How expectation influences perception

For decades, research has shown that our perception of the world is influenced by our expectations. These expectations, also called “prior beliefs,” help us make sense of what we are perceiving in the present, based on similar past experiences. Consider, for instance, how a shadow on a patient’s X-ray image, easily missed by a less experienced intern, jumps out at a seasoned physician. The physician’s prior experience helps her arrive at the most probable interpretation of a weak signal.

The process of combining prior knowledge with uncertain evidence is known as Bayesian integration and is believed to widely impact our perceptions, thoughts, and actions. Now, MIT neuroscientists have discovered distinctive brain signals that encode these prior beliefs. They have also found how the brain uses these signals to make judicious decisions in the face of uncertainty.

“How these beliefs come to influence brain activity and bias our perceptions was the question we wanted to answer,” says Mehrdad Jazayeri, the Robert A. Swanson Career Development Professor of Life Sciences, a member of MIT’s McGovern Institute for Brain Research, and the senior author of the study.

The researchers trained animals to perform a timing task in which they had to reproduce different time intervals. Performing this task is challenging because our sense of time is imperfect and can go too fast or too slow. However, when intervals are consistently within a fixed range, the best strategy is to bias responses toward the middle of the range. This is exactly what animals did. Moreover, recording from neurons in the frontal cortex revealed a simple mechanism for Bayesian integration: Prior experience warped the representation of time in the brain so that patterns of neural activity associated with different intervals were biased toward those that were within the expected range.

MIT postdoc Hansem Sohn, former postdoc Devika Narain, and graduate student Nicolas Meirhaeghe are the lead authors of the study, which appears in the July 15 issue of Neuron.

Ready, set, go

Statisticians have known for centuries that Bayesian integration is the optimal strategy for handling uncertain information. When we are uncertain about something, we automatically rely on our prior experiences to optimize behavior.

“If you can’t quite tell what something is, but from your prior experience you have some expectation of what it ought to be, then you will use that information to guide your judgment,” Jazayeri says. “We do this all the time.”

In this new study, Jazayeri and his team wanted to understand how the brain encodes prior beliefs, and put those beliefs to use in the control of behavior. To that end, the researchers trained animals to reproduce a time interval, using a task called “ready-set-go.” In this task, animals measure the time between two flashes of light (“ready” and “set”) and then generate a “go” signal by making a delayed response after the same amount of time has elapsed.

They trained the animals to perform this task in two contexts. In the “Short” scenario, intervals varied between 480 and 800 milliseconds, and in the “Long” context, intervals were between 800 and 1,200 milliseconds. At the beginning of the task, the animals were given the information about the context (via a visual cue), and therefore knew to expect intervals from either the shorter or longer range.

Jazayeri had previously shown that humans performing this task tend to bias their responses toward the middle of the range. Here, they found that animals do the same. For example, if animals believed the interval would be short, and were given an interval of 800 milliseconds, the interval they produced was a little shorter than 800 milliseconds. Conversely, if they believed it would be longer, and were given the same 800-millisecond interval, they produced an interval a bit longer than 800 milliseconds.

“Trials that were identical in almost every possible way, except the animal’s belief led to different behaviors,” Jazayeri says. “That was compelling experimental evidence that the animal is relying on its own belief.”

Once they had established that the animals relied on their prior beliefs, the researchers set out to find how the brain encodes prior beliefs to guide behavior. They recorded activity from about 1,400 neurons in a region of the frontal cortex, which they have previously shown is involved in timing.

During the “ready-set” epoch, the activity profile of each neuron evolved in its own way, and about 60 percent of the neurons had different activity patterns depending on the context (Short versus Long). To make sense of these signals, the researchers analyzed the evolution of neural activity across the entire population over time, and found that prior beliefs bias behavioral responses by warping the neural representation of time toward the middle of the expected range.

“We have never seen such a concrete example of how the brain uses prior experience to modify the neural dynamics by which it generates sequences of neural activities, to correct for its own imprecision. This is the unique strength of this paper: bringing together perception, neural dynamics, and Bayesian computation into a coherent framework, supported by both theory and measurements of behavior and neural activities,” says Mate Lengyel, a professor of computational neuroscience at Cambridge University, who was not involved in the study.

Embedded knowledge

Researchers believe that prior experiences change the strength of connections between neurons. The strength of these connections, also known as synapses, determines how neurons act upon one another and constrains the patterns of activity that a network of interconnected neurons can generate. The finding that prior experiences warp the patterns of neural activity provides a window onto how experience alters synaptic connections. “The brain seems to embed prior experiences into synaptic connections so that patterns of brain activity are appropriately biased,” Jazayeri says.

As an independent test of these ideas, the researchers developed a computer model consisting of a network of neurons that could perform the same ready-set-go task. Using techniques borrowed from machine learning, they were able to modify the synaptic connections and create a model that behaved like the animals.

These models are extremely valuable as they provide a substrate for the detailed analysis of the underlying mechanisms, a procedure that is known as “reverse-engineering.” Remarkably, reverse-engineering the model revealed that it solved the task the same way the monkeys’ brain did. The model also had a warped representation of time according to prior experience.

