New collaboration aims to strengthen orthotic and prosthetic care in Sierra Leone

MIT’s K. Lisa Yang Center for Bionics has entered into a collaboration with the Government of Sierra Leone to strengthen the capabilities and services of that country’s orthotic and prosthetic (O&P) sector. Tens of thousands of people in Sierra Leone are in need of orthotic braces and artificial limbs, but access to such specialized medical care in this African nation is limited.

The agreement, reached between MIT, the Center for Bionics, and Sierra Leone’s Ministry of Health and Sanitation (MoHS), provides a detailed memorandum of understanding and intentions that will begin as a four-year program.  The collaborators aim to strengthen Sierra Leone’s O&P sector through six key objectives: data collection and clinic operations, education, supply chain, infrastructure, new technologies and mobile delivery of services.

Project Objectives

  1. Data Collection and Clinic Operations: collect comprehensive data on epidemiology, need, utilization, and access for O&P services across the country
  2. Education: create an inclusive education and training program for the people of Sierra Leone, to enable sustainable and independent operation of O&P services
  3. Supply Chain: establish supply chains for prosthetic and orthotic components, parts, and materials for fabrication of devices
  4. Infrastructure: prepare infrastructure (e.g., physical space, sufficient water, power and internet) to support increased production and services
  5. New Technologies: develop and translate innovative technologies with potential to improve O&P clinic operations and management, patient mobility, and the design or fabrication of devices
  6. Mobile Delivery: support outreach services and mobile delivery of care for patients in rural and difficult-to-reach areas

Working together, MIT’s bionics center and Sierra Leone’s MoHS aim to sustainably double the production and distribution of O&P services at Sierra Leone’s National Rehabilitation Centre and Bo Clinics over the next four years.

The team of MIT scientists who will be implementing this novel collaboration is led by Hugh Herr, MIT Professor of Media Arts and Sciences. Herr, himself a double amputee, serves as co-director of the K. Lisa Yang Center for Bionics, and heads the renowned Biomechatronics research group at the MIT Media Lab.

“From educational services, to supply chain, to new technology, this important MOU with the government of Sierra Leone will enable the Center to develop a broad, integrative approach to the orthotic and prosthetic sector within Sierra Leone, strengthening services and restoring much needed care to its citizens,” notes Professor Herr.

Sierra Leone’s Honorable Minister of Health Dr. Austin Demby also states: “As the Ministry of Health and Sanitation continues to galvanize efforts towards the attainment of Universal Health Coverage through the life stages approach, this collaboration will foster access, innovation and capacity building in the Orthotic and Prosthetic division. The ministry is pleased to work with and learn from MIT over the next four years in building resilient health systems, especially for vulnerable groups.”

“Our team at MIT brings together expertise across disciplines from global health systems to engineering and design,” added Francesca Riccio-Ackerman, the graduate student lead for the MIT Sierra Leone project. “This allows us to craft an innovative strategy with Sierra Leone’s Ministry of Health and Sanitation. Together we aim to improve available orthotic and prosthetic care for people with disabilities.”

The K. Lisa Yang Center for Bionics at the Massachusetts Institute of Technology pioneers transformational bionic interventions across a broad range of conditions affecting the body and mind. Based on fundamental scientific principles, the Center seeks to develop neural and mechanical interfaces for human-machine communications; integrate these interfaces into novel bionic platforms; perform clinical trials to accelerate the deployment of bionic products by the private sector; and leverage novel and durable, but affordable, materials and manufacturing processes to ensure equitable access to the latest bionic technology by all impacted individuals, especially those in developing countries. 

Sierra Leone’s Ministry of Health and Sanitation is responsible for health service delivery across the country, as well as regulation of the health sector to meet the health needs of its citizenry. 

For more information about this project, please visit: https://mitmedialab.info/prosforallproj2

 

How Huntington’s disease affects different neurons

In patients with Huntington’s disease, neurons in a part of the brain called the striatum are among the hardest-hit. Degeneration of these neurons contributes to patients’ loss of motor control, which is one of the major hallmarks of the disease.

Neuroscientists at MIT have now shown that two distinct cell populations in the striatum are affected differently by Huntington’s disease. They believe that neurodegeneration of one of these populations leads to motor impairments, while damage to the other population, located in structures called striosomes, may account for the mood disorders that are often see in the early stages of the disease.

“As many as 10 years ahead of the motor diagnosis, Huntington’s patients can experience mood disorders, and one possibility is that the striosomes might be involved in these,” says Ann Graybiel, an MIT Institute Professor, a member of MIT’s McGovern Institute for Brain Research, and one of the senior authors of the study.

Using single-cell RNA sequencing to analyze the genes expressed in mouse models of Huntington’s disease and postmortem brain samples from Huntington’s patients, the researchers found that cells of the striosomes and another structure, the matrix, begin to lose their distinguishing features as the disease progresses. The researchers hope that their mapping of the striatum and how it is affected by Huntington’s could help lead to new treatments that target specific cells within the brain.

This kind of analysis could also shed light on other brain disorders that affect the striatum, such as Parkinson’s disease and autism spectrum disorder, the researchers say.

Myriam Heiman, an associate professor in MIT’s Department of Brain and Cognitive Sciences and a member of the Picower Institute for Learning and Memory, and Manolis Kellis, a professor of computer science in MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and a member of the Broad Institute of MIT and Harvard, are also senior authors of the study. Ayano Matsushima, a McGovern Institute research scientist, and Sergio Sebastian Pineda, an MIT graduate student, are the lead authors of the paper, which appears in Nature Communications.

Neuron vulnerability

Huntington’s disease leads to degeneration of brain structures called the basal ganglia, which are responsible for control of movement and also play roles in other behaviors, as well as emotions. For many years, Graybiel has been studying the striatum, a part of the basal ganglia that is involved in making decisions that require evaluating the outcomes of a particular action.

