Lindsay Case and Guangyu Robert Yang named 2022 Searle Scholars

MIT cell biologist Lindsay Case and computational neuroscientist Guangyu Robert Yang have been named 2022 Searle Scholars, an award given annually to 15 outstanding U.S. assistant professors who have high potential for ongoing innovative research contributions in medicine, chemistry, or the biological sciences.

Case is an assistant professor of biology, while Yang is an assistant professor of brain and cognitive sciences and electrical engineering and computer science, and an associate investigator at the McGovern Institute for Brain Research. They will each receive $300,000 in flexible funding to support their high-risk, high-reward work over the next three years.

Lindsay Case

Case arrived at MIT in 2021, after completing a postdoc at the University of Texas Southwestern Medical Center in the lab of Michael Rosen. Prior to that, she earned her PhD from the University of North Carolina at Chapel Hill, working in the lab of Clare Waterman at the National Heart Lung and Blood Institute.

Situated in MIT’s Building 68, Case’s lab studies how molecules within cells organize themselves, and how such organization begets cellular function. Oftentimes, molecules will assemble at the cell’s plasma membrane — a complex signaling platform where hundreds of receptors sense information from outside the cell and initiate cellular changes in response. Through her experiments, Case has found that molecules at the plasma membrane can undergo a process known as phase separation, condensing to form liquid-like droplets.

As a Searle Scholar, Case is investigating the role that phase separation plays in regulating a specific class of signaling molecules called kinases. Her team will take a multidisciplinary approach to probe what happens when kinases phase separate into signaling clusters, and what cellular changes occur as a result. Because phase separation is emerging as a promising new target for small molecule therapies, this work will help identify kinases that are strong candidates for new therapeutic interventions to treat diseases such as cancer.

“I am honored to be recognized by the Searle Scholars Program, and thrilled to join such an incredible community of scientists,” Case says. “This support will enable my group to broaden our research efforts and take our preliminary findings in exciting new directions. I look forward to better understanding how phase separation impacts cellular function.”

Guangyu Robert Yang

Before coming to MIT in 2021, Yang trained in physics at Peking University, obtained a PhD in computational neuroscience at New York University with Xiao-Jing Wang, and further trained as a postdoc at the Center for Theoretical Neuroscience of Columbia University, as an intern at Google Brain, and as a junior fellow at the Simons Society of Fellows.

His research team at MIT, the MetaConscious Group, develops models of mental functions by incorporating multiple interacting modules. They are designing pipelines to process and compare large-scale experimental datasets that span modalities ranging from behavioral data to neural activity data to molecular data. These datasets are then be integrated to train individual computational modules based on the experimental tasks that were evaluated such as vision, memory, or movement.

Ultimately, Yang seeks to combine these modules into a “network of networks” that models higher-level brain functions such as the ability to flexibly and rapidly learn a variety of tasks. Such integrative models are rare because, until recently, it was not possible to acquire data that spans modalities and brain regions in real time as animals perform tasks. The time is finally right for integrative network models. Computational models that incorporate such multisystem, multilevel datasets will allow scientists to make new predictions about the neural basis of cognition and open a window to a mathematical understanding the mind.

“This is a new research direction for me, and I think for the field too. It comes with many exciting opportunities as well as challenges. Having this recognition from the Searle Scholars program really gives me extra courage to take on the uncertainties and challenges,” says Yang.

Since 1981, 647 scientists have been named Searle Scholars. Including this year, the program has awarded more than $147 million. Eighty-five Searle Scholars have been inducted into the National Academy of Sciences. Twenty scholars have been recognized with a MacArthur Fellowship, known as the “genius grant,” and two Searle Scholars have been awarded the Nobel Prize in Chemistry. The Searle Scholars Program is funded through the Searle Funds at The Chicago Community Trust and administered by Kinship Foundation.

Seven from MIT elected to American Academy of Arts and Sciences for 2022

Seven MIT faculty members are among more than 250 leaders from academia, the arts, industry, public policy, and research elected to the American Academy of Arts and Sciences, the academy announced Thursday.

One of the nation’s most prestigious honorary societies, the academy is also a leading center for independent policy research. Members contribute to academy publications, as well as studies of science and technology policy, energy and global security, social policy and American institutions, the humanities and culture, and education.