The researchers used the computer model to further dissect the underlying mechanisms using perturbation experiments that are currently impossible to do in the brain. Using this approach, they were able to show that unwarping the neural representations removes the bias in the behavior. This important finding validated the critical role of warping in Bayesian integration of prior knowledge.

The researchers now plan to study how the brain builds up and slowly fine-tunes the synaptic connections that encode prior beliefs as an animal is learning to perform the timing task.

The research was funded by the Center for Sensorimotor Neural Engineering, the Netherlands Scientific Organization, the Marie Sklodowska Curie Reintegration Grant, the National Institutes of Health, the Sloan Foundation, the Klingenstein Foundation, the Simons Foundation, the McKnight Foundation, and the McGovern Institute.

Evelina Fedorenko

Exploring Language

Evelina (Ev) Fedorenko aims to understand how the language system works in the brain. Her lab is unpacking the internal architecture of the brain’s language system and exploring the relationship between language and various cognitive, perceptual, and motor systems. To do this, her lab employs a range of approaches – from brain imaging to computational modeling – and works with a diverse populations, including polyglots and individuals with atypical brains. Language is a quintessential human ability, but the function that language serves has been debated for centuries. Fedorenko argues that language serves is primarily as a tool for communication, contrary to a prominent view that language is essential for thinking.

Ultimately, this cutting-edge work is uncovering the computations and representations that fuel language processing in the brain.

Antenna-like inputs unexpectedly active in neural computation

Most neurons have many branching extensions called dendrites that receive input from thousands of other neurons. Dendrites aren’t just passive information-carriers, however. According to a new study from MIT, they appear to play a surprisingly large role in neurons’ ability to translate incoming signals into electrical activity.

Neuroscientists had previously suspected that dendrites might be active only rarely, under specific circumstances, but the MIT team found that dendrites are nearly always active when the main cell body of the neuron is active.

“It seems like dendritic spikes are an intrinsic feature of how neurons in our brain can compute information. They’re not a rare event,” says Lou Beaulieu-Laroche, an MIT graduate student and the lead author of the study. “All the neurons that we looked at had these dendritic spikes, and they had dendritic spikes very frequently.”

The findings suggest that the role of dendrites in the brain’s computational ability is much larger than had previously been thought, says Mark Harnett, who is the Fred and Carole Middleton Career Development Assistant Professor of Brain and Cognitive Sciences, a member of the McGovern Institute for Brain Research, and the senior author of the paper.

“It’s really quite different than how the field had been thinking about this,” he says. “This is evidence that dendrites are actively engaged in producing and shaping the outputs of neurons.”

Graduate student Enrique Toloza and technical associate Norma Brown are also authors of the paper, which appears in Neuron on June 6.

“A far-flung antenna”

Dendrites receive input from many other neurons and carry those signals to the cell body, also called the soma. If stimulated enough, a neuron fires an action potential — an electrical impulse that spreads to other neurons. Large networks of these neurons communicate with each other to perform complex cognitive tasks such as producing speech.

Through imaging and electrical recording, neuroscientists have learned a great deal about the anatomical and functional differences between different types of neurons in the brain’s cortex, but little is known about how they incorporate dendritic inputs and decide whether to fire an action potential. Dendrites give neurons their characteristic branching tree shape, and the size of the “dendritic arbor” far exceeds the size of the soma.

“It’s an enormous, far-flung antenna that’s listening to thousands of synaptic inputs distributed in space along that branching structure from all the other neurons in the network,” Harnett says.

Some neuroscientists have hypothesized that dendrites are active only rarely, while others thought it possible that dendrites play a more central role in neurons’ overall activity. Until now, it has been difficult to test which of these ideas is more accurate, Harnett says.

To explore dendrites’ role in neural computation, the MIT team used calcium imaging to simultaneously measure activity in both the soma and dendrites of individual neurons in the visual cortex of the brain. Calcium flows into neurons when they are electrically active, so this measurement allowed the researchers to compare the activity of dendrites and soma of the same neuron. The imaging was done while mice performed simple tasks such as running on a treadmill or watching a movie.

Unexpectedly, the researchers found that activity in the soma was highly correlated with dendrite activity. That is, when the soma of a particular neuron was active, the dendrites of that neuron were also active most of the time. This was particularly surprising because the animals weren’t performing any kind of cognitively demanding task, Harnett says.

“They weren’t engaged in a task where they had to really perform and call upon cognitive processes or memory. This is pretty simple, low-level processing, and already we have evidence for active dendritic processing in almost all the neurons,” he says. “We were really surprised to see that.”

Evolving patterns

The researchers don’t yet know precisely how dendritic input contributes to neurons’ overall activity, or what exactly the neurons they studied are doing.

“We know that some of those neurons respond to some visual stimuli, but we don’t necessarily know what those individual neurons are representing. All we can say is that whatever the neuron is representing, the dendrites are actively participating in that,” Beaulieu-Laroche says.

While more work remains to determine exactly how the activity in the dendrites and the soma are linked, “it is these tour-de-force in vivo measurements that are critical for explicitly testing hypotheses regarding electrical signaling in neurons,” says Marla Feller, a professor of neurobiology at the University of California at Berkeley, who was not involved in the research.

