The subjects were not aware of the dots, even though the study shows that the dots did indeed affect their attention.”

The science behind consciousness

Eisen notes that a solid understanding of the neural basis of consciousness has yet to be cemented. However, he and his research team are advancing in this quest. “In our work, we found that brain activity is more ‘unstable’ under anesthesia, meaning that it lacks the ability to recover from disturbances—like distractions or random fluctuations in activity—and regain a normal state,” he says.

He and his fellow researchers believe this is because the unconscious brain can’t reliably engage in computations like the conscious brain does, and sensory information gets lost in the noise. This crucial finding points to how the brain’s stability may be a cornerstone of consciousness.

There’s still more work to do, Eisen says. But eventually, he hopes that this research can help crack the enduring mystery of how consciousness shapes human existence. “There is so much complexity and depth to human experience, emotion, and thought. Through rigorous research, we may one day reveal the machinery that gives us our common humanity.”

For people who speak many languages, there’s something special about their native tongue

A new study of people who speak many languages has found that there is something special about how the brain processes their native language.

In the brains of these polyglots — people who speak five or more languages — the same language regions light up when they listen to any of the languages that they speak. In general, this network responds more strongly to languages in which the speaker is more proficient, with one notable exception: the speaker’s native language. When listening to one’s native language, language network activity drops off significantly.

The findings suggest there is something unique about the first language one acquires, which allows the brain to process it with minimal effort, the researchers say.

“Something makes it a little bit easier to process — maybe it’s that you’ve spent more time using that language — and you get a dip in activity for the native language compared to other languages that you speak proficiently,” says Evelina Fedorenko, an associate professor of neuroscience at MIT, a member of MIT’s McGovern Institute for Brain Research, and the senior author of the study.

Saima Malik-Moraleda, a graduate student in the Speech and Hearing Bioscience and Technology Program at Harvard University, and Olessia Jouravlev, a former MIT postdoc who is now an associate professor at Carleton University, are the lead authors of the paper, which appears today in the journal Cerebral Cortex.

Many languages, one network

McGovern Investivator Ev Fedorenko in the Martinos Imaging Center at MIT. Photo: Caitlin Cunningham

The brain’s language processing network, located primarily in the left hemisphere, includes regions in the frontal and temporal lobes. In a 2021 study, Fedorenko’s lab found that in the brains of polyglots, the language network was less active when listening to their native language than the language networks of people who speak only one language.

In the new study, the researchers wanted to expand on that finding and explore what happens in the brains of polyglots as they listen to languages in which they have varying levels of proficiency. Studying polyglots can help researchers learn more about the functions of the language network, and how languages learned later in life might be represented differently than a native language or languages.

“With polyglots, you can do all of the comparisons within one person. You have languages that vary along a continuum, and you can try to see how the brain modulates responses as a function of proficiency,” Fedorenko says.

For the study, the researchers recruited 34 polyglots, each of whom had at least some degree of proficiency in five or more languages but were not bilingual or multilingual from infancy. Sixteen of the participants spoke 10 or more languages, including one who spoke 54 languages with at least some proficiency.

Each participant was scanned with functional magnetic resonance imaging (fMRI) as they listened to passages read in eight different languages. These included their native language, a language they were highly proficient in, a language they were moderately proficient in, and a language in which they described themselves as having low proficiency.

They were also scanned while listening to four languages they didn’t speak at all. Two of these were languages from the same family (such as Romance languages) as a language they could speak, and two were languages completely unrelated to any languages they spoke.

The passages used for the study came from two different sources, which the researchers had previously developed for other language studies. One was a set of Bible stories recorded in many different languages, and the other consisted of passages from “Alice in Wonderland” translated into many languages.

Brain scans revealed that the language network lit up the most when participants listened to languages in which they were the most proficient. However, that did not hold true for the participants’ native languages, which activated the language network much less than non-native languages in which they had similar proficiency. This suggests that people are so proficient in their native language that the language network doesn’t need to work very hard to interpret it.

“As you increase proficiency, you can engage linguistic computations to a greater extent, so you get these progressively stronger responses. But then if you compare a really high-proficiency language and a native language, it may be that the native language is just a little bit easier, possibly because you’ve had more experience with it,” Fedorenko says.

Brain engagement

The researchers saw a similar phenomenon when polyglots listened to languages that they don’t speak: Their language network was more engaged when listening to languages related to a language that they could understand, than compared to listening to completely unfamiliar languages.

“Here we’re getting a hint that the response in the language network scales up with how much you understand from the input,” Malik-Moraleda says. “We didn’t quantify the level of understanding here, but in the future we’re planning to evaluate how much people are truly understanding the passages that they’re listening to, and then see how that relates to the activation.”