Many years ago, Graybiel discovered that the striatum is divided into striosomes, which are clusters of neurons, and the matrix, which surrounds the striosomes. She has also shown that striosomes are necessary for making decisions that require an anxiety-provoking cost-benefit analysis.

In a 2007 study, Richard Faull of the University of Auckland discovered that in postmortem brain tissue from Huntington’s patients, the striosomes showed a great deal of degeneration. Faull also found that while those patients were alive, many of them had shown signs of mood disorders such as depression before their motor symptoms developed.

To further explore the connections between the striatum and the mood and motor effects of Huntington’s, Graybiel teamed up with Kellis and Heiman to study the gene expression patterns of striosomal and matrix cells. To do that, the researchers used single-cell RNA sequencing to analyze human brain samples and brain tissue from two mouse models of Huntington’s disease.

Within the striatum, neurons can be classified as either D1 or D2 neurons. D1 neurons are involved in the “go” pathway, which initiates an action, and D2 neurons are part of the “no-go” pathway, which suppresses an action. D1 and D2 neurons can both be found within either the striosomes and the matrix.

The analysis of RNA expression in each of these types of cells revealed that striosomal neurons are harder hit by Huntington’s than matrix neurons. Furthermore, within the striosomes, D2 neurons are more vulnerable than D1.

The researchers also found that these four major cell types begin to lose their identifying molecular identities and become more difficult to distinguish from one another in Huntington’s disease. “Overall, the distinction between striosomes and matrix becomes really blurry,” Graybiel says.

Striosomal disorders

The findings suggest that damage to the striosomes, which are known to be involved in regulating mood, may be responsible for the mood disorders that strike Huntington’s patients in the early stages of the disease. Later on, degeneration of the matrix neurons likely contributes to the decline of motor function, the researchers say.

In future work, the researchers hope to explore how degeneration or abnormal gene expression in the striosomes may contribute to other brain disorders.

Previous research has shown that overactivity of striosomes can lead to the development of repetitive behaviors such as those seen in autism, obsessive compulsive disorder, and Tourette’s syndrome. In this study, at least one of the genes that the researchers discovered was overexpressed in the striosomes of Huntington’s brains is also linked to autism.

Additionally, many striosome neurons project to the part of the brain that is most affected by Parkinson’s disease (the substantia nigra, which produces most of the brain’s dopamine).

“There are many, many disorders that probably involve the striatum, and now, partly through transcriptomics, we’re working to understand how all of this could fit together,” Graybiel says.

The research was funded by the Saks Kavanaugh Foundation, the CHDI Foundation, the National Institutes of Health, the Nancy Lurie Marks Family Foundation, the Simons Foundation, the JPB Foundation, the Kristin R. Pressman and Jessica J. Pourian ’13 Fund, and Robert Buxton.

Self-assembling proteins can store cellular “memories”

As cells perform their everyday functions, they turn on a variety of genes and cellular pathways. MIT engineers have now coaxed cells to inscribe the history of these events in a long protein chain that can be imaged using a light microscope.

Cells programmed to produce these chains continuously add building blocks that encode particular cellular events. Later, the ordered protein chains can be labeled with fluorescent molecules and read under a microscope, allowing researchers to reconstruct the timing of the events.

This technique could help shed light on the steps that underlie processes such as memory formation, response to drug treatment, and gene expression.

“There are a lot of changes that happen at organ or body scale, over hours to weeks, which cannot be tracked over time,” says Edward Boyden, the Y. Eva Tan Professor in Neurotechnology, a professor of biological engineering and brain and cognitive sciences at MIT, a Howard Hughes Medical Institute investigator, and a member of MIT’s McGovern Institute for Brain Research and Koch Institute for Integrative Cancer Research.

If the technique could be extended to work over longer time periods, it could also be used to study processes such as aging and disease progression, the researchers say.

Boyden is the senior author of the study, which appears today in Nature Biotechnology. Changyang Linghu, a former J. Douglas Tan Postdoctoral Fellow at the McGovern Institute, who is now an assistant professor at the University of Michigan, is the lead author of the paper.

Cellular history

Biological systems such as organs contain many different kinds of cells, all of which have distinctive functions. One way to study these functions is to image proteins, RNA, or other molecules inside the cells, which provide hints to what the cells are doing. However, most methods for doing this offer only a glimpse of a single moment in time, or don’t work well with very large populations of cells.

“Biological systems are often composed of a large number of different types of cells. For example, the human brain has 86 billion cells,” Linghu says. “To understand those kinds of biological systems, we need to observe physiological events over time in these large cell populations.”

To achieve that, the research team came up with the idea of recording cellular events as a series of protein subunits that are continuously added to a chain. To create their chains, the researchers used engineered protein subunits, not normally found in living cells, that can self-assemble into long filaments.

The researchers designed a genetically encoded system in which one of these subunits is continuously produced inside cells, while the other is generated only when a specific event occurs. Each subunit also contains a very short peptide called an epitope tag — in this case, the researchers chose tags called HA and V5. Each of these tags can bind to a different fluorescent antibody, making it easy to visualize the tags later on and determine the sequence of the protein subunits.

For this study, the researchers made production of the V5-containing subunit contingent on the activation of a gene called c-fos, which is involved in encoding new memories. HA-tagged subunits make up most of the chain, but whenever the V5 tag shows up in the chain, that means that c-fos was activated during that time.

“We’re hoping to use this kind of protein self-assembly to record activity in every single cell,” Linghu says. “It’s not only a snapshot in time, but also records past history, just like how tree rings can permanently store information over time as the wood grows.”