The MIT team now plans to investigate how dendritic activity contributes to overall neuronal function by manipulating dendrite activity and then measuring how it affects the activity of the cell body, Harnett says. They also plan to study whether the activity patterns they observed evolve as animals learn a new task.

“One hypothesis is that dendritic activity will actually sharpen up for representing features of a task you taught the animals, and all the other dendritic activity, and all the other somatic activity, is going to get dampened down in the rest of the cortical cells that are not involved,” Harnett says.

The research was funded by the Natural Sciences and Engineering Research Council of Canada and the U.S. National Institutes of Health.

How we make complex decisions

When making a complex decision, we often break the problem down into a series of smaller decisions. For example, when deciding how to treat a patient, a doctor may go through a hierarchy of steps — choosing a diagnostic test, interpreting the results, and then prescribing a medication.

Making hierarchical decisions is straightforward when the sequence of choices leads to the desired outcome. But when the result is unfavorable, it can be tough to decipher what went wrong. For example, if a patient doesn’t improve after treatment, there are many possible reasons why: Maybe the diagnostic test is accurate only 75 percent of the time, or perhaps the medication only works for 50 percent of the patients. To decide what do to next, the doctor must take these probabilities into account.

In a new study, MIT neuroscientists explored how the brain reasons about probable causes of failure after a hierarchy of decisions. They discovered that the brain performs two computations using a distributed network of areas in the frontal cortex. First, the brain computes confidence over the outcome of each decision to figure out the most likely cause of a failure, and second, when it is not easy to discern the cause, the brain makes additional attempts to gain more confidence.

“Creating a hierarchy in one’s mind and navigating that hierarchy while reasoning about outcomes is one of the exciting frontiers of cognitive neuroscience,” says Mehrdad Jazayeri, the Robert A. Swanson Career Development Professor of Life Sciences, a member of MIT’s McGovern Institute for Brain Research, and the senior author of the study.

MIT graduate student Morteza Sarafyzad is the lead author of the paper, which appears in Science on May 16.

Hierarchical reasoning

Previous studies of decision-making in animal models have focused on relatively simple tasks. One line of research has focused on how the brain makes rapid decisions by evaluating momentary evidence. For example, a large body of work has characterized the neural substrates and mechanisms that allow animals to categorize unreliable stimuli on a trial-by-trial basis. Other research has focused on how the brain chooses among multiple options by relying on previous outcomes across multiple trials.

“These have been very fruitful lines of work,” Jazayeri says. “However, they really are the tip of the iceberg of what humans do when they make decisions. As soon as you put yourself in any real decision-making situation, be it choosing a partner, choosing a car, deciding whether to take this drug or not, these become really complicated decisions. Oftentimes there are many factors that influence the decision, and those factors can operate at different timescales.”

The MIT team devised a behavioral task that allowed them to study how the brain processes information at multiple timescales to make decisions. The basic design was that animals would make one of two eye movements depending on whether the time interval between two flashes of light was shorter or longer than 850 milliseconds.

A twist required the animals to solve the task through hierarchical reasoning: The rule that determined which of the two eye movements had to be made switched covertly after 10 to 28 trials. Therefore, to receive reward, the animals had to choose the correct rule, and then make the correct eye movement depending on the rule and interval. However, because the animals were not instructed about the rule switches, they could not straightforwardly determine whether an error was caused because they chose the wrong rule or because they misjudged the interval.

The researchers used this experimental design to probe the computational principles and neural mechanisms that support hierarchical reasoning. Theory and behavioral experiments in humans suggest that reasoning about the potential causes of errors depends in large part on the brain’s ability to measure the degree of confidence in each step of the process. “One of the things that is thought to be critical for hierarchical reasoning is to have some level of confidence about how likely it is that different nodes [of a hierarchy] could have led to the negative outcome,” Jazayeri says.

The researchers were able to study the effect of confidence by adjusting the difficulty of the task. In some trials, the interval between the two flashes was much shorter or longer than 850 milliseconds. These trials were relatively easy and afforded a high degree of confidence. In other trials, the animals were less confident in their judgments because the interval was closer to the boundary and difficult to discriminate.

As they had hypothesized, the researchers found that the animals’ behavior was influenced by their confidence in their performance. When the interval was easy to judge, the animals were much quicker to switch to the other rule when they found out they were wrong. When the interval was harder to judge, the animals were less confident in their performance and applied the same rule a few more times before switching.

“They know that they’re not confident, and they know that if they’re not confident, it’s not necessarily the case that the rule has changed. They know they might have made a mistake [in their interval judgment],” Jazayeri says.

Decision-making circuit

By recording neural activity in the frontal cortex just after each trial was finished, the researchers were able to identify two regions that are key to hierarchical decision-making. They found that both of these regions, known as the anterior cingulate cortex (ACC) and dorsomedial frontal cortex (DMFC), became active after the animals were informed about an incorrect response. When the researchers analyzed the neural activity in relation to the animals’ behavior, it became clear that neurons in both areas signaled the animals’ belief about a possible rule switch. Notably, the activity related to animals’ belief was “louder” when animals made a mistake after an easy trial, and after consecutive mistakes.

