Michale Fee

Song Circuits

Michale Fee studies how the brain learns and generates complex sequential behaviors, focusing on the songbird as a model system. Birdsong is a complex behavior that young birds learn from their fathers and it provides an ideal system to study the neural basis of learned behavior. Because the parts of the bird’s brain that control song learning are closely related to human circuits that are disrupted in brain disorders such as Parkinson’s and Huntington’s disease, Fee hopes the lessons learned from birdsong will provide new clues to the causes and possible treatment of these conditions.

Ann Graybiel

Probing the Deep Brain

Ann Graybiel studies the basal ganglia, forebrain structures that are profoundly important for normal brain function. Dysfunction in these regions is implicated in neurologic and neuropsychiatric disorders ranging from Parkinson’s disease and Huntington’s disease to obsessive-compulsive disorder, anxiety and depression, and addiction. Graybiel’s laboratory is uncovering circuits underlying both the neural deficits related to these disorders, as well as the role that the basal ganglia play in guiding normal learning, motivation, and behavior.

What is CRISPR?

CRISPR (which stands for Clustered Regularly Interspaced Short Palindromic Repeats) is not actually a single entity, but shorthand for a set of bacterial systems that are found with a hallmarked arrangement in the bacterial genome.

When CRISPR is mentioned, most people are likely thinking of CRISPR-Cas9, now widely known for its capacity to be re-deployed to target sequences of interest in eukaryotic cells, including human cells. Cas9 can be programmed to target specific stretches of DNA, but other enzymes have since been discovered that are able to edit DNA, including Cpf1 and Cas12b. Other CRISPR enzymes, Cas13 family members, can be programmed to target RNA and even edit and change its sequence.

The common theme that makes CRISPR enzymes so powerful, is that scientists can supply them with a guide RNA for a chosen sequence. Since the guide RNA can pair very specifically with DNA, or for Cas13 family members, RNA, researchers can basically provide a given CRISPR enzyme with a way of homing in on any sequence of interest. Once a CRISPR protein finds its target, it can be used to edit that sequence, perhaps removing a disease-associated mutation.

In addition, CRISPR proteins have been engineered to modulate gene expression and even signal the presence of particular sequences, as in the case of the Cas13-based diagnostic, SHERLOCK.

Do you have a question for The Brain? Ask it here.

Ann Graybiel wins 2018 Gruber Neuroscience Prize

Institute Professor Ann Graybiel, a professor in the Department of Brain and Cognitive Sciences and member of MIT’s McGovern Institute for Brain Research, is being recognized by the Gruber Foundation for her work on the structure, organization, and function of the once-mysterious basal ganglia. She was awarded the prize alongside Okihide Hikosaka of the National Institute of Health’s National Eye Institute and Wolfram Schultz of the University of Cambridge in the U.K.

The basal ganglia have long been known to play a role in movement, and the work of Graybiel and others helped to extend their roles to cognition and emotion. Dysfunction in the basal ganglia has been linked to a host of disorders including Parkinson’s disease, Huntington’s disease, obsessive-compulsive disorder and attention-deficit hyperactivity disorder, and to depression and anxiety disorders. Graybiel’s research focuses on the circuits thought to underlie these disorders, and on how these circuits act to help us form habits in everyday life.

“We are delighted that Ann has been honored with the Gruber Neuroscience Prize,” says Robert Desimone, director of the McGovern Institute. “Ann’s work has truly elucidated the complexity and functional importance of these forebrain structures. Her work has driven the field forward in a fundamental fashion, and continues to do so.’

Graybiel’s research focuses broadly on the striatum, a hub in basal ganglia-based circuits that is linked to goal-directed actions and habits. Prior to her work, the striatum was considered to be a primitive forebrain region. Graybiel found that the striatum instead has a complex architecture consisting of specialized zones: striosomes and the surrounding matrix. Her group went on to relate these zones to function, finding that striosomes and matrix differentially influence behavior. Among other important findings, Graybiel has shown that striosomes are focal points in circuits that link mood-related cortical regions with the dopamine-containing neurons of the midbrain, which are implicated in learning and motivation and which undergo degeneration in Parkinson’s disorder and other clinical conditions. She and her group have shown that these regions are activated by drugs of abuse, and that they influence decision-making, including decisions that require weighing of costs and benefits.

Graybiel continues to drive the field forward, finding that striatal neurons spike in an accentuated fashion and ‘bookend’ the beginning and end of behavioral sequences in rodents and primates. This activity pattern suggests that the striatum demarcates useful behavioral sequences such, in the case of rodents, pressing levers or running down mazes to receive a reward. Additionally, she and her group worked on miniaturized tools for chemical sensing and delivery as part of a continued drive toward therapeutic intervention in collaboration with the laboratories of Robert Langer in the Department of Chemical Engineering and Michael Cima, in the Department of Materials Science and Engineering.