Recording events

In this study, the researchers first used their system to record activation of c-fos in neurons growing in a lab dish. The c-fos gene was activated by chemically induced activation of the neurons, which caused the V5 subunit to be added to the protein chain.

To explore whether this approach could work in the brains of animals, the researchers programmed brain cells of mice to generate protein chains that would reveal when the animals were exposed to a particular drug. Later, the researchers were able to detect that exposure by preserving the tissue and analyzing it with a light microscope.

The researchers designed their system to be modular, so that different epitope tags can be swapped in, or different types of cellular events can be detected, including, in principle, cell division or activation of enzymes called protein kinases, which help control many cellular pathways.

The researchers also hope to extend the recording period that they can achieve. In this study, they recorded events for several days before imaging the tissue. There is a tradeoff between the amount of time that can be recorded and the time resolution, or frequency of event recording, because the length of the protein chain is limited by the size of the cell.

“The total amount of information it could store is fixed, but we could in principle slow down or increase the speed of the growth of the chain,” Linghu says. “If we want to record for a longer time, we could slow down the synthesis so that it will reach the size of the cell within, let’s say two weeks. In that way we could record longer, but with less time resolution.”

The researchers are also working on engineering the system so that it can record multiple types of events in the same chain, by increasing the number of different subunits that can be incorporated.

The research was funded by the Hock E. Tan and K. Lisa Yang Center for Autism Research, John Doerr, the National Institutes of Health, the National Science Foundation, the U.S. Army Research Office, and the Howard Hughes Medical Institute.

New sensor uses MRI to detect light deep in the brain

Using a specialized MRI sensor, MIT researchers have shown that they can detect light deep within tissues such as the brain.

Imaging light in deep tissues is extremely difficult because as light travels into tissue, much of it is either absorbed or scattered. The MIT team overcame that obstacle by designing a sensor that converts light into a magnetic signal that can be detected by MRI (magnetic resonance imaging).

This type of sensor could be used to map light emitted by optical fibers implanted in the brain, such as the fibers used to stimulate neurons during optogenetic experiments. With further development, it could also prove useful for monitoring patients who receive light-based therapies for cancer, the researchers say.

“We can image the distribution of light in tissue, and that’s important because people who use light to stimulate tissue or to measure from tissue often don’t quite know where the light is going, where they’re stimulating, or where the light is coming from. Our tool can be used to address those unknowns,” says Alan Jasanoff, an MIT professor of biological engineering, brain and cognitive sciences, and nuclear science and engineering.

Jasanoff, who is also an associate investigator at MIT’s McGovern Institute for Brain Research, is the senior author of the study, which appears today in Nature Biomedical Engineering. Jacob Simon PhD ’21 and MIT postdoc Miriam Schwalm are the paper’s lead authors, and Johannes Morstein and Dirk Trauner of New York University are also authors of the paper.

A light-sensitive probe

Scientists have been using light to study living cells for hundreds of years, dating back to the late 1500s, when the light microscope was invented. This kind of microscopy allows researchers to peer inside cells and thin slices of tissue, but not deep inside an organism.

“One of the persistent problems in using light, especially in the life sciences, is that it doesn’t do a very good job penetrating many materials,” Jasanoff says. “Biological materials absorb light and scatter light, and the combination of those things prevents us from using most types of optical imaging for anything that involves focusing in deep tissue.”

To overcome that limitation, Jasanoff and his students decided to design a sensor that could transform light into a magnetic signal.

“We wanted to create a magnetic sensor that responds to light locally, and therefore is not subject to absorbance or scattering. Then this light detector can be imaged using MRI,” he says.

Jasanoff’s lab has previously developed MRI probes that can interact with a variety of molecules in the brain, including dopamine and calcium. When these probes bind to their targets, it affects the sensors’ magnetic interactions with the surrounding tissue, dimming or brightening the MRI signal.

To make a light-sensitive MRI probe, the researchers decided to encase magnetic particles in a nanoparticle called a liposome. The liposomes used in this study are made from specialized light-sensitive lipids that Trauner had previously developed. When these lipids are exposed to a certain wavelength of light, the liposomes become more permeable to water, or “leaky.” This allows the magnetic particles inside to interact with water and generate a signal detectable by MRI.

The particles, which the researchers called liposomal nanoparticle reporters (LisNR), can switch from permeable to impermeable depending on the type of light they’re exposed to. In this study, the researchers created particles that become leaky when exposed to ultraviolet light, and then become impermeable again when exposed to blue light. The researchers also showed that the particles could respond to other wavelengths of light.

“This paper shows a novel sensor to enable photon detection with MRI through the brain. This illuminating work introduces a new avenue to bridge photon and proton-driven neuroimaging studies,” says Xin Yu, an assistant professor radiology at Harvard Medical School, who was not involved in the study.

Mapping light

The researchers tested the sensors in the brains of rats — specifically, in a part of the brain called the striatum, which is involved in planning movement and responding to reward. After injecting the particles throughout the striatum, the researchers were able to map the distribution of light from an optical fiber implanted nearby.

The fiber they used is similar to those used for optogenetic stimulation, so this kind of sensing could be useful to researchers who perform optogenetic experiments in the brain, Jasanoff says.

“We don’t expect that everybody doing optogenetics will use this for every experiment — it’s more something that you would do once in a while, to see whether a paradigm that you’re using is really producing the profile of light that you think it should be,” Jasanoff says.

In the future, this type of sensor could also be useful for monitoring patients receiving treatments that involve light, such as photodynamic therapy, which uses light from a laser or LED to kill cancer cells.

The researchers are now working on similar probes that could be used to detect light emitted by luciferases, a family of glowing proteins that are often used in biological experiments. These proteins can be used to reveal whether a particular gene is activated or not, but currently they can only be imaged in superficial tissue or cells grown in a lab dish.