The researchers also found that while these areas showed similar patterns of activity, it was activity in the ACC in particular that predicted when the animal would switch rules, suggesting that ACC plays a central role in switching decision strategies. Indeed, the researchers found that direct manipulation of neural activity in ACC was sufficient to interfere with the animals’ rational behavior.

“There exists a distributed circuit in the frontal cortex involving these two areas, and they seem to be hierarchically organized, just like the task would demand,” Jazayeri says.

Daeyeol Lee, a professor of neuroscience, psychology, and psychiatry at Yale School of Medicine, says the study overcomes what has been a major obstacle in studying this kind of decision-making, namely, a lack of animal models to study the dynamics of brain activity at single-neuron resolution.

“Sarafyazd and Jazayeri have developed an elegant decision-making task that required animals to evaluate multiple types of evidence, and identified how the two separate regions in the medial frontal cortex are critically involved in handling different sources of errors in decision making,” says Lee, who was not involved in the research. “This study is a tour de force in both rigor and creativity, and peels off another layer of mystery about the prefrontal cortex.”

Algorithms of intelligence

The following post is adapted from a story featured in a recent Brain Scan newsletter.

Machine vision systems are more and more common in everyday life, from social media to self-driving cars, but training artificial neural networks to “see” the world as we do—distinguishing cyclists from signposts—remains challenging. Will artificial neural networks ever decode the world as exquisitely as humans? Can we refine these models and influence perception in a person’s brain just by activating individual, selected neurons? The DiCarlo lab, including CBMM postdocs Kohitij Kar and Pouya Bashivan, are finding that we are surprisingly close to answering “yes” to such questions, all in the context of accelerated insights into artificial intelligence at the McGovern Institute for Brain Research, CBMM, and the Quest for Intelligence at MIT.

Precision Modeling

Beyond light hitting the retina, the recognition process that unfolds in the visual cortex is key to truly “seeing” the surrounding world. Information is decoded through the ventral visual stream, cortical brain regions that progressively build a more accurate, fine-grained, and accessible representation of the objects around us. Artificial neural networks have been modeled on these elegant cortical systems, and the most successful models, deep convolutional neural networks (DCNNs), can now decode objects at levels comparable to the primate brain. However, even leading DCNNs have problems with certain challenging images, presumably due to shadows, clutter, and other visual noise. While there’s no simple feature that unites all challenging images, the quest is on to tackle such images to attain precise recognition at a level commensurate with human object recognition.

“One next step is to couple this new precision tool with our emerging understanding of how neural patterns underlie object perception. This might allow us to create arrangements of pixels that look nothing like, for example, a cat, but that can fool the brain into thinking it’s seeing a cat.”- James DiCarlo

In a recent push, Kar and DiCarlo demonstrated that adding feedback connections, currently missing in most DCNNs, allows the system to better recognize objects in challenging situations, even those where a human can’t articulate why recognition is an issue for feedforward DCNNs. They also found that this recurrent circuit seems critical to primate success rates in performing this task. This is incredibly important for systems like self-driving cars, where the stakes for artificial visual systems are high, and faithful recognition is a must.

Now you see it

As artificial object recognition systems have become more precise in predicting neural activity, the DiCarlo lab wondered what such precision might allow: could they use their system to not only predict, but to control specific neuronal activity?

To demonstrate the power of their models, Bashivan, Kar, and colleagues zeroed in on targeted neurons in the brain. In a paper published in Science, they used an artificial neural network to generate a random-looking group of pixels that, when shown to an animal, activated the team’s target, a target they called “one hot neuron.” In other words, they showed the brain a synthetic pattern, and the pixels in the pattern precisely activated targeted neurons while other neurons remained relatively silent.

These findings show how the knowledge in today’s artificial neural network models might one day be used to noninvasively influence brain states with neural resolution. Such precise systems would be useful as we look to the future, toward visual prosthetics for the blind. Such a precise model of the ventral visual stream would have been incon-ceivable not so long ago, and all eyes are on where McGovern researchers will take these technologies in the coming years.

Recurrent architecture enhances object recognition in brain and AI

Your ability to recognize objects is remarkable. If you see a cup under unusual lighting or from unexpected directions, there’s a good chance that your brain will still compute that it is a cup. Such precise object recognition is one holy grail for AI developers, such as those improving self-driving car navigation. While modeling primate object recognition in the visual cortex has revolutionized artificial visual recognition systems, current deep learning systems are simplified, and fail to recognize some objects that are child’s play for primates such as humans. In findings published in Nature Neuroscience, McGovern Investigator James DiCarlo and colleagues have found evidence that feedback improves recognition of hard-to-recognize objects in the primate brain, and that adding feedback circuitry also improves the performance of artificial neural network systems used for vision applications.

Deep convolutional neural networks (DCNN) are currently the most successful models for accurately recognizing objects on a fast timescale (<100 ms) and have a general architecture inspired by the primate ventral visual stream, cortical regions that progressively build an accessible and refined representation of viewed objects. Most DCNNs are simple in comparison to the primate ventral stream however.