Those elected from MIT this year are:

  • Alberto Abadie, professor of economics and associate director of the Institute for Data, Systems, and Society
  • Regina Barzilay, the School of Engineering Distinguished Professor for AI and Health
  • Roman Bezrukavnikov, professor of mathematics
  • Michale S. Fee, the Glen V. and Phyllis F. Dorflinger Professor and head of the Department of Brain and Cognitive Sciences
  • Dina Katabi, the Thuan and Nicole Pham Professor
  • Ronald T. Raines, the Roger and Georges Firmenich Professor of Natural Products Chemistry
  • Rebecca R. Saxe, the John W. Jarve Professor of Brain and Cognitive Sciences

“We are celebrating a depth of achievements in a breadth of areas,” says David Oxtoby, president of the American Academy. “These individuals excel in ways that excite us and inspire us at a time when recognizing excellence, commending expertise, and working toward the common good is absolutely essential to realizing a better future.”

Since its founding in 1780, the academy has elected leading thinkers from each generation, including George Washington and Benjamin Franklin in the 18th century, Maria Mitchell and Daniel Webster in the 19th century, and Toni Morrison and Albert Einstein in the 20th century. The current membership includes more than 250 Nobel and Pulitzer Prize winners.

Three from MIT awarded 2022 Paul and Daisy Soros Fellowships for New Americans

MIT graduate student Fernanda De La Torre, alumna Trang Luu ’18, SM ’20, and senior Syamantak Payra are recipients of the 2022 Paul and Daisy Soros Fellowships for New Americans.

De La Torre, Luu, and Payra are among 30 New Americans selected from a pool of over 1,800 applicants. The fellowship honors the contributions of immigrants and children of immigrants by providing $90,000 in funding for graduate school.

Students interested in applying to the P.D. Soros Fellowship for future years may contact Kim Benard, associate dean of distinguished fellowships in Career Advising and Professional Development.

Fernanda De La Torre

Fernanda De La Torre is a PhD student in the Department of Brain and Cognitive Sciences. With Professor Josh McDermott, she studies how we integrate vision and sound, and with Professor Robert Yang, she develops computational models of imagination.

De La Torre spent her early childhood with her younger sister and grandmother in Guadalajara, Mexico. At age 12, she crossed the Mexican border to reunite with her mother in Kansas City, Missouri. Shortly after, an abusive home environment forced De La Torre to leave her family and support herself throughout her early teens.

Despite her difficult circumstances, De La Torre excelled academically in high school. By winning various scholarships that would discretely take applications from undocumented students, she was able to continue her studies in computer science and mathematics at Kansas State University. There, she became intrigued by the mysteries of the human mind. During college, De La Torre received invaluable mentorship from her former high school principal, Thomas Herrera, who helped her become documented through the Violence Against Women Act. Her college professor, William Hsu, supported her interests in artificial intelligence and encouraged her to pursue a scientific career.

After her undergraduate studies, De La Torre won a post-baccalaureate fellowship from the Department of Brain and Cognitive Sciences at MIT, where she worked with Professor Tomaso Poggio on the theory of deep learning. She then transitioned into the department’s PhD program. Beyond contributing to scientific knowledge, De La Torre plans to use science to create spaces where all people, including those from backgrounds like her own, can innovate and thrive.

She says: “Immigrants face many obstacles, but overcoming them gives us a unique strength: We learn to become resilient, while relying on friends and mentors. These experiences foster both the desire and the ability to pay it forward to our community.”

Trang Luu

Trang Luu graduated from MIT with a BS in mechanical engineering in 2018, and a master of engineering degree in 2020. Her Soros award will support her graduate studies at Harvard University in the MBA/MS engineering sciences program.

Born in Saigon, Vietnam, Luu was 3 when her family immigrated to Houston, Texas. Watching her parents’ efforts to make a living in a land where they did not understand the culture or speak the language well, Luu wanted to alleviate hardship for her family. She took full responsibility for her education and found mentors to help her navigate the American education system. At home, she assisted her family in making and repairing household items, which fueled her excitement for engineering.

As an MIT undergraduate, Luu focused on assistive technology projects, applying her engineering background to solve problems impeding daily living. These projects included a new adaptive socket liner for below-the-knee amputees in Kenya, Ethiopia, and Thailand; a walking stick adapter for wheelchairs; a computer head pointer for patients with limited arm mobility, a safer makeshift cook stove design for street vendors in South Africa; and a quicker method to test new drip irrigation designs. As a graduate student in MIT D-Lab under the direction of Professor Daniel Frey, Luu was awarded a National Science Foundation Graduate Research Fellowship. In her graduate studies, Luu researched methods to improve evaporative cooling devices for off-grid farmers to reduce rapid fruit and vegetable deterioration.