Jasanoff also hopes to use the strategy used for the LisNR sensor to design MRI probes that can detect stimuli other than light, such as neurochemicals or other molecules found in the brain.

“We think that the principle that we use to construct these sensors is quite broad and can be used for other purposes too,” he says.

The research was funded by the National Institutes of Health, the G. Harold and Leila Y. Mathers Foundation, a Friends of the McGovern Fellowship from the McGovern Institute for Brain Research, the MIT Neurobiological Engineering Training Program, and a Marie Curie Individual Fellowship from the European Commission.

This is your brain. This is your brain on code

Functional magnetic resonance imaging (fMRI), which measures changes in blood flow throughout the brain, has been used over the past couple of decades for a variety of applications, including “functional anatomy” — a way of determining which brain areas are switched on when a person carries out a particular task. fMRI has been used to look at people’s brains while they’re doing all sorts of things — working out math problems, learning foreign languages, playing chess, improvising on the piano, doing crossword puzzles, and even watching TV shows like “Curb Your Enthusiasm.”

One pursuit that’s received little attention is computer programming — both the chore of writing code and the equally confounding task of trying to understand a piece of already-written code. “Given the importance that computer programs have assumed in our everyday lives,” says Shashank Srikant, a PhD student in MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), “that’s surely worth looking into. So many people are dealing with code these days — reading, writing, designing, debugging — but no one really knows what’s going on in their heads when that happens.” Fortunately, he has made some “headway” in that direction in a paper — written with MIT colleagues Benjamin Lipkin (the paper’s other lead author, along with Srikant), Anna Ivanova, Evelina Fedorenko, and Una-May O’Reilly — that was presented earlier this month at the Neural Information Processing Systems Conference held in New Orleans.

The new paper built on a 2020 study, written by many of the same authors, which used fMRI to monitor the brains of programmers as they “comprehended” small pieces, or snippets, of code. (Comprehension, in this case, means looking at a snippet and correctly determining the result of the computation performed by the snippet.) The 2020 work showed that code comprehension did not consistently activate the language system, brain regions that handle language processing, explains Fedorenko, a brain and cognitive sciences (BCS) professor and a coauthor of the earlier study. “Instead, the multiple demand network — a brain system that is linked to general reasoning and supports domains like mathematical and logical thinking — was strongly active.” The current work, which also utilizes MRI scans of programmers, takes “a deeper dive,” she says, seeking to obtain more fine-grained information.

Whereas the previous study looked at 20 to 30 people to determine which brain systems, on average, are relied upon to comprehend code, the new research looks at the brain activity of individual programmers as they process specific elements of a computer program. Suppose, for instance, that there’s a one-line piece of code that involves word manipulation and a separate piece of code that entails a mathematical operation. “Can I go from the activity we see in the brains, the actual brain signals, to try to reverse-engineer and figure out what, specifically, the programmer was looking at?” Srikant asks. “This would reveal what information pertaining to programs is uniquely encoded in our brains.” To neuroscientists, he notes, a physical property is considered “encoded” if they can infer that property by looking at someone’s brain signals.

Take, for instance, a loop — an instruction within a program to repeat a specific operation until the desired result is achieved — or a branch, a different type of programming instruction than can cause the computer to switch from one operation to another. Based on the patterns of brain activity that were observed, the group could tell whether someone was evaluating a piece of code involving a loop or a branch. The researchers could also tell whether the code related to words or mathematical symbols, and whether someone was reading actual code or merely a written description of that code.

That addressed a first question that an investigator might ask as to whether something is, in fact, encoded. If the answer is yes, the next question might be: where is it encoded? In the above-cited cases — loops or branches, words or math, code or a description thereof — brain activation levels were found to be comparable in both the language system and the multiple demand network.

A noticeable difference was observed, however, when it came to code properties related to what’s called dynamic analysis.

Programs can have “static” properties — such as the number of numerals in a sequence — that do not change over time. “But programs can also have a dynamic aspect, such as the number of times a loop runs,” Srikant says. “I can’t always read a piece of code and know, in advance, what the run time of that program will be.” The MIT researchers found that for dynamic analysis, information is encoded much better in the multiple demand network than it is in the language processing center. That finding was one clue in their quest to see how code comprehension is distributed throughout the brain — which parts are involved and which ones assume a bigger role in certain aspects of that task.

The team carried out a second set of experiments, which incorporated machine learning models called neural networks that were specifically trained on computer programs. These models have been successful, in recent years, in helping programmers complete pieces of code. What the group wanted to find out was whether the brain signals seen in their study when participants were examining pieces of code resembled the patterns of activation observed when neural networks analyzed the same piece of code. And the answer they arrived at was a qualified yes.

“If you put a piece of code into the neural network, it produces a list of numbers that tells you, in some way, what the program is all about,” Srikant says. Brain scans of people studying computer programs similarly produce a list of numbers. When a program is dominated by branching, for example, “you see a distinct pattern of brain activity,” he adds, “and you see a similar pattern when the machine learning model tries to understand that same snippet.”

Mariya Toneva of the Max Planck Institute for Software Systems considers findings like this “particularly exciting. They raise the possibility of using computational models of code to better understand what happens in our brains as we read programs,” she says.

The MIT scientists are definitely intrigued by the connections they’ve uncovered, which shed light on how discrete pieces of computer programs are encoded in the brain. But they don’t yet know what these recently-gleaned insights can tell us about how people carry out more elaborate plans in the real world. Completing tasks of this sort — such as going to the movies, which requires checking showtimes, arranging for transportation, purchasing tickets, and so forth — could not be handled by a single unit of code and just a single algorithm. Successful execution of such a plan would instead require “composition” — stringing together various snippets and algorithms into a sensible sequence that leads to something new, just like assembling individual bars of music in order to make a song or even a symphony. Creating models of code composition, says O’Reilly, a principal research scientist at CSAIL, “is beyond our grasp at the moment.”