“For a long period of time, we were far from an model-based understanding. Thus our field got started on this quest by modeling visual recognition as a feedforward process,” explains senior author DiCarlo, who is also the head of MIT’s Department of Brain and Cognitive Sciences and Research Co-Leader in the Center for Brains, Minds, and Machines (CBMM). “However, we know there are recurrent anatomical connections in brain regions linked to object recognition.”

Think of feedforward DCNNs and the portion of the visual system that first attempts to capture objects as a subway line that runs forward through a series of stations. The extra, recurrent brain networks are instead like the streets above, interconnected and not unidirectional. Because it only takes about 200 ms for the brain to recognize an object quite accurately, it was unclear if these recurrent interconnections in the brain had any role at all in core object recognition. For example, perhaps those recurrent connections are only in place to keep the visual system in tune over long periods of time. For example, the return gutters of the streets help slowly clear it of water and trash, but are not strictly needed to quickly move people from one end of town to the other. DiCarlo, along with lead author and CBMM postdoc Kohitij Kar, set out to test whether a subtle role of recurrent operations in rapid visual object recognition was being overlooked.

Challenging recognition

The authors first needed to identify objects that are trivially decoded by the primate brain, but are challenging for artificial systems. Rather than trying to guess why deep learning was having problems recognizing an object (is it due to clutter in the image? a misleading shadow?), the authors took an unbiased approach that turned out to be critical.

Kar explained further that “we realized that AI-models actually don’t have problems with every image where an object is occluded or in clutter. Humans trying to guess why AI models were challenged turned out to be holding us back.”

Instead, the authors presented the deep learning system, as well as monkeys and humans, with images, homing in on “challenge images” where the primates could easily recognize the objects in those images, but a feed forward DCNN ran into problems. When they, and others, added appropriate recurrent processing to these DCNNs, object recognition in challenge images suddenly became a breeze.

Processing times

Kar used neural recording methods with very high spatial and temporal precision to whether these images were really so trivial for primates. Remarkably, they found that though challenge images had initially appeared to be child’s play to the human brain, they actually involve extra neural processing time (about additional 30 milliseconds), suggesting that recurrent loops operate in our brain too.

 “What the computer vision community has recently achieved by stacking more and more layers onto artificial neural networks, evolution has achieved through a brain architecture with recurrent connections.” — Kohitij Kar

Diane Beck, Professor of Psychology and Co-chair of the Intelligent Systems Theme at the Beckman Institute and not an author on the study, explained further. “Since entirely feed forward deep convolutional nets are now remarkably good at predicting primate brain activity, it raised questions about the role of feedback connections in the primate brain. This study shows that, yes, feedback connections are very likely playing a role in object recognition after all.”

What does this mean for a self-driving car? It shows that deep learning architectures involved in object recognition need recurrent components if they are to match the primate brain, and also indicates how to operationalize this procedure for the next generation of intelligent machines.

“Recurrent models offer predictions of neural activity and behavior over time,” says Kar. “We may now be able to model more involved tasks. Perhaps one day, the systems will not only recognize an object, such as a person, but also perform cognitive tasks that the human brain so easily manages, such as understanding the emotions of other people.”

This work was supported by the Office of Naval Research grant MURI-114407 (J.J.D.). Center for Brains, Minds, and Machines (CBMM) funded by NSF STC award CCF-1231216 (K.K.).

3Q: The interface between art and neuroscience

CBMM postdoc Sarah Schwettman

Computational neuroscientist Sarah Schwettmann, who works in the Center for Brains, Minds, and Machines at the McGovern Institute, is one of three instructors behind the cross-disciplinary course 9.S52/9.S916 (Vision in Art and Neuroscience), which introduces students to core concepts in visual perception through the lenses of art and neuroscience.

Supported by a faculty grant from the Center for Art, Science and Technology at MIT (CAST) for the past two years, the class is led by Pawan Sinha, a professor of vision and computational neuroscience in the Department of Brain and Cognitive Sciences. They are joined in the course by Seth Riskin SM ’89, a light artist and the manager of the MIT Museum Studio and Compton Gallery, where the course is taught. Schwettman discussed the combination of art and science in an educational setting.

Q: How have the three of you approached this cross-disciplinary class in art and neuroscience?

A: Discussions around this intersection often consider what each field has to offer the other. We take a different approach, one I refer to as occupying the gap, or positioning ourselves between the two fields and asking what essential questions underlie them both. One question addresses the nature of the human relationship to the world. The course suggests one answer: This relationship is fundamentally creative, from the brain’s interpretation of incoming sensory data in perception, to the explicit construction of experiential worlds in art.

Neuroscience and art, therefore, each provide a set of tools for investigating different levels of the constructive process. Through neuroscience, we develop a specific understanding of the models of the world that the brain uses to make sense of incoming visual data. With articulation of those models, we can engineer types of inputs that interact with visual processing architecture in particularly exquisite ways, and do so reliably, giving artists a toolkit for remixing and modulating experience. In the studio component of the course, we experiment with this toolkit and collectively move it forward.