The researchers also found that a brain network known as the multiple demand network, which turns on whenever the brain is performing a cognitively demanding task, also becomes activated when listening to languages other than one’s native language.

“What we’re seeing here is that the language regions are engaged when we process all these languages, and then there’s this other network that comes in for non-native languages to help you out because it’s a harder task,” Malik-Moraleda says.

In this study, most of the polyglots began studying their non-native languages as teenagers or adults, but in future work, the researchers hope to study people who learned multiple languages from a very young age. They also plan to study people who learned one language from infancy but moved to the United States at a very young age and began speaking English as their dominant language, while becoming less proficient in their native language, to help disentangle the effects of proficiency versus age of acquisition on brain responses.

The research was funded by the McGovern Institute for Brain Research, MIT’s Department of Brain and Cognitive Sciences, and the Simons Center for the Social Brain.

Exposure to different kinds of music influences how the brain interprets rhythm

When listening to music, the human brain appears to be biased toward hearing and producing rhythms composed of simple integer ratios — for example, a series of four beats separated by equal time intervals (forming a 1:1:1 ratio).

However, the favored ratios can vary greatly between different societies, according to a large-scale study led by researchers at MIT and the Max Planck Institute for Empirical Aesthetics and carried out in 15 countries. The study included 39 groups of participants, many of whom came from societies whose traditional music contains distinctive patterns of rhythm not found in Western music.

“Our study provides the clearest evidence yet for some degree of universality in music perception and cognition, in the sense that every single group of participants that was tested exhibits biases for integer ratios. It also provides a glimpse of the variation that can occur across cultures, which can be quite substantial,” says Nori Jacoby, the study’s lead author and a former MIT postdoc, who is now a research group leader at the Max Planck Institute for Empirical Aesthetics in Frankfurt, Germany.

The brain’s bias toward simple integer ratios may have evolved as a natural error-correction system that makes it easier to maintain a consistent body of music, which human societies often use to transmit information.

“When people produce music, they often make small mistakes. Our results are consistent with the idea that our mental representation is somewhat robust to those mistakes, but it is robust in a way that pushes us toward our preexisting ideas of the structures that should be found in music,” says Josh McDermott, an associate professor of brain and cognitive sciences at MIT and a member of MIT’s McGovern Institute for Brain Research and Center for Brains, Minds, and Machines.

McDermott is the senior author of the study, which appears today in Nature Human Behaviour. The research team also included scientists from more than two dozen institutions around the world.

A global approach

The new study grew out of a smaller analysis that Jacoby and McDermott published in 2017. In that paper, the researchers compared rhythm perception in groups of listeners from the United States and the Tsimane’, an Indigenous society located in the Bolivian Amazon rainforest.

pitch perception study
Nori Jacoby, a former MIT postdoc now at the Max Planck Institute for Empirical Aesthetics, runs an experiment with a member of the Tsimane’ tribe, who have had little exposure to Western music. Photo: Josh McDermott

To measure how people perceive rhythm, the researchers devised a task in which they play a randomly generated series of four beats and then ask the listener to tap back what they heard. The rhythm produced by the listener is then played back to the listener, and they tap it back again. Over several iterations, the tapped sequences became dominated by the listener’s internal biases, also known as priors.

“The initial stimulus pattern is random, but at each iteration the pattern is pushed by the listener’s biases, such that it tends to converge to a particular point in the space of possible rhythms,” McDermott says. “That can give you a picture of what we call the prior, which is the set of internal implicit expectations for rhythms that people have in their heads.”

When the researchers first did this experiment, with American college students as the test subjects, they found that people tended to produce time intervals that are related by simple integer ratios. Furthermore, most of the rhythms they produced, such as those with ratios of 1:1:2 and 2:3:3, are commonly found in Western music.

The researchers then went to Bolivia and asked members of the Tsimane’ society to perform the same task. They found that Tsimane’ also produced rhythms with simple integer ratios, but their preferred ratios were different and appeared to be consistent with those that have been documented in the few existing records of Tsimane’ music.

“At that point, it provided some evidence that there might be very widespread tendencies to favor these small integer ratios, and that there might be some degree of cross-cultural variation. But because we had just looked at this one other culture, it really wasn’t clear how this was going to look at a broader scale,” Jacoby says.

To try to get that broader picture, the MIT team began seeking collaborators around the world who could help them gather data on a more diverse set of populations. They ended up studying listeners from 39 groups, representing 15 countries on five continents — North America, South America, Europe, Africa, and Asia.