Lipkin, a BCS PhD student, considers this the next logical step — figuring out how to “combine simple operations to build complex programs and use those strategies to effectively address general reasoning tasks.” He further believes that some of the progress toward that goal achieved by the team so far owes to its interdisciplinary makeup. “We were able to draw from individual experiences with program analysis and neural signal processing, as well as combined work on machine learning and natural language processing,” Lipkin says. “These types of collaborations are becoming increasingly common as neuro- and computer scientists join forces on the quest towards understanding and building general intelligence.”

This project was funded by grants from the MIT-IBM Watson AI lab, MIT Quest Initiative, National Science Foundation, National Institutes of Health, McGovern Institute of Brain Research, MIT Department of Brain and Cognitive Sciences, and the Simons Center for the Social Brain.

Season’s Greetings from the McGovern Institute

This year’s holiday video (shown above) was inspired by Ev Fedorenko’s July 2022 Nature Neuroscience paper, which found similar patterns of brain activation and language selectivity across speakers of 45 different languages.

Universal language network

Ev Fedorenko uses the widely translated book “Alice in Wonderland” to test brain responses to different languages. Photo: Caitlin Cunningham

Over several decades, neuroscientists have created a well-defined map of the brain’s “language network,” or the regions of the brain that are specialized for processing language. Found primarily in the left hemisphere, this network includes regions within Broca’s area, as well as in other parts of the frontal and temporal lobes. Although roughly 7,000 languages are currently spoken and signed across the globe, the vast majority of those mapping studies have been done in English speakers as they listened to or read English texts.

To truly understand the cognitive and neural mechanisms that allow us to learn and process such diverse languages, Fedorenko and her team scanned the brains of speakers of 45 different languages while they listened to Alice in Wonderland in their native language. The results show that the speakers’ language networks appear to be essentially the same as those of native English speakers — which suggests that the location and key properties of the language network appear to be universal.

The many languages of McGovern

English may be the primary language used by McGovern researchers, but more than 35 other languages are spoken by scientists and engineers at the McGovern Institute. Our holiday video features 30 of these researchers saying Happy New Year in their native (or learned) language. Below is the complete list of languages included in our video. Expand each accordion to learn more about the speaker of that particular language and the meaning behind their new year’s greeting.

Brains on conlangs

For a few days in November, the McGovern Institute hummed with invented languages. Strangers greeted one another in Esperanto; trivia games were played in High Valyrian; Klingon and Na’vi were heard inside MRI scanners. Creators and users of these constructed languages (conlangs) had gathered at MIT in the name of neuroscience. McGovern Institute investigator Evelina Fedorenko and her team wanted to know what happened in their brains when they heard and understood these “foreign” tongues.

The constructed languages spoken by attendees had all been created for specific purposes. Most, like the Na’vi language spoken in the movie Avatar, had given identity and voice to the inhabitants of fictional worlds, while Esperanto was created to reduce barriers to international communication. But despite their distinct origins, a familiar pattern of activity emerged when researchers scanned speakers’ brains. The brain, they found, processes constructed languages with the same network of areas it uses for languages that evolved naturally over millions of years.

The meaning of language

“There’s all these things that people call language,” Fedorenko says. “Music is a kind of language and math is a kind of language.” But the brain processes these metaphorical languages differently than it does the languages humans use to communicate broadly about the world. To neuroscientists like Fedorenko, they can’t legitimately be considered languages at all. In contrast, she says, “these constructed languages seem really quite like natural languages.”

The “Brains on Conlangs” event that Fedorenko’s team hosted was part of its ongoing effort to understand the way language is generated and understood by the brain. Her lab and others have identified specific brain regions involved in linguistic processing, but it’s not yet clear how universal the language network is. Most studies of language cognition have focused on languages widely spoken in well-resourced parts of the world—primarily English, German, and Dutch. There are thousands of languages—spoken or signed—that have not been included.

Brain activation in a Klingon speaker while listening to English (left) and Klingon (right). Image: Saima Malik Moraleda

Fedorenko and her team are deliberately taking a broader approach. “If we’re making claims about language as a whole, it’s kind of weird to make it based on a handful of languages,” she says. “So we’re trying to create tools and collect some data on as many languages as possible.”

So far, they have found that the language networks used by native speakers of dozens of different languages do share key architectural similarities. And by including a more diverse set of languages in their research, Fedorenko and her team can begin to explore how the brain makes sense of linguistic features that are not part of English or other well studied languages. The Brains on Conlangs event was a chance to expand their studies even further.

Connecting conlangs

Nearly 50 speakers of Esperanto, Klingon, High Valyrian, Dothraki, and Na’vi attended Brains on Conlangs, drawn by the opportunity to connect with other speakers, hear from language creators, and contribute to the science. Graduate student Saima Malik-Moraleda and postbac research assistant Maya Taliaferro, along with other members of both the Fedorenko lab and brain and cognitive sciences professor Ted Gibson’s lab, and with help from Steve Shannon, Operations Manager of the Martinos Imaging Center, worked tirelessly to collect data from all participants. Two MRI scanners ran nearly continuously as speakers listened to passages in their chosen languages and researchers captured images of the brain’s response. To enable the research team to find the language-specific network in each person’s brain, participants also performed other tasks inside the scanner, including a memory task and listening to muffled audio in which the constructed languages were spoken, but unintelligible. They performed language tasks in English, as well.