While designing the course, Pawan, Seth, and I found that we were each addressing a similar set of questions, the same that motivate the class, through our own research and practice. In parallel to computational vision research, Professor Sinha leads a humanitarian initiative called Project Prakash, which provides treatment to blind children in India and explores the development of vision following the restoration of sight. Where does structure in perception originate? As an artist in the MIT Museum Studio, Seth works with articulated light to sculpt structured visual worlds out of darkness. I also live on this interface where the brain meets the world — my research in the Department of Brain and Cognitive Sciences examines the neural basis of mental models for simulating physics. Linking our work in the course is an experiment in synthesis.

Q: What current research in vision, neuroscience, and art are being explored at MIT, and how does the class connect it to hands-on practice?

A: Our brains build a rich world of experience and expectation from limited and noisy sensory data with infinite potential interpretations. In perception research, we seek to discover how the brain finds more meaning in incoming data than is explained by the signal alone. Work being done at MIT around generative models addresses this, for instance in the labs of Josh Tenenbaum and Josh McDermott in the Department of Brain and Cognitive Sciences. Researchers present an ambiguous visual or auditory stimulus and by probing someone’s perceptual interpretation, they get a handle on the structures that the mind generates to interpret incoming data, and they can begin to build computational models of the process.

In Vision in Art and Neuroscience, we focus on the experiential as well as the experimental, probing the perceiver’s experience of structure-generating process—perceiving perception itself.

As instructors, we face the pedagogical question: what exercises, in the studio, can evoke so striking an experience of students’ own perception that cutting edge research takes on new meaning, understood in the immediacy of seeing? Later in the semester, students face a similar question as artists: How can one create visual environments where viewers experience their own perceptual processing at work? Done well, this experience becomes the artwork itself. Early in the course, students explore the Ganzfeld effect, popularized by artist James Turrell, where the viewer is exposed to an unstructured visual field of uniform illumination. In this experience, one feels the mind struggling to fit models of the world to unstructured input, and attempting this over and over again — an interpretation process which often goes unnoticed when input structure is expected by visual processing architecture. The progression of the course modules follows the hierarchy of visual processing in the brain, which builds increasingly complex interpretations of visual inputs, from brightness and edges to depth, color, and recognizable form.

MIT students first encounter those concepts in the seminar component of the course at the beginning of each week. Later in the week, students translate findings into experimental approaches in the studio. We work with light directly, from introducing a single pinpoint of light into an otherwise completely dark room, to building intricate environments using programmable electronics. Students begin to take this work into their own hands, in small groups and individually, culminating in final projects for exhibition. These exhibitions are truly a highlight of the course. They’re often one of the first times that students have built and shown artworks. That’s been a gift to share with the broader MIT community, and a great learning experience for students and instructors alike.

Q: How has that approach been received by the MIT community?

A: What we’re doing has resonated across disciplines: In addition to neuroscience, we have students and researchers joining us from computer science, mechanical engineering, mathematics, the Media Lab, and ACT (the Program in Art, Culture, and Technology). The course is growing into something larger, a community of practice interested in applying the scientific methodology we develop to study the world, to probe experience, and to articulate models for its generation and replication.

With a mix of undergraduates, graduates, faculty, and artists, we’ve put together installations and symposia — including three on campus so far. The first of these, “Perceiving Perception,” also led to a weekly open studio night where students and collaborators convene for project work. Our second exhibition, “Dessert of the Real,” is on display this spring in the Compton Gallery. This April we’re organizing a symposium in the studio featuring neuroscientists, computer scientists, artists and researchers from MIT and Harvard. We’re reaching beyond campus as well, through off-site installations, collaborations with museums — including the Metropolitan Museum of Art and the Peabody Essex Museum — and a partnership with the ZERO Group in Germany.

We’re eager to involve a broad network of collaborators. It’s an exciting moment in the fields of neuroscience and computing; there is great energy to build technologies that perceive the world like humans do. We stress on the first day of class that perception is a fundamentally creative act. We see the potential for models of perception to themselves be tools for scaling and translating creativity across domains, and for building a deeply creative relationship to our environment.

Elephant or chair? How the brain IDs objects

As visual information flows into the brain through the retina, the visual cortex transforms the sensory input into coherent perceptions. Neuroscientists have long hypothesized that a part of the visual cortex called the inferotemporal (IT) cortex is necessary for the key task of recognizing individual objects, but the evidence has been inconclusive.

In a new study, MIT neuroscientists have found clear evidence that the IT cortex is indeed required for object recognition; they also found that subsets of this region are responsible for distinguishing different objects.

In addition, the researchers have developed computational models that describe how these neurons transform visual input into a mental representation of an object. They hope such models will eventually help guide the development of brain-machine interfaces (BMIs) that could be used for applications such as generating images in the mind of a blind person.

“We don’t know if that will be possible yet, but this is a step on the pathway toward those kinds of applications that we’re thinking about,” says James DiCarlo, the head of MIT’s Department of Brain and Cognitive Sciences, a member of the McGovern Institute for Brain Research, and the senior author of the new study.

Rishi Rajalingham, a postdoc at the McGovern Institute, is the lead author of the paper, which appears in the March 13 issue of Neuron.

