How the brain pays attention

Picking out a face in the crowd is a complicated task: Your brain has to retrieve the memory of the face you’re seeking, then hold it in place while scanning the crowd, paying special attention to finding a match.

A new study by MIT neuroscientists reveals how the brain achieves this type of focused attention on faces or other objects: A part of the prefrontal cortex known as the inferior frontal junction (IFJ) controls visual processing areas that are tuned to recognize a specific category of objects, the researchers report in the April 10 online edition of Science.

Scientists know much less about this type of attention, known as object-based attention, than spatial attention, which involves focusing on what’s happening in a particular location. However, the new findings suggest that these two types of attention have similar mechanisms involving related brain regions, says Robert Desimone, the Doris and Don Berkey Professor of Neuroscience, director of MIT’s McGovern Institute for Brain Research, and senior author of the paper.

“The interactions are surprisingly similar to those seen in spatial attention,” Desimone says. “It seems like it’s a parallel process involving different areas.”

In both cases, the prefrontal cortex — the control center for most cognitive functions — appears to take charge of the brain’s attention and control relevant parts of the visual cortex, which receives sensory input. For spatial attention, that involves regions of the visual cortex that map to a particular area within the visual field.

In the new study, the researchers found that IFJ coordinates with a brain region that processes faces, known as the fusiform face area (FFA), and a region that interprets information about places, known as the parahippocampal place area (PPA). The FFA and PPA were first identified in the human cortex by Nancy Kanwisher, the Walter A. Rosenblith Professor of Cognitive Neuroscience at MIT.

The IFJ has previously been implicated in a cognitive ability known as working memory, which is what allows us to gather and coordinate information while performing a task — such as remembering and dialing a phone number, or doing a math problem.

For this study, the researchers used magnetoencephalography (MEG) to scan human subjects as they viewed a series of overlapping images of faces and houses. Unlike functional magnetic resonance imaging (fMRI), which is commonly used to measure brain activity, MEG can reveal the precise timing of neural activity, down to the millisecond. The researchers presented the overlapping streams at two different rhythms — two images per second and 1.5 images per second — allowing them to identify brain regions responding to those stimuli.

“We wanted to frequency-tag each stimulus with different rhythms. When you look at all of the brain activity, you can tell apart signals that are engaged in processing each stimulus,” says Daniel Baldauf, a postdoc at the McGovern Institute and the lead author of the paper.

Each subject was told to pay attention to either faces or houses; because the houses and faces were in the same spot, the brain could not use spatial information to distinguish them. When the subjects were told to look for faces, activity in the FFA and the IFJ became synchronized, suggesting that they were communicating with each other. When the subjects paid attention to houses, the IFJ synchronized instead with the PPA.

The researchers also found that the communication was initiated by the IFJ and the activity was staggered by 20 milliseconds — about the amount of time it would take for neurons to electrically convey information from the IFJ to either the FFA or PPA. The researchers believe that the IFJ holds onto the idea of the object that the brain is looking for and directs the correct part of the brain to look for it.
Further bolstering this idea, the researchers used an MRI-based method to measure the white matter that connects different brain regions and found that the IFJ is highly connected with both the FFA and PPA.

Members of Desimone’s lab are now studying how the brain shifts its focus between different types of sensory input, such as vision and hearing. They are also investigating whether it might be possible to train people to better focus their attention by controlling the brain interactions  involved in this process.

“You have to identify the basic neural mechanisms and do basic research studies, which sometimes generate ideas for things that could be of practical benefit,” Desimone says. “It’s too early to say whether this training is even going to work at all, but it’s something that we’re actively pursuing.”

The research was funded by the National Institutes of Health and the National Science Foundation.

Brain’s language center has multiple roles

A century and a half ago, French physician Pierre Paul Broca found that patients with damage to part of the brain’s frontal lobe were unable to speak more than a few words. Later dubbed Broca’s area, this region is believed to be critical for speech production and some aspects of language comprehension.

However, in recent years neuroscientists have observed activity in Broca’s area when people perform cognitive tasks that have nothing to do with language, such as solving math problems or holding information in working memory. Those findings have stimulated debate over whether Broca’s area is specific to language or plays a more general role in cognition.

A new study from MIT may help resolve this longstanding question. The researchers, led by Nancy Kanwisher, the Walter A. Rosenblith Professor of Cognitive Neuroscience, found that Broca’s area actually consists of two distinct subunits. One of these focuses selectively on language processing, while the other is part of a brainwide network that appears to act as a central processing unit for general cognitive functions.

“I think we’ve shown pretty convincingly that there are two distinct bits that we should not be treating as a single region, and perhaps we shouldn’t even be talking about “Broca’s area” because it’s not a functional unit,” says Evelina Fedorenko, a research scientist in Kanwisher’s lab and lead author of the new study, which recently appeared in the journal Current Biology.

Kanwisher and Fedorenko are members of MIT’s Department of Brain and Cognitive Sciences and the McGovern Institute for Brain Research. John Duncan, a professor of neuroscience at the Cognition and Brain Sciences Unit of the Medical Research Council in the United Kingdom, is also an author of the paper.

A general role

Broca’s area is located in the left inferior frontal cortex, above and behind the left eye. For this study, the researchers set out to pinpoint the functions of distinct sections of Broca’s area by scanning subjects with functional magnetic resonance imaging (fMRI) as they performed a variety of cognitive tasks.