These projects strengthened Luu’s commitment to innovating new technology and devices for people struggling with basic daily tasks. During her senior year, Luu collaborated on developing a working prototype of a wearable device that noninvasively reduces hand tremors associated with Parkinson’s disease or essential tremor. Observing patients’ joy after their tremors stopped compelled Luu and three co-founders to continue developing the device after college. Four years later, Encora Therapeutics has accomplished major milestones, including Breakthrough Device designation by the U.S. Food and Drug Administration.

Syamantak Payra

Hailing from Houston, Texas, Syamantak Payra is a senior majoring in electrical engineering and computer science, with minors in public policy and entrepreneurship and innovation. He will be pursuing a PhD in engineering at Stanford University, with the goal of creating new biomedical devices that can help improve daily life for patients worldwide and enhance health care outcomes for decades to come.

Payra’s parents had emigrated from India, and he grew up immersed in his grandparents’ rich Bengali culture. As a high school student, he conducted projects with NASA engineers at Johnson Space Center, experimented at home with his scientist parents, and competed in spelling bees and science fairs across the United States. Through these avenues and activities, Syamantak not only gained perspectives on bridging gaps between people, but also found passions for language, scientific discovery, and teaching others.

After watching his grandmother struggle with asthma and chronic obstructive pulmonary disease and losing his baby brother to brain cancer, Payra devoted himself to trying to use technology to solve health-care challenges. Payra’s proudest accomplishments include building a robotic leg brace for his paralyzed teacher and conducting free literacy workshops and STEM outreach programs that reached nearly a thousand underprivileged students across the Greater Houston Area.

At MIT, Payra has worked in Professor Yoel Fink’s research laboratory, creating digital sensor fibers that have been woven into intelligent garments that can assist in diagnosing illnesses, and in Professor Joseph Paradiso’s research laboratory, where he contributed to next-generation spacesuit prototypes that better protect astronauts on spacewalks. Payra’s research has been published by multiple scientific journals, and he was inducted into the National Gallery of America’s Young Inventors.

David Ginty named winner of 2022 Scolnick Prize

Harvard neurobiologist David Ginty, winner of the 2022 Scolnick Prize.

The McGovern Institute for Brain Research announced today that Harvard neurobiologist David D. Ginty has been selected for the 2022 Edward M. Scolnick Prize in Neuroscience. Ginty, who is the Edward R. and Anne G. Lefler Professor of Neurobiology at Harvard Medical School, is being recognized for his fundamental discoveries into the neural mechanisms underlying the sense of touch. The Scolnick Prize is awarded annually by the McGovern Institute for outstanding advances in neuroscience.

“David Ginty has made seminal contributions in basic research that also have important translational implications,” says Robert Desimone, McGovern Institute Director and chair of the selection committee. “His rigorous research has led us to understand how the peripheral nervous system encodes the overall perception of touch, and how molecular mechanisms underlying this can fail in disease states.”

Ginty obtained his PhD in 1989 with Edward Seidel where he studied cell proliferation factors. He went on to a postdoctoral fellowship researching nerve growth factor with John Wagner at the Dana-Farber Cancer Institute and, upon Wagner’s departure to Cornell, transferred to Michael Greenberg’s lab at Harvard Medical School. There, he dissected intracellular signaling pathways for neuronal growth factors and neurotransmitters and developed key antibody reagents to detect activated forms of transcription factors. These antibody tools are now used by labs around the world in the research of neuronal plasticity and brain disorders, including Alzheimer’s disease and schizophrenia.

In 1995, Ginty started his own laboratory at Johns Hopkins University with a focus on the development and functional organization of the peripheral nervous system. Ginty’s group created and applied the latest genetic engineering techniques in mice to uncover how the peripheral nervous system develops and is organized at the molecular, cellular and circuit levels to perceive touch. Most notably, using gene targeting combined with electrophysiological, behavioral and anatomical analyses, the Ginty lab untangled properties and functions of the different types of touch neurons, termed low- and high-threshold mechanoreceptors, that convey distinct aspects of stimulus information from the skin to the central nervous system. Ginty and colleagues also discovered organizational principles of spinal cord and brainstem circuits dedicated to touch information processing, and that integration of signals from the different mechanoreceptor types begins within spinal cord networks before signal transmission to the brain.