To understand how the brain processes constructed languages (conlangs), McGovern Investigator Ev Fedorenko (center) gathered with conlang creators/speakers Marc Okrand (Klingon), Paul Frommer (Na’vi), Damian Blasi, Jessie Sams (méníshè), David Peterson (High Valyrian and Dothraki) and Aroka Okrent at the McGovern Institute for the “Brains on Colangs” event in November 2022. Photo: Elise Malvicini

Prior to the study, Fedorenko says, she had suspected constructed languages would activate the brain’s natural language-processing network, but she couldn’t be sure. Another possibility was that languages like Klingon and Esperanto would be handled instead by a problem-solving network known to be used when people work with some other so-called “languages,” like mathematics or computer programming. But once the data was in, the answer was clear. The five constructed languages included in the study all activated the brain’s language network.

That makes sense, Fedorenko says, because like natural languages, constructed languages enable people to communicate by associating words or signs with objects and ideas. Any language is essentially a way of mapping forms to meanings, she says. “You can construe it as a set of memories of how a particular sequence of sounds corresponds to some meaning. You’re learning meanings of words and constructions, and how to put them together to get more complex meanings. And it seems like the brain’s language system is very well suited for that set of computations.”

The ways we move

This story originally appeared in the Winter 2023 issue of BrainScan.
__

Many people barely consider how their bodies move — at least not until movement becomes more difficult due to injury or disease. But the McGovern scientists who are working to understand human movement and restore it after it has been lost know that the way we move is an engineering marvel.
Muscles, bones, brain, and nerves work together to navigate and interact with an ever-changing environment, making constant but often imperceptible adjustments to carry out our goals. It’s an efficient and highly adaptable system, and the way it’s put together is not at all intuitive, says Hugh Herr, a new associate investigator at the Institute.

That’s why Herr, who also co-directs MIT’s new K. Lisa Yang Center for Bionics, looks to biology to guide the development of artificial limbs that aim to give people the same agency, control, and comfort of natural limbs. McGovern Associate Investigator Nidhi Seethapathi, who like Herr joined the Institute in September, is also interested in understanding human movement in all its complexity. She is coming at the problem from a different direction, using computational modeling to predict how and why we move the way we do.

Moving through change

The computational models that Seethapathi builds in her lab aim to predict how humans will move under different conditions. If a person is placed in an unfamiliar environment and asked to navigate a course under time pressure, what path will they take? How will they move their limbs, and what forces will they exert? How will their movements change as they become more comfortable on the terrain?

McGovern Associate Investigator Nidhi Seethapathi with lab members (from left to right) Inseung Kang, Nikasha Patel, Antoine De Comite, Eric Wang, and Crista Falk. Photo: Steph Stevens

Seethapathi uses the principles of robotics to build models that answer these questions, then tests them by placing real people in the same scenarios and monitoring their movements. So far, that has mostly meant inviting study subjects to her lab, but as she expands her models to predict more complex movements, she will begin monitoring people’s activity in the real world, over longer time periods than laboratory experiments typically allow.

Seethapathi’s hope is that her findings will inform the way doctors, therapists, and engineers help patients regain control over their movements after an injury or stroke, or learn to live with movement disorders like Parkinson’s disease. To make a real difference, she stresses, it’s important to bring studies of human movement out of the lab, where subjects are often limited to simple tasks like walking on a treadmill, into more natural settings. “When we’re talking about doing physical therapy, neuromotor rehabilitation, robotic exoskeletons — any way of helping people move better — we want to do it in the real world, for everyday, complex tasks,” she says.

When we’re talking about helping people move better — we want to do it in the real world, for everyday, complex tasks,” says Seethapathi.

Seethapathi’s work is already revealing how the brain directs movement in the face of competing priorities. For example, she has found that when people are given a time constraint for traveling a particular distance, they walk faster than their usual, comfortable pace — so much so that they often expend more energy than necessary and arrive at their destination a bit early. Her models suggest that people pick up their pace more than they need to because humans’ internal estimations of time are imprecise.

Her team is also learning how movements change as a person becomes familiar with an environment or task. She says people find an efficient way to move through a lot of practice. “If you’re walking in a straight line for a very long time, then you seem to pick the movement that is optimal for that long-distance walk,” she explains. But in the real world, things are always changing — both in the body and in the environment. So Seethapathi models how people behave when they must move in a new way or navigate a new environment. “In these kinds of conditions, people eventually wind up on an energy-optimal solution,” she says. “But initially, they pick something that prevents them from falling down.”

To capture the complexity of human movement, Seethapathi and her team are devising new tools that will let them monitor people’s movements outside the lab. They are also drawing on data from other fields, from architecture to physical therapy, and even from studies of other animals. “If I have general principles, they should be able to tell me how modifications in the body or in how the brain is connected to the body would lead to different movements,” she says. “I’m really excited about generalizing these principles across timescales and species.”

Building new bodies

In Herr’s lab, a deepening understanding of human movement is helping drive the development of increasingly sophisticated artificial limbs and other wearable robots. The team designs devices that interface directly with a user’s nervous system, so they are not only guided by the brain’s motor control systems, but also send information back to the brain.

Herr, a double amputee with two artificial legs of his own, says prosthetic devices are getting better at replicating natural movements, guided by signals from the brain. Mimicking the design and neural signals found in biology can even give those devices much of the extraordinary adaptability of natural human movement. As an example, Herr notes that his legs effortlessly navigate varied terrain. “There’s adaptive, stabilizing features, and the machine doesn’t have to detect every pothole and pebble and banana peel on the ground, because the morphology and the nervous system control is so inherently adaptive,” he says.

McGovern Associate Investigator Hugh Herr at work in the K. Lisa Yang Center for Bionics at MIT. Photo: Jimmy Day/Media Lab

But, he notes, the field of bionics is in its infancy, and there’s lots of room for improvement. “It’s only a matter of time before a robotic knee, for example, can be as good as the biological knee or better,” he says. “But the problem is the human attached to that knee won’t feel it’s their knee until they can feel it, and until their central nervous system has complete agency over that knee,” he says. “So if you want to actually build new bodies and not just more and more powerful tools for humans, you have to link to the brain bidirectionally.”