“This is really the first study of its kind in the sense that we did the same experiment in all these different places, with people who are on the ground in those locations,” McDermott says. “That hasn’t really been done before at anything close to this scale, and it gave us an opportunity to see the degree of variation that might exist around the world.”

A grid of nine different photos showing a researcher working with an individual at a table. The individuals are wearing headphones.
Example testing sites. a, Yaranda, Bolivia. b, Montevideo, Uruguay. c, Sagele, Mali. d, Spitzkoppe, Namibia. e, Pleven, Bulgaria. f, Bamako, Mali. g, D’Kar, Botswana. h, Stockholm, Sweden. i, Guizhou, China. j, Mumbai, India. Verbal informed consent was obtained from the individuals in each photo.

Cultural comparisons

Just as they had in their original 2017 study, the researchers found that in every group they tested, people tended to be biased toward simple integer ratios of rhythm. However, not every group showed the same biases. People from North America and Western Europe, who have likely been exposed to the same kinds of music, were more likely to generate rhythms with the same ratios. However, many groups, for example those in Turkey, Mali, Bulgaria, and Botswana showed a bias for other rhythms.

“There are certain cultures where there are particular rhythms that are prominent in their music, and those end up showing up in the mental representation of rhythm,” Jacoby says.

The researchers believe their findings reveal a mechanism that the brain uses to aid in the perception and production of music.

“When you hear somebody playing something and they have errors in their performance, you’re going to mentally correct for those by mapping them onto where you implicitly think they ought to be,” McDermott says. “If you didn’t have something like this, and you just faithfully represented what you heard, these errors might propagate and make it much harder to maintain a musical system.”

Among the groups that they studied, the researchers took care to include not only college students, who are easy to study in large numbers, but also people living in traditional societies, who are more difficult to reach. Participants from those more traditional groups showed significant differences from college students living in the same countries, and from people who live in those countries but performed the test online.

“What’s very clear from the paper is that if you just look at the results from undergraduate students around the world, you vastly underestimate the diversity that you see otherwise,” Jacoby says. “And the same was true of experiments where we tested groups of people online in Brazil and India, because you’re dealing with people who have internet access and presumably have more exposure to Western music.”

The researchers now hope to run additional studies of different aspects of music perception, taking this global approach.

“If you’re just testing college students around the world or people online, things look a lot more homogenous. I think it’s very important for the field to realize that you actually need to go out into communities and run experiments there, as opposed to taking the low-hanging fruit of running studies with people in a university or on the internet,” McDermott says.

The research was funded by the James S. McDonnell Foundation, the Canadian National Science and Engineering Research Council, the South African National Research Foundation, the United States National Science Foundation, the Chilean National Research and Development Agency, the Austrian Academy of Sciences, the Japan Society for the Promotion of Science, the Keio Global Research Institute, the United Kingdom Arts and Humanities Research Council, the Swedish Research Council, and the John Fell Fund.

Do we only use 10 percent of our brain?

Movies like “Limitless” and “Lucy” play on the notion that humans use only 10 percent of their brains—and those who unlock a higher percentage wield powers like infinite memory or telekinesis. It’s enticing to think that so much of the brain remains untapped and is ripe for boosting human potential.

But the idea that we use 10 percent of our brain is 100 percent a myth.

In fact, scientists believe that we use our entire brain every day. Mila Halgren is a graduate student in the lab of Mark Harnett, an associate professor of brain and cognitive sciences and an investigator at the McGovern Institute. The Harnett lab studies the computational power of neurons, that is, how neural networks rapidly process massive amounts of information.

“All of our brain is constantly in use and consumes a tremendous amount of energy,” Halgren says. “Despite making up only two percent of our body weight, it devours 20 percent of our calories.” This doesn’t appear to change significantly with different tasks, from typing on a computer to doing yoga. “Even while we sleep, our entire brain remains intensely active.”

When did this myth take root?

Portrait of scientist Mila Halgren
Mila Halgren is a PhD student in MIT’s Department of Brain and Cognitive Sciences. Photo: Mila Halgren

The myth is thought to have gained traction when scientists first began exploring the brain’s abilities but lacked the tools to capture its exact workings. In 1907, William James, a founder of American psychology, suggested in his book “The Energies of Men” that “we are making use of only a small part of our possible mental and physical resources.” This influential work likely sparked the idea that humans access a mere fraction of the brain—setting this common misconception ablaze.

Brainpower lore even suggests that Albert Einstein credited his genius to being able to access more than 10 percent of his brain. However, no such quote has been documented and this too is perhaps a myth of cosmic proportion.

Halgren believes that there may be some fact backing this fiction. “People may think our brain is underutilized in the sense that some neurons fire very infrequently—once every few minutes or less. But this isn’t true of most neurons, some of which fire hundreds of times per second,” she says.