In 2013, Ginty joined the faculty of Harvard Medical School where his team applied their genetic tools and techniques to probe the neural basis of touch sensitivity disorders. They discovered properties and functions of peripheral sensory neurons, spinal cord circuits, and ascending pathways that transmit noxious, painful stimuli from the periphery to the brain. They also asked whether abnormalities in peripheral nervous system function lead to touch over-reactivity in cases of autism or in neuropathic pain caused by nerve injury, chemotherapy, or diabetes, where even a soft touch can be aversive or painful. His team found that sensory abnormalities observed in several mouse models of autism spectrum disorder could be traced to peripheral mechanosensory neurons. They also found that reducing the activity of peripheral sensory neurons prevented tactile over-reactivity in these models and even, in some cases, lessened anxiety and abnormal social behaviors. These findings provided a plausible explanation for how sensory dysfunction may contribute to physiological and cognitive impairments in autism. Importantly, this laid the groundwork for a new approach and initiative to identify new potential therapies for disorders of touch and pain.

Ginty was named a Howard Hughes Medical Institute Investigator in 2000 and was elected to the American Academy of Arts and Sciences in 2015 and the National Academy of Sciences in 2017. He shared Columbia University’s Alden W. Spencer Prize with Ardem Patapoutian in 2017 and was awarded the Society for Neuroscience Julius Axelrod Prize in 2021. Ginty is also known for exceptional mentorship. He directed the neuroscience graduate program at Johns Hopkins from 2006 to 2013 and now serves as the associate director of Harvard’s neurobiology graduate program.

The McGovern Institute will award the Scolnick Prize to Ginty on Wednesday, June 1, 2022. At 4:00 pm he will deliver a lecture entitled “The sensory neurons of touch: beauty is skin deep,” to be followed by a reception at the McGovern Institute, 43 Vassar Street (building 46, room 3002) in Cambridge. The event is free and open to the public; registration is required.

School of Science announces 2022 Infinite Expansion Awards

The MIT School of Science has announced eight postdocs and research scientists as recipients of the 2022 Infinite Expansion Award.

The award, formerly known as the Infinite Kilometer Award, was created in 2012 to highlight extraordinary members of the MIT science community. The awardees are nominated not only for their research, but for going above and beyond in mentoring junior colleagues, participating in educational programs, and contributing to their departments, labs, and research centers, the school, and the Institute.

The 2022 School of Science Infinite Expansion winners are:

  • Héctor de Jesús-Cortés, a postdoc in the Picower Institute for Learning and Memory, nominated by professor and Department of Brain and Cognitive Sciences (BCS) head Michale Fee, professor and McGovern Institute for Brain Research Director Robert Desimone, professor and Picower Institute Director Li-Huei Tsai, professor and associate BCS head Laura Schulz, associate professor and associate BCS head Joshua McDermott, and professor and BCS Postdoc Officer Mark Bear for his “awe-inspiring commitment of time and energy to research, outreach, education, mentorship, and community;”
  • Harold Erbin, a postdoc in the Laboratory for Nuclear Science’s Institute for Artificial Intelligence and Fundamental Interactions (IAIFI), nominated by professor and IAIFI Director Jesse Thaler, associate professor and IAIFI Deputy Director Mike Williams, and associate professor and IAIFI Early Career and Equity Committee Chair Tracy Slatyer for “provid[ing] exemplary service on the IAIFI Early Career and Equity Committee” and being “actively involved in many other IAIFI community building efforts;”
  • Megan Hill, a postdoc in the Department of Chemistry, nominated by Professor Jeremiah Johnson for being an “outstanding scientist” who has “also made exceptional contributions to our community through her mentorship activities and participation in Women in Chemistry;”
  • Kevin Kuns, a postdoc in the Kavli Institute for Astrophysics and Space Research, nominated by Associate Professor Matthew Evans for “consistently go[ing] beyond expectations;”
  • Xingcheng Lin, a postdoc in the Department of Chemistry, nominated by Associate Professor Bin Zhang for being “very talented, extremely hardworking, and genuinely enthusiastic about science;”
  • Alexandra Pike, a postdoc in the Department of Biology, nominated by Professor Stephen Bell for “not only excel[ing] in the laboratory” but also being “an exemplary citizen in the biology department, contributing to teaching, community, and to improving diversity, equity, and inclusion in the department;”
  • Nora Shipp, a postdoc with the Kavli Institute for Astrophysics and Space Research, nominated by Assistant Professor Lina Necib for being “independent, efficient, with great leadership qualities” with “impeccable” research; and
  • Jakob Voigts, a research scientist in the McGovern Institute for Brain Research, nominated by Associate Professor Mark Harnett and his laboratory for “contribut[ing] to the growth and development of the lab and its members in numerous and irreplaceable ways.”