Herr’s team has found that surgically restoring natural connections between pairs of muscles that normally work in opposition to move a limb, such as the arm’s biceps and triceps, gives the central nervous system signals about how that limb is moving, even when a natural limb is gone. The idea takes a cue from the work of McGovern Emeritus Investigator Emilio Bizzi, who found that the coordinated activation of groups of muscles by the nervous system, called muscle synergies, is important for motor control.

“It’s only a matter of time before a robotic knee can be as good as the biological knee or better,” says Herr.

“When a person thinks and moves their phantom limb, those muscle pairings move dynamically, so they feel, in a natural way, the limb moving — even though the limb is not there,” Herr explains. He adds that when those proprioceptive signals communicate instead how an artificial limb is moving, a person experiences “great agency and ownership” of that limb. Now, his group is working to develop sensors that detect and relay information usually processed by sensory neurons in the skin, so prosthetic devices can also perceive pressure and touch.

At the same time, they’re working to improve the mechanical interface between wearable robots and the body to optimize comfort and fit — whether that’s by using detailed anatomical imaging to guide the design of an individual’s device or by engineering devices that integrate directly with a person’s skeleton. There’s no “average” human, Herr says, and effective technologies must meet individual needs, not just for fit, but also for function. At that same time, he says it’s important to plan for cost-effective, mass production, because the need for these technologies is so great.

“The amount of human suffering caused by the lack of technology to address disability is really beyond comprehension,” he says. He expects tremendous progress in the growing field of bionics in the coming decades, but he’s impatient. “I think in 50 years, when scientists look back to this era, it’ll be laughable,” he says. “I’m always anxiously wanting to be in the future.”

Machine learning can predict bipolar disorder in children and teens

Bipolar disorder often begins in childhood or adolescence, triggering dramatic mood shifts and intense emotions that cause problems at home and school. But the condition is often overlooked or misdiagnosed until patients are older. New research suggests that machine learning, a type of artificial intelligence, could help by identifying children who are at risk of bipolar disorder so doctors are better prepared to recognize the condition if it develops.

On October 13, 2022, researchers led by McGovern Institute investigator John Gabrieli and collaborators at Massachusetts General Hospital reported in the Journal of Psychiatric Research that when presented with clinical data on nearly 500 children and teenagers, a machine learning model was able to identify about 75 percent of those who were later diagnosed with bipolar disorder. The approach performs better than any other method of predicting bipolar disorder, and could be used to develop a simple risk calculator for health care providers.

Gabrieli says such a tool would be particularly valuable because bipolar disorder is less common in children than conditions like major depression, with which it shares symptoms, and attention-deficit/ hyperactivity disorder (ADHD), with which it often co-occurs. “Humans are not well tuned to watch out for rare events,” he says. “If you have a decent measure, it’s so much easier for a machine to identify than humans. And in this particular case, [the machine learning prediction] was surprisingly robust.”

Detecting bipolar disorder

Mai Uchida, Director of Massachusetts General Hospital’s Child Depression Program, says that nearly two percent of youth worldwide are estimated to have bipolar disorder, but diagnosing pediatric bipolar disorder can be challenging. A certain amount of emotional turmoil is to be expected in children and teenagers, and even when moods become seriously disruptive, children with bipolar disorder are often initially diagnosed with major depression or ADHD. That’s a problem, because the medications used to treat those conditions often worsen the symptoms of bipolar disorder. Tailoring treatment to a diagnosis of bipolar disorder, in contrast, can lead to significant improvements for patients and their families. “When we can give them a little bit of ease and give them a little bit of control over themselves, it really goes a long way,” Uchida says.

In fact, a poor response to antidepressants or ADHD medications can help point a psychiatrist toward a diagnosis of bipolar disorder. So too can a child’s family history, in addition to their own behavior and psychiatric history. But, Uchida says, “it’s kind of up to the individual clinician to pick up on these things.”

Uchida and Gabrieli wondered whether machine learning, which can find patterns in large, complex datasets, could focus in on the most relevant features to identify individuals with bipolar disorder. To find out, they turned to data from a study that began in the 1990s. The study, headed by Joseph Biederman, Chief of the Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD at Massachusetts General Hospital, had collected extensive psychiatric assessments of hundreds of children with and without ADHD, then followed those individuals for ten years.

To explore whether machine learning could find predictors of bipolar disorder within that data, Gabrieli, Uchida, and colleagues focused on 492 children and teenagers without ADHD, who were recruited to the study as controls. Over the ten years of the study, 45 of those individuals developed bipolar disorder.

Within the data collected at the study’s outset, the machine learning model was able to find patterns that associated with a later diagnosis of bipolar disorder. A few behavioral measures turned out to be particularly relevant to the model’s predictions: children and teens with combined problems with attention, aggression, and anxiety were most likely to later be diagnosed with bipolar disorder. These indicators were all picked up by a standard assessment tool called the Child Behavior Checklist.

Uchida and Gabrieli say the machine learning model could be integrated into the medical record system to help pediatricians and child psychiatrists catch early warning signs of bipolar disorder. “The information that’s collected could alert a clinician to the possibility of a bipolar disorder developing,” Uchida says. “Then at least they’re aware of the risk, and they may be able to maybe pick up on some of the deterioration when it’s happening and think about either referring them or treating it themselves.”

Silent synapses are abundant in the adult brain

MIT neuroscientists have discovered that the adult brain contains millions of “silent synapses” — immature connections between neurons that remain inactive until they’re recruited to help form new memories.