In the nascent years of neuroscience, scientists also argued that a large portion of the brain must be inactive because some people experience brain injuries and can still function at a high level, like the famous case of Phineas Gage. Halgren points to the brain’s remarkable plasticity—the reshaping of neural connections. “Entire brain hemispheres can be removed during early childhood and the rest of the brain will rewire and compensate for the loss. In other words, the brain will use 100 percent of what it has, but can make do with less depending on which structures are damaged.”

Is there a limit to the brain?

If we indeed use our entire brain, can humans tease out any problem? Or, are there enigmas in the world that we will never unravel?

“This is still in contention,” Halgren says. “There may be certain problems that the human brain is fundamentally unable to solve, like how a mouse will never understand chemistry and a chimpanzee can’t do calculus.”

Can we increase our brainpower?

The brain may have its limits, but there are ways to boost our cognitive prowess to ace that midterm or crank up productivity in the workplace. According to Halgren, “You can increase your brainpower, but there’s no ‘trick’ that will allow you to do so. Like any organ in your body, the brain works best with proper sleep, exercise, low stress, and a well-balanced diet.”

The truth is, we may never rearrange furniture with our minds or foresee which team will win the Super Bowl. The idea of a largely latent brain is draped in fantasy, but debunking this myth speaks to the immense growth of neuroscience over the years—and the allure of other misconceptions that scientists have yet to demystify.

The brain runs an internal simulation to keep track of time

Clocks, computers, and metronomes can keep time with exquisite precision. But even in the absence of an external time keeper, we can track time on our own. We know when minutes or hours have elapsed, and we can maintain a rhythm when we dance, sing, or play music. Now, neuroscientists at the National Autonomous University of Mexico and MIT’s McGovern Institute and have discovered one way the brain keeps a beat: It runs an internal simulation, mentally recreating the perception of an external rhythm and preparing an appropriately timed response.

The discovery, reported January 10, 2024, in the journal Science Advances, illustrates how animals can think about imaginary events and use an internal model to guide their interactions with the world. “It’s a real indication of mental states as an independent driver of behavior,” says neuroscientist Mehrdad Jazayeri, an investigator at the McGovern Institute and an associate professor of brain and cognitive sciences at MIT.

Predicting the future

Jazayeri teamed up with Victor de Lafuente, a neuroscientist at the National Autonomous University of Mexico, to investigate the brain’s time-keeping ability. De Lafuente, who led the study, says they were motivated by curiosity about how the brain makes predictions and prepares for future states of the world.

De Lafuente and his team used a visual metronome to teach monkeys a simple rhythm, showing them a circle that moved between two positions on a screen to set a steady tempo. Then the metronome stopped. After a variable and unpredictable pause, the monkeys were asked to indicate where the dot would be if the metronome had carried on.

Monkeys do well at this task, successfully keeping time after the metronome stops. After the waiting period, they are usually able to identify the expected position of the circle, which they communicate by reaching towards a touchscreen.

To find out how the animals were keeping track of the metronome’s rhythm, de Lafuente’s group monitored their brain activity. In several key brain regions, they found rhythmic patterns of activity that oscillated at the same frequency as the metronome. This occurred while the monkeys watched the metronome. More remarkably, it continued after the metronome had stopped.

“The animal is seeing things going and then things stop. What we find in the brain is the continuation of that process in the animal’s mind,” Jazayeri says. “An entire network is replicating what it was doing.”

That was true in the visual cortex, where clusters of neurons respond to stimuli in specific spots within the eyes’ field of view. One set of cells in the visual cortex fired when the metronome’s circle was on the left of the screen; another set fired when the dot was on the right. As a monkey followed the visual metronome, the researchers could see these cells’ activity alternating rhythmically, tracking the movement. When the metronome stopped, the back-and-forth neural activity continued, maintaining the rhythm. “Once the stimulus was no longer visible, they were seeing the stimulus within their minds,” de Lafuente says.

They found something similar in the brain’s motor cortex, where movements are prepared and executed. De Lafuente explains that the monkeys are motionless for most of their time-keeping task; only when they are asked to indicate where the metronome’s circle should be do they move a hand to touch the screen. But the motor cortex was engaged even before it was time to move. “Within their brains there is a signal that is switching from the left to the right,” he says. “So the monkeys are thinking ‘left, right, left, right’—even when they are not moving and the world is constant.”

While some scientists have proposed that the brain may have a central time-keeping mechanism, the team’s findings indicate that entire networks can be called on to track the passage of time. The monkeys’ model of the future was surprisingly explicit, de Lafuente says, representing specific sensory stimuli and plans for movement. “This offers a potential solution to mentally tracking the dynamics in the world, which is to basically think about them in terms of how they actually would have happened,” Jazayeri says.