Winners are honored with a monetary award and will be celebrated with family, friends, and nominators at a later date, along with recipients of the Infinite Mile Award.

Five MIT faculty elected 2021 AAAS Fellows

Five MIT faculty members have been elected as fellows of the American Association for the Advancement of Science (AAAS).

The 2021 class of AAAS Fellows includes 564 scientists, engineers, and innovators spanning 24 scientific disciplines who are being recognized for their scientifically and socially distinguished achievements.

Mircea Dincă is the W. M. Keck Professor of Energy in the Department of Chemistry. His group’s research focuses on addressing challenges related to the storage and consumption of energy, and global environmental concerns. Central to these efforts are the synthesis of novel organic-inorganic hybrid materials and the manipulation of their electrochemical and photophysical properties, with a current emphasis on porous materials and extended one-dimensional van der Waals materials.

Guoping Feng is the James W. and Patricia T. Poitras Professor of Neuroscience in the Department of Brain and Cognitive Sciences, associate director of MIT’s McGovern Institute for Brain Research, director of Model Systems and Neurobiology at the Stanley Center for Psychiatric Research, and an institute member of the Broad Institute of MIT and Harvard. His research is devoted to understanding the development and function of synapses in the brain and how synaptic dysfunction may contribute to neurodevelopmental and psychiatric disorders. By understanding the molecular, cellular, and circuitry mechanisms of these disorders, Feng hopes his work will eventually lead to the development of new and effective treatments for the millions of people suffering from these devastating diseases.

David Shoemaker is a senior research scientist with the MIT Kavli Institute for Astrophysics and Space Research. His work is focused on gravitational-wave observation and includes developing technologies for the detectors (LIGO, LISA), developing proposals for new instruments (Cosmic Explorer), managing the teams to build them and the consortia which exploit the data (LIGO Scientific Collaboration, LISA Consortium), and supporting the overall growth of the field (Gravitational-Wave International Committee).

Ian Hunter is the Hatsopoulos Professor of Mechanical Engineering and runs the Bioinstrumentation Lab at MIT. His main areas of research are instrumentation, microrobotics, medical devices, and biomimetic materials. Over the years he and his students have developed many instruments and devices including: confocal laser microscopes, scanning tunneling electron microscopes, miniature mass spectrometers, new forms of Raman spectroscopy, needle-free drug delivery technologies, nano- and micro-robots, microsurgical robots, robotic endoscopes, high-performance Lorentz force motors, and microarray technologies for massively parallel chemical and biological assays.

Evelyn N. Wang is the Ford Professor of Engineering and head of the Department of Mechanical Engineering. Her research program combines fundamental studies of micro/nanoscale heat and mass transport processes with the development of novel engineered structures to create innovative solutions in thermal management, energy, and water harvesting systems. Her work in thermophotovoltaics was named to Technology Review’s lists of Biggest Clean Energy Advances, in 2016, and Ten Breakthrough Technologies, in 2017, and to the Department of Energy Frontiers Research Center’s Ten of Ten awards. Her work extracting water from air has won her the title of 2017 Foreign Policy’s Global ReThinker and the 2018 Eighth Prince Sultan bin Abdulaziz International Prize for Water.

National Academy of Sciences honors cognitive neuroscientist Nancy Kanwisher

MIT neuroscientist and McGovern Investigator Nancy Kanwisher. Photo: Jussi Puikkonen/KNAW

The National Academy of Sciences (NAS) has announced today that Nancy Kanwisher, the Walter A. Rosenblith Professor of Cognitive Neuroscience in MIT’s Department of Brain and Cognitive Sciences, has received the 2022 NAS Award in the Neurosciences for her “pioneering research into the functional organization of the human brain.” The $25,000 prize, established by the Fidia Research Foundation, is presented every three years to recognize “extraordinary contributions to the neuroscience fields.”

“I am deeply honored to receive this award from the NAS,” says Kanwisher, who is also an investigator in MIT’s McGovern Institute and a member of the Center for Brains, Minds and Machines. “It has been a profound privilege, and a total blast, to watch the human brain in action as these data began to reveal an initial picture of the organization of the human mind. But the biggest joy has been the opportunity to work with the incredible group of talented young scientists who actually did the work that this award recognizes.”