Until now, it was believed that silent synapses were present only during early development, when they help the brain learn the new information that it’s exposed to early in life. However, the new MIT study revealed that in adult mice, about 30 percent of all synapses in the brain’s cortex are silent.

The existence of these silent synapses may help to explain how the adult brain is able to continually form new memories and learn new things without having to modify existing conventional synapses, the researchers say.

“These silent synapses are looking for new connections, and when important new information is presented, connections between the relevant neurons are strengthened. This lets the brain create new memories without overwriting the important memories stored in mature synapses, which are harder to change,” says Dimitra Vardalaki, an MIT graduate student and the lead author of the new study.

Mark Harnett, an associate professor of brain and cognitive sciences and an investigator at the McGovern Institute for Brain Research, is the senior author of the paper, which appears today in Nature. Kwanghun Chung, an associate professor of chemical engineering at MIT, is also an author.

A surprising discovery

When scientists first discovered silent synapses decades ago, they were seen primarily in the brains of young mice and other animals. During early development, these synapses are believed to help the brain acquire the massive amounts of information that babies need to learn about their environment and how to interact with it. In mice, these synapses were believed to disappear by about 12 days of age (equivalent to the first months of human life).

However, some neuroscientists have proposed that silent synapses may persist into adulthood and help with the formation of new memories. Evidence for this has been seen in animal models of addiction, which is thought to be largely a disorder of aberrant learning.

Theoretical work in the field from Stefano Fusi and Larry Abbott of Columbia University has also proposed that neurons must display a wide range of different plasticity mechanisms to explain how brains can both efficiently learn new things and retain them in long-term memory. In this scenario, some synapses must be established or modified easily, to form the new memories, while others must remain much more stable, to preserve long-term memories.

In the new study, the MIT team did not set out specifically to look for silent synapses. Instead, they were following up on an intriguing finding from a previous study in Harnett’s lab. In that paper, the researchers showed that within a single neuron, dendrites — antenna-like extensions that protrude from neurons — can process synaptic input in different ways, depending on their location.

As part of that study, the researchers tried to measure neurotransmitter receptors in different dendritic branches, to see if that would help to account for the differences in their behavior. To do that, they used a technique called eMAP (epitope-preserving Magnified Analysis of the Proteome), developed by Chung. Using this technique, researchers can physically expand a tissue sample and then label specific proteins in the sample, making it possible to obtain super-high-resolution images.

The first thing we saw, which was super bizarre and we didn’t expect, was that there were filopodia everywhere.

While they were doing that imaging, they made a surprising discovery. “The first thing we saw, which was super bizarre and we didn’t expect, was that there were filopodia everywhere,” Harnett says.

Filopodia, thin membrane protrusions that extend from dendrites, have been seen before, but neuroscientists didn’t know exactly what they do. That’s partly because filopodia are so tiny that they are difficult to see using traditional imaging techniques.

After making this observation, the MIT team set out to try to find filopodia in other parts of the adult brain, using the eMAP technique. To their surprise, they found filopodia in the mouse visual cortex and other parts of the brain, at a level 10 times higher than previously seen. They also found that filopodia had neurotransmitter receptors called NMDA receptors, but no AMPA receptors.

A typical active synapse has both of these types of receptors, which bind the neurotransmitter glutamate. NMDA receptors normally require cooperation with AMPA receptors to pass signals because NMDA receptors are blocked by magnesium ions at the normal resting potential of neurons. Thus, when AMPA receptors are not present, synapses that have only NMDA receptors cannot pass along an electric current and are referred to as “silent.”

Unsilencing synapses

To investigate whether these filopodia might be silent synapses, the researchers used a modified version of an experimental technique known as patch clamping. This allowed them to monitor the electrical activity generated at individual filopodia as they tried to stimulate them by mimicking the release of the neurotransmitter glutamate from a neighboring neuron.

Using this technique, the researchers found that glutamate would not generate any electrical signal in the filopodium receiving the input, unless the NMDA receptors were experimentally unblocked. This offers strong support for the theory the filopodia represent silent synapses within the brain, the researchers say.

The researchers also showed that they could “unsilence” these synapses by combining glutamate release with an electrical current coming from the body of the neuron. This combined stimulation leads to accumulation of AMPA receptors in the silent synapse, allowing it to form a strong connection with the nearby axon that is releasing glutamate.

The researchers found that converting silent synapses into active synapses was much easier than altering mature synapses.

“If you start with an already functional synapse, that plasticity protocol doesn’t work,” Harnett says. “The synapses in the adult brain have a much higher threshold, presumably because you want those memories to be pretty resilient. You don’t want them constantly being overwritten. Filopodia, on the other hand, can be captured to form new memories.”

“Flexible and robust”

The findings offer support for the theory proposed by Abbott and Fusi that the adult brain includes highly plastic synapses that can be recruited to form new memories, the researchers say.

“This paper is, as far as I know, the first real evidence that this is how it actually works in a mammalian brain,” Harnett says. “Filopodia allow a memory system to be both flexible and robust. You need flexibility to acquire new information, but you also need stability to retain the important information.”

The researchers are now looking for evidence of these silent synapses in human brain tissue. They also hope to study whether the number or function of these synapses is affected by factors such as aging or neurodegenerative disease.

“It’s entirely possible that by changing the amount of flexibility you’ve got in a memory system, it could become much harder to change your behaviors and habits or incorporate new information,” Harnett says. “You could also imagine finding some of the molecular players that are involved in filopodia and trying to manipulate some of those things to try to restore flexible memory as we age.”

The research was funded by the Boehringer Ingelheim Fonds, the National Institutes of Health, the James W. and Patricia T. Poitras Fund at MIT, a Klingenstein-Simons Fellowship, and Vallee Foundation Scholarship, and a McKnight Scholarship.