Distinguishing objects

In addition to its hypothesized role in object recognition, the IT cortex also contains “patches” of neurons that respond preferentially to faces. Beginning in the 1960s, neuroscientists discovered that damage to the IT cortex could produce impairments in recognizing non-face objects, but it has been difficult to determine precisely how important the IT cortex is for this task.

The MIT team set out to find more definitive evidence for the IT cortex’s role in object recognition, by selectively shutting off neural activity in very small areas of the cortex and then measuring how the disruption affected an object discrimination task. In animals that had been trained to distinguish between objects such as elephants, bears, and chairs, they used a drug called muscimol to temporarily turn off subregions about 2 millimeters in diameter. Each of these subregions represents about 5 percent of the entire IT cortex.

These experiments, which represent the first time that researchers have been able to silence such small regions of IT cortex while measuring behavior over many object discriminations, revealed that the IT cortex is not only necessary for distinguishing between objects, but it is also divided into areas that handle different elements of object recognition.

The researchers found that silencing each of these tiny patches produced distinctive impairments in the animals’ ability to distinguish between certain objects. For example, one subregion might be involved in distinguishing chairs from cars, but not chairs from dogs. Each region was involved in 25 to 30 percent of the tasks that the researchers tested, and regions that were closer to each other tended to have more overlap between their functions, while regions far away from each other had little overlap.

“We might have thought of it as a sea of neurons that are completely mixed together, except for these islands of “face patches.” But what we’re finding, which many other studies had pointed to, is that there is large-scale organization over the entire region,” Rajalingham says.

The features that each of these regions are responding to are difficult to classify, the researchers say. The regions are not specific to objects such as dogs, nor easy-to-describe visual features such as curved lines.

“It would be incorrect to say that because we observed a deficit in distinguishing cars when a certain neuron was inhibited, this is a ‘car neuron,’” Rajalingham says. “Instead, the cell is responding to a feature that we can’t explain that is useful for car discriminations. There has been work in this lab and others that suggests that the neurons are responding to complicated nonlinear features of the input image. You can’t say it’s a curve, or a straight line, or a face, but it’s a visual feature that is especially helpful in supporting that particular task.”

Bevil Conway, a principal investigator at the National Eye Institute, says the new study makes significant progress toward answering the critical question of how neural activity in the IT cortex produces behavior.

“The paper makes a major step in advancing our understanding of this connection, by showing that blocking activity in different small local regions of IT has a different selective deficit on visual discrimination. This work advances our knowledge not only of the causal link between neural activity and behavior but also of the functional organization of IT: How this bit of brain is laid out,” says Conway, who was not involved in the research.

Brain-machine interface

The experimental results were consistent with computational models that DiCarlo, Rajalingham, and others in their lab have created to try to explain how IT cortex neuron activity produces specific behaviors.

“That is interesting not only because it says the models are good, but because it implies that we could intervene with these neurons and turn them on and off,” DiCarlo says. “With better tools, we could have very large perceptual effects and do real BMI in this space.”

The researchers plan to continue refining their models, incorporating new experimental data from even smaller populations of neurons, in hopes of developing ways to generate visual perception in a person’s brain by activating a specific sequence of neuronal activity. Technology to deliver this kind of input to a person’s brain could lead to new strategies to help blind people see certain objects.

“This is a step in that direction,” DiCarlo says. “It’s still a dream, but that dream someday will be supported by the models that are built up by this kind of work.”

The research was funded by the National Eye Institute, the Office of Naval Research, and the Simons Foundation.

Ila Fiete joins the McGovern Institute

Ila Fiete, an associate professor in the Department of Brain and Cognitive Sciences at MIT recently joined the McGovern Institute as an associate investigator. Fiete is working to understand the circuits that underlie short-term memory, integration, and inference in the brain.

Think about the simple act of visiting a new town and getting to know its layout as you explore it. What places are reachable from others? Where are landmarks relative to each other? Where are you relative to these landmarks? How do you get from here to where you want to go next?

The process that occurs as your brain tries to transform the few routes you follow into a coherent map of the world is just one of myriad examples of hard computations that the brain is constantly performing. Fiete’s goal is to understand how the brain is able to carry out such computations, and she is developing and using multiple tools to this end. These approaches include pure theoretical approaches to examine neural codes, building numerical dynamical models of circuit operation, and techniques to extract information about the underlying circuit dynamics from neural data.

Spatial navigation is a particularly interesting nut to crack from a neural perspective: The mapping devices on your phone have access to global satellite data, previously constructed detailed maps of the town, various additional sensors, and excellent non-leaky memory. By contrast, the brain must build maps, plan routes, and determine goals all using noisy, local sensors, no externally provided maps, and with noisy, forgetful or leaky neurons. Fiete is particularly interested in elucidating how the brain deals with noisy and ambiguous cues from the world to arrive at robust estimates about the world that resolve ambiguity. She is also interested in how the networks that are important for memory and integration develop through plasticity, learning, and development in the brain.

Fiete earned a BS in mathematics and physics at the University of Michigan then obtained her PhD in 2004 at Harvard University in the Department of Physics. She held a postdoctoral appointment at the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara from 2004 to 2006, while she was also a visiting member of the Center for Theoretical Biophysics at the University of California at San Diego. Fiete subsequently spent two years at Caltech as a Broad Fellow in brain circuitry, and in 2008 joined the faculty of the University of Texas at Austin. She is currently an HHMI faculty scholar.