A window into the mind

Kanwisher is best known for her landmark insights into how humans recognize and process faces. Psychology had long-suggested that recognizing a face might be distinct from general object recognition. But Kanwisher galvanized the field in 1997 with her seminal discovery that the human brain contains a small region specialized to respond only to faces. The region, which Kanwisher termed the fusiform face area (FFA), became activated when subjects viewed images of faces in an MRI scanner, but not when they looked at scrambled faces or control stimuli.

Since her 1997 discovery (now the most highly cited manuscript in its area), Kanwisher and her students have applied similar methods to find brain specializations for the recognition of scenes, the mental states of others, language, and music. Taken together, her research provides a compelling glimpse into the architecture of the brain, and, ultimately, what makes us human.

“Nancy’s work over the past two decades has argued that many aspects of human cognition are supported by specialized neural circuitry, a conclusion that stands in contrast to our subjective sense of a singular mental experience,” says McGovern Institute Director Robert Desimone. “She has made profound contributions to the psychological and cognitive sciences and I am delighted that the National Academy of Sciences has recognized her outstanding achievements.”

One-in-a-million mentor

Beyond the lab, Kanwisher has a reputation as a tireless communicator and mentor who is actively engaged in the policy implications of brain research. The statistics speak for themselves: her 2014 TED talk, “A Neural portrait of the human mind” has been viewed over a million times online and her introductory MIT OCW course on the human brain has generated more than nine million views on YouTube.

Nancy Kanwisher works with researchers from her lab in MIT’s Martinos Imaging Center. Photo: Kris Brewer

Kanwisher also has an exceptional track record in training women scientists who have gone on to successful independent research careers, in many cases becoming prominent figures in their own right.

“Nancy is the one-in-a-million mentor, who is always skeptical of your ideas and your arguments, but immensely confident of your worth,” says Rebecca Saxe, John W. Jarve (1978) Professor of Brain and Cognitive Sciences, investigator at the McGovern Institute, and associate dean of MIT’s School of Science. Saxe was a graduate student in Kanwisher’s lab where she earned her PhD in cognitive neuroscience in 2003. “She has such authentic curiosity,” Saxe adds. “It’s infectious and sustaining. Working with Nancy was a constant reminder of why I wanted to be a scientist.”

The NAS will present Kanwisher with the award during its annual meeting on May 1, 2022 in Washington, DC. The event will be webcast live. Kanwisher plans to direct her prize funds to the non-profit organization Malengo, established by a former student and which provides quality undergraduate education to individuals who would otherwise not be able to afford it.

McGovern Institute Director receives highest honor from the Society for Neuroscience

The Society for Neuroscience will present its highest honor, the Ralph W. Gerard Prize in Neuroscience, to McGovern Institute Director Robert Desimone at its annual meeting today.

The Gerard Prize is named for neuroscientist Ralph W. Gerard who helped establish the Society for Neuroscience, and honors “outstanding scientists who have made significant contributions to neuroscience throughout their careers.” Desimone will share the $30,000 prize with Vanderbilt University neuroscientist Jon Kaas.

Desimone is being recognized for his career contributions to understanding cortical function in the visual system. His seminal work on attention spans decades, including the discovery of a neural basis for covert attention in the temporal cortex and the creation of the biased competition model, suggesting that attention is biased towards material relevant to the task. More recent work revealed how synchronized brain rhythms help enhance visual processing. Desimone also helped discover both face cells and neural populations that identify objects even when the size or location of the object changes. His long list of contributions includes mapping the extrastriate visual cortex, publishing the first report of columns for motion processing outside the primary visual cortex, and discovering how the temporal cortex retains memories. Desimone’s work has moved the field from broad strokes of input and output to a more nuanced understanding of cortical function that allows the brain to make sense of the environment.

At its annual meeting, beginning today, the Society will honor Desimone and other leading researchers who have made significant contributions to neuroscience — including the understanding of cognitive processes, drug addiction, neuropharmacology, and theoretical models — with this year’s Outstanding Achievement Awards.

“The Society is honored to recognize this year’s awardees, whose groundbreaking research has revolutionized our understanding of the brain, from the level of the synapse to the structure and function of the cortex, shedding light on how vision, memory, perception of touch and pain, and drug
addiction are organized in the brain,” SfN President Barry Everitt, said. “This exceptional group of neuroscientists has made fundamental discoveries, paved the way for new therapeutic approaches, and introduced new tools that will lay the foundation for decades of research to come.”