 

How the brain responds to reward is linked to socioeconomic background

MIT neuroscientists have found that the brain’s sensitivity to rewarding experiences — a critical factor in motivation and attention — can be shaped by socioeconomic conditions.

In a study of 12 to 14-year-olds whose socioeconomic status (SES) varied widely, the researchers found that children from lower SES backgrounds showed less sensitivity to reward than those from more affluent backgrounds.

Using functional magnetic resonance imaging (fMRI), the research team measured brain activity as the children played a guessing game in which they earned extra money for each correct guess. When participants from higher SES backgrounds guessed correctly, a part of the brain called the striatum, which is linked to reward, lit up much more than in children from lower SES backgrounds.

The brain imaging results also coincided with behavioral differences in how participants from lower and higher SES backgrounds responded to correct guesses. The findings suggest that lower SES circumstances may prompt the brain to adapt to the environment by dampening its response to rewards, which are often scarcer in low SES environments.

“If you’re in a highly resourced environment, with many rewards available, your brain gets tuned in a certain way. If you’re in an environment in which rewards are more scarce, then your brain accommodates the environment in which you live. Instead of being overresponsive to rewards, it seems like these brains, on average, are less responsive, because probably their environment has been less consistent in the availability of rewards,” says John Gabrieli, the Grover Hermann Professor of Health Sciences and Technology, a professor of brain and cognitive sciences, and a member of MIT’s McGovern Institute for Brain Research.

Gabrieli and Rachel Romeo, a former MIT postdoc who is now an assistant professor in the Department of Human Development and Quantitative Methodology at the University of Maryland, are the senior authors of the study. MIT postdoc Alexandra Decker is the lead author of the paper, which appears today in the Journal of Neuroscience.

Reward response

Previous research has shown that children from lower SES backgrounds tend to perform worse on tests of attention and memory, and they are more likely to experience depression and anxiety. However, until now, few studies have looked at the possible association between SES and reward sensitivity.

In the new study, the researchers focused on a part of the brain called the striatum, which plays a significant role in reward response and decision-making. Studies in people and animal models have shown that this region becomes highly active during rewarding experiences.

To investigate potential links between reward sensitivity, the striatum, and socioeconomic status, the researchers recruited more than 100 adolescents from a range of SES backgrounds, as measured by household income and how much education their parents received.

Each of the participants underwent fMRI scanning while they played a guessing game. The participants were shown a series of numbers between 1 and 9, and before each trial, they were asked to guess whether the next number would be greater than or less than 5. They were told that for each correct guess, they would earn an extra dollar, and for each incorrect guess, they would lose 50 cents.

Unbeknownst to the participants, the game was set up to control whether the guess would be correct or incorrect. This allowed the researchers to ensure that each participant had a similar experience, which included periods of abundant rewards or few rewards. In the end, everyone ended up winning the same amount of money (in addition to a stipend that each participant received for participating in the study).

Previous work has shown that the brain appears to track the rate of rewards available. When rewards are abundant, people or animals tend to respond more quickly because they don’t want to miss out on the many available rewards. The researchers saw that in this study as well: When participants were in a period when most of their responses were correct, they tended to respond more quickly.

“If your brain is telling you there’s a really high chance that you’re going to receive a reward in this environment, it’s going to motivate you to collect rewards, because if you don’t act, you’re missing out on a lot of rewards,” Decker says.

Brain scans showed that the degree of activation in the striatum appeared to track fluctuations in the rate of rewards across time, which the researchers think could act as a motivational signal that there are many rewards to collect. The striatum lit up more during periods in which rewards were abundant and less during periods in which rewards were scarce. However, this effect was less pronounced in the children from lower SES backgrounds, suggesting their brains were less attuned to fluctuations in the rate of reward over time.

The researchers also found that during periods of scarce rewards, participants tended to take longer to respond after a correct guess, another phenomenon that has been shown before. It’s unknown exactly why this happens, but two possible explanations are that people are savoring their reward or that they are pausing to update the reward rate. However, once again, this effect was less pronounced in the children from lower SES backgrounds — that is, they did not pause as long after a correct guess during the scarce-reward periods.

“There was a reduced response to reward, which is really striking. It may be that if you’re from a lower SES environment, you’re not as hopeful that the next response will gain similar benefits, because you may have a less reliable environment for earning rewards,” Gabrieli says. “It just points out the power of the environment. In these adolescents, it’s shaping their psychological and brain response to reward opportunity.”