Peering under the hood of fake-news detectors

New work from researchers at the McGovern Institute for Brain Research at MIT peers under the hood of an automated fake-news detection system, revealing how machine-learning models catch subtle but consistent differences in the language of factual and false stories. The research also underscores how fake-news detectors should undergo more rigorous testing to be effective for real-world applications.

Popularized as a concept in the United States during the 2016 presidential election, fake news is a form of propaganda created to mislead readers, in order to generate views on websites or steer public opinion.

Almost as quickly as the issue became mainstream, researchers began developing automated fake news detectors — so-called neural networks that “learn” from scores of data to recognize linguistic cues indicative of false articles. Given new articles to assess, these networks can, with fairly high accuracy, separate fact from fiction, in controlled settings.

One issue, however, is the “black box” problem — meaning there’s no telling what linguistic patterns the networks analyze during training. They’re also trained and tested on the same topics, which may limit their potential to generalize to new topics, a necessity for analyzing news across the internet.

In a paper presented at the Conference and Workshop on Neural Information Processing Systems, the researchers tackle both of those issues. They developed a deep-learning model that learns to detect language patterns of fake and real news. Part of their work “cracks open” the black box to find the words and phrases the model captures to make its predictions.

Additionally, they tested their model on a novel topic it didn’t see in training. This approach classifies individual articles based solely on language patterns, which more closely represents a real-world application for news readers. Traditional fake news detectors classify articles based on text combined with source information, such as a Wikipedia page or website.

“In our case, we wanted to understand what was the decision-process of the classifier based only on language, as this can provide insights on what is the language of fake news,” says co-author Xavier Boix, a postdoc in the lab of Eugene McDermott Professor Tomaso Poggio at the Center for Brains, Minds, and Machines (CBMM), a National Science Foundation-funded center housed within the McGovern Institute.

“A key issue with machine learning and artificial intelligence is that you get an answer and don’t know why you got that answer,” says graduate student and first author Nicole O’Brien ’17. “Showing these inner workings takes a first step toward understanding the reliability of deep-learning fake-news detectors.”

The model identifies sets of words that tend to appear more frequently in either real or fake news — some perhaps obvious, others much less so. The findings, the researchers say, points to subtle yet consistent differences in fake news — which favors exaggerations and superlatives — and real news, which leans more toward conservative word choices.

“Fake news is a threat for democracy,” Boix says. “In our lab, our objective isn’t just to push science forward, but also to use technologies to help society. … It would be powerful to have tools for users or companies that could provide an assessment of whether news is fake or not.”

The paper’s other co-authors are Sophia Latessa, an undergraduate student in CBMM; and Georgios Evangelopoulos, a researcher in CBMM, the McGovern Institute of Brain Research, and the Laboratory for Computational and Statistical Learning.

Limiting bias

The researchers’ model is a convolutional neural network that trains on a dataset of fake news and real news. For training and testing, the researchers used a popular fake news research dataset, called Kaggle, which contains around 12,000 fake news sample articles from 244 different websites. They also compiled a dataset of real news samples, using more than 2,000 from the New York Times and more than 9,000 from The Guardian.

In training, the model captures the language of an article as “word embeddings,” where words are represented as vectors — basically, arrays of numbers — with words of similar semantic meanings clustered closer together. In doing so, it captures triplets of words as patterns that provide some context — such as, say, a negative comment about a political party. Given a new article, the model scans the text for similar patterns and sends them over a series of layers. A final output layer determines the probability of each pattern: real or fake.

The researchers first trained and tested the model in the traditional way, using the same topics. But they thought this might create an inherent bias in the model, since certain topics are more often the subject of fake or real news. For example, fake news stories are generally more likely to include the words “Trump” and “Clinton.”

“But that’s not what we wanted,” O’Brien says. “That just shows topics that are strongly weighting in fake and real news. … We wanted to find the actual patterns in language that are indicative of those.”

Next, the researchers trained the model on all topics without any mention of the word “Trump,” and tested the model only on samples that had been set aside from the training data and that did contain the word “Trump.” While the traditional approach reached 93-percent accuracy, the second approach reached 87-percent accuracy. This accuracy gap, the researchers say, highlights the importance of using topics held out from the training process, to ensure the model can generalize what it has learned to new topics.

More research needed

To open the black box, the researchers then retraced their steps. Each time the model makes a prediction about a word triplet, a certain part of the model activates, depending on if the triplet is more likely from a real or fake news story. The researchers designed a method to retrace each prediction back to its designated part and then find the exact words that made it activate.

More research is needed to determine how useful this information is to readers, Boix says. In the future, the model could potentially be combined with, say, automated fact-checkers and other tools to give readers an edge in combating misinformation. After some refining, the model could also be the basis of a browser extension or app that alerts readers to potential fake news language.

“If I just give you an article, and highlight those patterns in the article as you’re reading, you could assess if the article is more or less fake,” he says. “It would be kind of like a warning to say, ‘Hey, maybe there is something strange here.’”