Five with MIT ties elected to the National Academy of Medicine for 2021

The National Academy of Medicine (NAM) has announced the election of 100 new members for 2021, including two MIT faculty members and three additional Institute affiliates.

Faculty honorees include Linda G. Griffith, a professor in the MIT departments of Biological Engineering and Mechanical Engineering; and Feng Zhang, a professor in the MIT departments of Brain and Cognitive Sciences and Biological Engineering. Guillermo Antonio Ameer SCD ’99, a professor of biomedical engineering and surgery at Northwestern University; Darrell Gaskin SM ’87, a professor of health policy and management at Johns Hopkins University; and Vamsi Mootha, an institute member of the Broad Institute of MIT and Harvard and former student in the Harvard-MIT Program in Health Sciences and Technology, were also honored.

The new inductees were elected through a process that recognizes individuals who have made major contributions to the advancement of the medical sciences, health care, and public health. Election to the academy is considered one of the highest honors in the fields of health and medicine and recognizes individuals who have demonstrated outstanding professional achievement and commitment to service.

Griffith, the School of Engineering Professor of Teaching Innovation and director of the Center for Gynepathology Research at MIT, is credited for her longstanding leadership in research, education, and medical translation. Specifically, the NAM recognizes her pioneering work in tissue engineering, biomaterials, and systems biology, including the development of the first “liver chip” technology. Griffith is also recognized for inventing 3D biomaterials printing and organotypic models for systems gynopathology, and for the establishment of the biological engineering department at MIT.

The academy recognizes Zhang, the Patricia and James Poitras ’63 Professor in Neuroscience at MIT, for revolutionizing molecular biology and powering transformative leaps forward in our ability to study and treat human diseases. Zhang, who also is an investigator at the Howard Hughes Medical Institute and the McGovern Institute for Brain Research, and a core member of the Broad Institute of MIT and Harvard, is specifically credited for the discovery of novel microbial enzymes and their development as molecular technologies, including optogenetics and CRISPR-mediated genome editing. The academy also commends Zhang for his outstanding mentoring and professional services.

Ameer, the Daniel Hale Williams Professor of Biomedical Engineering and Surgery at the Northwestern University Feinberg School of Medicine, earned his Doctor of Science degree from the MIT Department of Chemical Engineering in 1999. A professor of biomedical engineering and of surgery who is also the director of the Center for Advanced Regenerative Engineering, he is cited by the NAM “For pioneering contributions to regenerative engineering and medicine through the development, dissemination, and translation of citrate-based biomaterials, a new class of biodegradable polymers that enabled the commercialization of innovative medical devices approved by the U.S. Food and Drug Administration for use in a variety of surgical procedures.”

Gaskin, the William C. and Nancy F. Richardson Professor in Health Policy and Management, Bloomberg School of Public Health at Johns Hopkins University, earned his Master of Science degree from the MIT Department of Economics in 1987. A health economist who advances community, neighborhood, and market-level policies and programs that reduce health disparities, he is cited by the NAM “For his work as a leading health economist and health services researcher who has advanced fundamental understanding of the role of place as a driver in racial and ethnic health disparities.”

Mootha, the founding co-director of the Broad Institute’s Metabolism Program, is a professor of systems biology and medicine at Harvard Medical School and a professor in the Department of Molecular Biology at Massachusetts General Hospital. An alumnus of the Harvard-MIT Program in Health Sciences and Technology and former postdoc with the Whitehead Institute for Biomedical Research, Mootha is an expert in the mitochondrion, the “powerhouse of the cell,” and its role in human disease. The NAM cites Mootha “For transforming the field of mitochondrial biology by creatively combining modern genomics with classical bioenergetics.”

Established in 1970 by the National Academy of Sciences, the NAM addresses critical issues in health, science, medicine, and related policy and inspires positive actions across sectors. NAM works alongside the National Academy of Sciences and National Academy of Engineering to provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. The National Academies of Sciences, Engineering, and Medicine also encourage education and research, recognize outstanding contributions to knowledge, and increase public understanding of STEMM. With their election, NAM members make a commitment to volunteer their service in National Academies activities.

Seven from MIT receive National Institutes of Health awards

On Oct. 5, the National Institutes of Health announced the names of 106 scientists who have been awarded grants through the High-Risk, High-Reward Research program to advance highly innovative biomedical and behavioral research. Seven of the recipients are MIT faculty members.