“My first thought was of our lab, and how fortunate I am to work with such talented and wonderful people,” says Graybiel.  “I am deeply honored to be recognized by this prestigious award on behalf of our lab.”

The Gruber Foundation’s international prize program recognizes researchers in the areas of cosmology, neuroscience and genetics, and includes a cash award of $500,000 in each field. The medal given to award recipients also outlines the general mission of the foundation, “for the fundamental expansion of human knowledge,” and the prizes specifically honor those whose groundbreaking work fits into this paradigm.

Graybiel, a member of the MIT Class of 1971, has also previously been honored with the National Medal of Science, the Kavli Award, the James R. Killian Faculty Achievement Award at MIT, Woman Leader of Parkinson’s Science award from the Parkinson’s Disease Foundation, and has been recognized by the National Parkinson Foundation for her contributions to the understanding and treatment of Parkinson’s disease. Graybiel is a member of the National Academy of Sciences, the National Academy of Medicine, and the American Academy of Arts and Sciences.

The Gruber Neuroscience Prize will be presented in a ceremony at the annual meeting of the Society for Neuroscience in San Diego this coming November.

Newly discovered neural connections may be linked to emotional decision-making

MIT neuroscientists have discovered connections deep within the brain that appear to form a communication pathway between areas that control emotion, decision-making, and movement. The researchers suspect that these connections, which they call striosome-dendron bouquets, may be involved in controlling how the brain makes decisions that are influenced by emotion or anxiety.

This circuit may also be one of the targets of the neural degeneration seen in Parkinson’s disease, says Ann Graybiel, an Institute Professor at MIT, member of the McGovern Institute for Brain Research, and the senior author of the study.

Graybiel and her colleagues were able to find these connections using a technique developed at MIT known as expansion microscopy, which enables scientists to expand brain tissue before imaging it. This produces much higher-resolution images than would otherwise be possible with conventional microscopes.

That technique was developed in the lab of Edward Boyden, an associate professor of biological engineering and brain and cognitive sciences at the MIT Media Lab, who is also an author of this study. Jill Crittenden, a research scientist at the McGovern Institute, is the lead author of the paper, which appears in the Proceedings of the National Academy of Sciences the week of Sept. 19.

Tracing a circuit

In this study, the researchers focused on a small region of the brain known as the striatum, which is part of the basal ganglia — a cluster of brain centers associated with habit formation, control of voluntary movement, emotion, and addiction. Malfunctions of the basal ganglia have been associated with Parkinson’s and Huntington’s diseases, as well as autism, obsessive-compulsive disorder, and Tourette’s syndrome.

Much of the striatum is uncharted territory, but Graybiel’s lab has previously identified clusters of cells there known as striosomes. She also found that these clusters receive very specific input from parts of the brain’s prefrontal cortex involved in processing emotions, and showed that this communication pathway is necessary for making decisions that require an anxiety-provoking cost-benefit analysis, such as choosing whether to take a job that pays more but forces a move away from family and friends.

Her studies also suggested that striosomes relay information to cells within a region called the substantia nigra, one of the brain’s main dopamine-producing centers. Dopamine has many functions in the brain, including roles in initiating movement and regulating mood.

To figure out how these regions might be communicating, Graybiel, Crittenden, and their colleagues used expansion microscopy to image the striosomes and discovered extensive connections between those clusters of cells and dopamine-producing cells of the substantia nigra. The dopamine-producing cells send down many tiny extensions known as dendrites that become entwined with axons that come up to meet them from the striosomes, forming a bouquet-like structure.

“With expansion microscopy, we could finally see direct connections between these cells by unraveling their unusual rope-like bundles of axons and dendrites,” Crittenden says. “What’s really exciting to us is we can see that it’s small discrete clusters of dopamine cells with bundles that are being targeted.”

Hard decisions

This finding expands the known decision-making circuit so that it encompasses the prefrontal cortex, striosomes, and a subset of dopamine-producing cells. Together, the striosomes may be acting as a gatekeeper that absorbs sensory and emotional information coming from the cortex and integrates it to produce a decision on how to react, which is initiated by the dopamine-producing cells, the researchers say.

To explore that possibility, the researchers plan to study mice in which they can selectively activate or shut down the striosome-dendron bouquet as the mice are prompted to make decisions requiring a cost-benefit analysis.

The researchers also plan to investigate whether these connections are disrupted in mouse models of Parkinson’s disease. MRI studies and postmortem analysis of brains of Parkinson’s patients have shown that death of dopamine cells in the substantia nigra is strongly correlated with the disease, but more work is needed to determine if this subset overlaps with the dopamine cells that form the striosome-dendron bouquets.

Genome Editing with CRISPR – Cas9

This animation depicts the CRISPR-Cas9 method for genome editing – a powerful new technology with many applications in biomedical research, including the potential to treat human genetic disease. Feng Zhang, a leader in the development of this technology, is a faculty member at MIT, an investigator at the McGovern Institute for Brain Research, and a core member of the Broad Institute.