Environmental effects

The fMRI scans performed during the study also revealed that children from lower SES backgrounds showed less activation in the striatum when they guessed correctly, suggesting that their brains have a dampened response to reward.

The researchers hypothesize that these differences in reward sensitivity may have evolved over time, in response to the children’s environments.

“Socioeconomic status is associated with the degree to which you experience rewards over the course of your lifetime,” Decker says. “So, it’s possible that receiving a lot of rewards perhaps reinforces behaviors that make you receive more rewards, and somehow this tunes the brain to be more responsive to rewards. Whereas if you are in an environment where you receive fewer rewards, your brain might become, over time, less attuned to them.”

The study also points out the value of recruiting study subjects from a range of SES backgrounds, which takes more effort but yields important results, the researchers say.

“Historically, many studies have involved the easiest people to recruit, who tend to be people who come from advantaged environments. If we don’t make efforts to recruit diverse pools of participants, we almost always end up with children and adults who come from high-income, high-education environments,” Gabrieli says. “Until recently, we did not realize that principles of brain development vary in relation to the environment in which one grows up, and there was very little evidence about the influence of SES.”

The research was funded by the William and Flora Hewlett Foundation and a Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship.

Study reveals a universal pattern of brain wave frequencies

Throughout the brain’s cortex, neurons are arranged in six distinctive layers, which can be readily seen with a microscope. A team of MIT and Vanderbilt University neuroscientists has now found that these layers also show distinct patterns of electrical activity, which are consistent over many brain regions and across several animal species, including humans.

The researchers found that in the topmost layers, neuron activity is dominated by rapid oscillations known as gamma waves. In the deeper layers, slower oscillations called alpha and beta waves predominate. The universality of these patterns suggests that these oscillations are likely playing an important role across the brain, the researchers say.

“When you see something that consistent and ubiquitous across cortex, it’s playing a very fundamental role in what the cortex does,” says Earl Miller, the Picower Professor of Neuroscience, a member of MIT’s Picower Institute for Learning and Memory, and one of the senior authors of the new study.

Imbalances in how these oscillations interact with each other may be involved in brain disorders such as attention deficit hyperactivity disorder, the researchers say.

“Overly synchronous neural activity is known to play a role in epilepsy, and now we suspect that different pathologies of synchrony may contribute to many brain disorders, including disorders of perception, attention, memory, and motor control. In an orchestra, one instrument played out of synchrony with the rest can disrupt the coherence of the entire piece of music,” says Robert Desimone, director of MIT’s McGovern Institute for Brain Research and one of the senior authors of the study.

André Bastos, an assistant professor of psychology at Vanderbilt University, is also a senior author of the open-access paper, which appears today in Nature Neuroscience. The lead authors of the paper are MIT research scientist Diego Mendoza-Halliday and MIT postdoc Alex Major.

Layers of activity

The human brain contains billions of neurons, each of which has its own electrical firing patterns. Together, groups of neurons with similar patterns generate oscillations of electrical activity, or brain waves, which can have different frequencies. Miller’s lab has previously shown that high-frequency gamma rhythms are associated with encoding and retrieving sensory information, while low-frequency beta rhythms act as a control mechanism that determines which information is read out from working memory.

His lab has also found that in certain parts of the prefrontal cortex, different brain layers show distinctive patterns of oscillation: faster oscillation at the surface and slower oscillation in the deep layers. One study, led by Bastos when he was a postdoc in Miller’s lab, showed that as animals performed working memory tasks, lower-frequency rhythms generated in deeper layers regulated the higher-frequency gamma rhythms generated in the superficial layers.

In addition to working memory, the brain’s cortex also is the seat of thought, planning, and high-level processing of emotion and sensory information. Throughout the regions involved in these functions, neurons are arranged in six layers, and each layer has its own distinctive combination of cell types and connections with other brain areas.

“The cortex is organized anatomically into six layers, no matter whether you look at mice or humans or any mammalian species, and this pattern is present in all cortical areas within each species,” Mendoza-Halliday says. “Unfortunately, a lot of studies of brain activity have been ignoring those layers because when you record the activity of neurons, it’s been difficult to understand where they are in the context of those layers.”

In the new paper, the researchers wanted to explore whether the layered oscillation pattern they had seen in the prefrontal cortex is more widespread, occurring across different parts of the cortex and across species.

Using a combination of data acquired in Miller’s lab, Desimone’s lab, and labs from collaborators at Vanderbilt, the Netherlands Institute for Neuroscience, and the University of Western Ontario, the researchers were able to analyze 14 different areas of the cortex, from four mammalian species. This data included recordings of electrical activity from three human patients who had electrodes inserted in the brain as part of a surgical procedure they were undergoing.