The High-Risk, High-Reward Research program catalyzes scientific discovery by supporting research proposals that, due to their inherent risk, may struggle in the traditional peer-review process despite their transformative potential. Program applicants are encouraged to pursue trailblazing ideas in any area of research relevant to the NIH’s mission to advance knowledge and enhance health.

“The science put forward by this cohort is exceptionally novel and creative and is sure to push at the boundaries of what is known,” says NIH Director Francis S. Collins. “These visionary investigators come from a wide breadth of career stages and show that groundbreaking science can happen at any career level given the right opportunity.”

New innovators

Four MIT researchers received New Innovator Awards, which recognize “unusually innovative research from early career investigators.” They are:

  • Pulin Li is a member at the Whitehead Institute for Biomedical Research and an assistant professor in the Department of Biology. Li combines approaches from synthetic biology, developmental biology, biophysics and systems biology to quantitatively understand the genetic circuits underlying cell-cell communication that creates multicellular behaviors.
  • Seychelle Vos, the Robert A. Swanson (1969) Career Development Professor of Life Sciences in the Department of Biology, studies the interplay of gene expression and genome organization. Her work focuses on understanding how large molecular machineries involved in genome organization and gene transcription regulate each others’ function to ultimately determine cell fate and identity.
  • Xiao Wang, the Thomas D. and Virginia Cabot Assistant Professor of Chemistry and a member of the Broad Institute of MIT and Harvard, aims to develop high-resolution and highly-multiplexed molecular imaging methods across multiple scales toward understanding the physical and chemical basis of brain wiring and function.
  • Alison Wendlandt is a Cecil and Ida Green Career Development Assistant Professor of Chemistry. Wendlandt focuses on the development of selective, catalytic reactions using the tools of organic and organometallic synthesis and physical organic chemistry. Mechanistic study plays a central role in the development of these new transformations.

Transformative researchers

Two MIT researchers have received Transformative Research Awards, which “promote cross-cutting, interdisciplinary approaches that could potentially create or challenge existing paradigms.” The recipients are:

  • Manolis Kellis is a professor of computer science at MIT in the area of computational biology, an associate member of the Broad Institute, and a principal investigator with MIT’s Computer Science and Artificial Intelligence Laboratory. He aims to further our understanding of the human genome by computational integration of large-scale functional and comparative genomics datasets.
  • Myriam Heiman is the Latham Family Career Development Associate Professor of Neuroscience in the Department of Brain and Cognitive Sciences and an investigator in the Picower Institute for Learning and Memory. Heiman studies the selective vulnerability and pathophysiology seen in two neurodegenerative diseases of the basal ganglia, Huntington’s disease, and Parkinson’s disease.

Together, Heiman, Kellis and colleagues will launch a five-year investigation to pinpoint what may be going wrong in specific brain cells and to help identify new treatment approaches for amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with motor neuron disease (FTLD/MND). The project will bring together four labs, including Heiman and Kellis’ labs at MIT, to apply innovative techniques ranging from computational, genomic, and epigenomic analyses of cells from a rich sample of central nervous system tissue, to precision genetic engineering of stem cells and animal models.

Pioneering researchers

  • Polina Anikeeva received a Pioneer Award, which “challenges investigators at all career levels to pursue new research directions and develop groundbreaking, high-impact approaches to a broad area of biomedical, behavioral, or social science.” Anikeeva is an MIT professor of materials science and engineering, a professor of brain and cognitive sciences, and a McGovern Institute for Brain Research associate investigator. She has established a research program that uniquely combines materials synthesis, device fabrication, neurophysiology, and animal models of behavior. Her group carries out projects that understand, invent, and design materials from the level of atoms to functional devices with applications in fundamental neuroscience.

The program is supported by the NIH Common Fund, which oversees programs that pursue major opportunities and gaps throughout the research enterprise that are of great importance to NIH and require collaboration across the agency to succeed. It issues four awards each year: the Pioneer Award, the New Innovator Award, the Transformative Research Award, and the Early Independence Award.

This year, NIH issued 10 Pioneer awards, 64 New Innovator awards, 19 Transformative Research awards (10 general, four ALS-related, and five Covid-19-related), and 13 Early Independence awards for 2021. Funding for the awards comes from the NIH Common Fund, the National Institute of General Medical Sciences, the National Institute of Mental Health, and the National Institute of Neurological Disorders and Stroke.