To locate language-selective areas, the researchers asked subjects to read either meaningful sentences or sequences of nonwords. A subset of Broca’s area lit up much more when the subjects processed meaningful sentences than when they had to interpret nonwords.

The researchers then measured brain activity as the subjects performed easy and difficult versions of general cognitive tasks, such as doing a math problem or holding a set of locations in memory. Parts of Broca’s area lit up during the more demanding versions of those tasks. Critically, however, these regions were spatially distinct from the regions involved in the language task.

These data allowed the researchers to map, for each subject, two distinct regions of Broca’s area — one selectively involved in language, the other involved in responding to many demanding cognitive tasks. The general region surrounds the language region, but the exact shapes and locations of the borders between the two vary from person to person.

The general-function region of Broca’s area appears to be part of a larger network sometimes called the multiple demand network, which is active when the brain is tackling a challenging task that requires a great deal of focus. This network is distributed across frontal and parietal lobes in both hemispheres of the brain, and all of its components appear to communicate with one another. The language-selective section of Broca’s area also appears to be part of a larger network devoted to language processing, spread throughout the brain’s left hemisphere.

Mapping functions

The findings provide evidence that Broca’s area should not be considered to have uniform functionality, says Peter Hagoort, a professor of cognitive neuroscience at Radboud University Nijmegen in the Netherlands. Hagoort, who was not involved in this study, adds that more work is needed to determine whether the language-selective areas might also be involved in any other aspects of cognitive function. “For instance, the language-selective region might play a role in the perception of music, which was not tested in the current study,” he says.

The researchers are now trying to determine how the components of the language network and the multiple demand network communicate internally, and how the two networks communicate with each other. They also hope to further investigate the functions of the two components of Broca’s area.

“In future studies, we should examine those subregions separately and try to characterize them in terms of their contribution to various language processes and other cognitive processes,” Fedorenko says.

The team is also working with scientists at Massachusetts General Hospital to study patients with a form of neurodegeneration that gradually causes loss of the ability to speak and understand language. This disorder, known as primary progressive aphasia, appears to selectively target the language-selective network, including the language component of Broca’s area.

The research was funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the Ellison Medical Foundation and the U.K. Medical Research Council.

Faces have a special place in the brain

Are you tempted to trade in last year’s digital camera for a newer model with even more megapixels? Researchers who make images of the human brain have the same obsession with increasing their pixel count, which increases the sharpness (or “spatial resolution”) of their images. And improvements in spatial resolution are happening as fast in brain imaging research as they are in digital camera technology.

Nancy Kanwisher, Rebecca Frye Schwarzlose and Christopher Baker at the McGovern Institute for Brain Research at MIT are now using their higher-resolution scans to produce much more detailed images of the brain than were possible just a couple years ago. Just as “hi-def” TV shows clearer views of a football game, these finely grained images are providing new answers to some very old questions in brain research.

One such question hinges on whether the brain is comprised of highly specialized parts, each optimized to conduct a single, very specific function. Or is it instead a general-purpose device that handles many tasks but specializes in none?

Using the higher-resolution scans, the Kanwisher team now provides some of the strongest evidence ever reported for extreme specialization. Their study appeared in the Nov. 23 issue of the Journal of Neuroscience.

The study focuses on face recognition, long considered an example of brain specialization. In the 1990s, researchers including Kanwisher identified a region known as the fusiform face area (FFA) as a potential brain center for face recognition. They pointed to evidence from brain-imaging experiments, and to the fact that people with damage to this brain region cannot recognize faces, even those of their family and closest friends.

However, more recent brain-imaging experiments have challenged this claimed specialization by showing that this region also responds strongly when people see images of bodies and body parts, not just faces. The new study now answers this challenge and supports the original specialization theory.

Schwarzlose suspected that the strong response of the face area to both faces and bodies might result from the blurring together of two distinct but neighboring brain regions that are too close together to distinguish at standard scanning resolutions.

To test this idea, Schwarzlose and her colleagues increased the resolution of their images (like increasing the megapixels on a digital camera) ten-fold to get sharper images of brain function. Indeed, at this higher resolution they could clearly distinguish two neighboring regions. One was primarily active when people saw faces (not bodies), and the other when people saw bodies (not faces).

This finding supports the original claim that the face area is in fact dedicated exclusively to face processing. The results further demonstrate a similar degree of specialization for the new “body region” next door.

The team’s new discovery highlights the importance of improved spatial resolution in studying the structure of the human brain. Just as a higher megapixel digital camera can show greater detail, new brain imaging methods are revealing the finer-grained structure of the human brain. Schwarzlose and her colleagues plan to use the new scanning methods to look for even finer levels of organization within the newly distinguished face and body areas. They also want to figure out how and why the brain regions for faces and bodies land next to each other in the first place.

Kanwisher is the Ellen Swallow Richards Professor of Cognitive Neuroscience. Her colleagues on this work are Schwarzlose, a graduate student in brain and cognitive sciences, and Baker, a postdoctoral researcher in the department.

The research was supported by the National Institutes of Health, the National Center for Research Resources, the Mind Institute, and the National Science Foundation’s Graduate Research Fellowship Program.