Recording from individual cortical layers has been difficult in the past, because each layer is less than a millimeter thick, so it’s hard to know which layer an electrode is recording from. For this study, electrical activity was recorded using special electrodes that record from all of the layers at once, then feed the data into a new computational algorithm the authors designed, termed FLIP (frequency-based layer identification procedure). This algorithm can determine which layer each signal came from.

“More recent technology allows recording of all layers of cortex simultaneously. This paints a broader perspective of microcircuitry and allowed us to observe this layered pattern,” Major says. “This work is exciting because it is both informative of a fundamental microcircuit pattern and provides a robust new technique for studying the brain. It doesn’t matter if the brain is performing a task or at rest and can be observed in as little as five to 10 seconds.”

Across all species, in each region studied, the researchers found the same layered activity pattern.

“We did a mass analysis of all the data to see if we could find the same pattern in all areas of the cortex, and voilà, it was everywhere. That was a real indication that what had previously been seen in a couple of areas was representing a fundamental mechanism across the cortex,” Mendoza-Halliday says.

Maintaining balance

The findings support a model that Miller’s lab has previously put forth, which proposes that the brain’s spatial organization helps it to incorporate new information, which carried by high-frequency oscillations, into existing memories and brain processes, which are maintained by low-frequency oscillations. As information passes from layer to layer, input can be incorporated as needed to help the brain perform particular tasks such as baking a new cookie recipe or remembering a phone number.

“The consequence of a laminar separation of these frequencies, as we observed, may be to allow superficial layers to represent external sensory information with faster frequencies, and for deep layers to represent internal cognitive states with slower frequencies,” Bastos says. “The high-level implication is that the cortex has multiple mechanisms involving both anatomy and oscillations to separate ‘external’ from ‘internal’ information.”

Under this theory, imbalances between high- and low-frequency oscillations can lead to either attention deficits such as ADHD, when the higher frequencies dominate and too much sensory information gets in, or delusional disorders such as schizophrenia, when the low frequency oscillations are too strong and not enough sensory information gets in.

“The proper balance between the top-down control signals and the bottom-up sensory signals is important for everything the cortex does,” Miller says. “When the balance goes awry, you get a wide variety of neuropsychiatric disorders.”

The researchers are now exploring whether measuring these oscillations could help to diagnose these types of disorders. They are also investigating whether rebalancing the oscillations could alter behavior — an approach that could one day be used to treat attention deficits or other neurological disorders, the researchers say.

The researchers also hope to work with other labs to characterize the layered oscillation patterns in more detail across different brain regions.

“Our hope is that with enough of that standardized reporting, we will start to see common patterns of activity across different areas or functions that might reveal a common mechanism for computation that can be used for motor outputs, for vision, for memory and attention, et cetera,” Mendoza-Halliday says.

The research was funded by the U.S. Office of Naval Research, the U.S. National Institutes of Health, the U.S. National Eye Institute, the U.S. National Institute of Mental Health, the Picower Institute, a Simons Center for the Social Brain Postdoctoral Fellowship, and a Canadian Institutes of Health Postdoctoral Fellowship.

Complex, unfamiliar sentences make the brain’s language network work harder

With help from an artificial language network, MIT neuroscientists have discovered what kind of sentences are most likely to fire up the brain’s key language processing centers.

The new study reveals that sentences that are more complex, either because of unusual grammar or unexpected meaning, generate stronger responses in these language processing centers. Sentences that are very straightforward barely engage these regions, and nonsensical sequences of words don’t do much for them either.

For example, the researchers found this brain network was most active when reading unusual sentences such as “Buy sell signals remains a particular,” taken from a publicly available language dataset called C4. However, it went quiet when reading something very straightforward, such as “We were sitting on the couch.”

“The input has to be language-like enough to engage the system,” says Evelina Fedorenko, Associate Professor of Neuroscience at MIT and a member of MIT’s McGovern Institute for Brain Research. “And then within that space, if things are really easy to process, then you don’t have much of a response. But if things get difficult, or surprising, if there’s an unusual construction or an unusual set of words that you’re maybe not very familiar with, then the network has to work harder.”

Fedorenko is the senior author of the study, which appears today in Nature Human Behavior. MIT graduate student Greta Tuckute is the lead author of the paper.

Processing language

In this study, the researchers focused on language-processing regions found in the left hemisphere of the brain, which includes Broca’s area as well as other parts of the left frontal and temporal lobes of the brain.

“This language network is highly selective to language, but it’s been harder to actually figure out what is going on in these language regions,” Tuckute says. “We wanted to discover what kinds of sentences, what kinds of linguistic input, drive the left hemisphere language network.”

The researchers began by compiling a set of 1,000 sentences taken from a wide variety of sources — fiction, transcriptions of spoken words, web text, and scientific articles, among many others.

Five human participants read each of the sentences while the researchers measured their language network activity using functional magnetic resonance imaging (fMRI). The researchers then fed those same 1,000 sentences into a large language model — a model similar to ChatGPT, which learns to generate and understand language from predicting the next word in huge amounts of text — and measured the activation patterns of the model in response to each sentence.

Once they had all of those data, the researchers trained a mapping model, known as an “encoding model,” which relates the activation patterns seen in the human brain with those observed in the artificial language model. Once trained, the model could predict how the human language network would respond to any new sentence based on how the artificial language network responded to these 1,000 sentences.

The researchers then used the encoding model to identify 500 new sentences that would generate maximal activity in the human brain (the “drive” sentences), as well as sentences that would elicit minimal activity in the brain’s language network (the “suppress” sentences).

In a group of three new human participants, the researchers found these new sentences did indeed drive and suppress brain activity as predicted.

“This ‘closed-loop’ modulation of brain activity during language processing is novel,” Tuckute says. “Our study shows that the model we’re using (that maps between language-model activations and brain responses) is accurate enough to do this. This is the first demonstration of this approach in brain areas implicated in higher-level cognition, such as the language network.”

Linguistic complexity

To figure out what made certain sentences drive activity more than others, the researchers analyzed the sentences based on 11 different linguistic properties, including grammaticality, plausibility, emotional valence (positive or negative), and how easy it is to visualize the sentence content.

For each of those properties, the researchers asked participants from crowd-sourcing platforms to rate the sentences. They also used a computational technique to quantify each sentence’s “surprisal,” or how uncommon it is compared to other sentences.

This analysis revealed that sentences with higher surprisal generate higher responses in the brain. This is consistent with previous studies showing people have more difficulty processing sentences with higher surprisal, the researchers say.

Another linguistic property that correlated with the language network’s responses was linguistic complexity, which is measured by how much a sentence adheres to the rules of English grammar and how plausible it is, meaning how much sense the content makes, apart from the grammar.

Sentences at either end of the spectrum — either extremely simple, or so complex that they make no sense at all — evoked very little activation in the language network. The largest responses came from sentences that make some sense but require work to figure them out, such as “Jiffy Lube of — of therapies, yes,” which came from the Corpus of Contemporary American English dataset.

“We found that the sentences that elicit the highest brain response have a weird grammatical thing and/or a weird meaning,” Fedorenko says. “There’s something slightly unusual about these sentences.”

The researchers now plan to see if they can extend these findings in speakers of languages other than English. They also hope to explore what type of stimuli may activate language processing regions in the brain’s right hemisphere.

The research was funded by an Amazon Fellowship from the Science Hub, an International Doctoral Fellowship from the American Association of University Women, the MIT-IBM Watson AI Lab, the National Institutes of Health, the McGovern Institute, the Simons Center for the Social Brain, and MIT’s Department of Brain and Cognitive Sciences.

K. Lisa Yang Postbaccalaureate Program names new scholars

Funded by philanthropist Lisa Yang, the K. Lisa Yang Postbaccalaureate Scholar Program provides two years of paid laboratory experience, mentorship, and education to recent college graduates from backgrounds underrepresented in neuroscience. This year, two young researchers in McGovern Institute labs, Joseph Itiat and Sam Merrow, are the recipients of the Yang postbac program.

Itiat moved to the United States from Nigeria in 2019 to pursue a degree in psychology and cognitive neuroscience at Temple University. Today, he is a Yang postbac in John Gabrieli’s lab studying the relationship between learning and value processes and their influence on future-oriented decision-making. Ultimately, Itiat hopes to develop models that map the underlying mechanisms driving these processes.

“Being African, with limited research experience and little representation in the domain of neuroscience research,” Itiat says, “I chose to pursue a postbaccalaureate
research program to prepare me for a top graduate school and a career in cognitive neuroscience.”

Merrow first fell in love with science while working at the Barrow Neurological Institute in Arizona during high school. After graduating from Simmons University in Boston, Massachusetts, Merrow joined Guoping Feng’s lab as a Yang postbac to pursue research on glial cells and brain disorders. “As a queer, nonbinary, LatinX person, I have not met anyone like me in my field, nor have I had role models that hold a similar identity to myself,” says Merrow.

“My dream is to one day become a professor, where I will be able to show others that science is for anyone.”

Previous Yang postbacs include Alex Negron, Zoe Pearce, Ajani Stewart, and Maya Taliaferro.