Harnessing the power of placebo for pain relief

Placebos are inert treatments, generally not expected to impact biological pathways or improve a person’s physical health. But time and again, some patients report that they feel better after taking a placebo. Increasingly, doctors and scientists are recognizing that rather than dismissing placebos as mere trickery, they may be able to help patients by harnessing their power.

To maximize the impact of the placebo effect and design reliable therapeutic strategies, researchers need a better understanding of how it works. Now, with a new animal model developed by scientists at the McGovern Institute, they will be able to investigate the neural circuits that underlie placebos’ ability to elicit pain relief.

“The brain and body interaction has a lot of potential, in a way that we don’t fully understand,” says McGovern investigator Fan Wang. “I really think there needs to be more of a push to understand placebo effect, in pain and probably in many other conditions. Now we have a strong model to probe the circuit mechanism.”

Context-dependent placebo effect

McGovern Investigator Fan Wang. Photo: Caitliin Cunningham

In the September 5, 2024, issue of the journal Current Biology, Wang and her team report that they have elicited strong placebo pain relief in mice by activating pain-suppressing neurons in the brain while the mice are in a specific environment—thereby teaching the animals that they feel better when they are in that context. Following their training, placing the mice in that environment alone is enough to suppress pain. The team’s experiments, which were funded by the National Institutes of Health, the K. Lisa Yang Brain-Body Center and the K. Lisa Yang and Hock E. Tan Center for Molecular Therapeutics within MIT’s Yang Tan Collective show that this context-dependent placebo effect relieves both acute and chronic pain.

Context is critical for the placebo effect. While a pill can help a patient feel better when they expect it to, even if it is made only of sugar or starch, it seems to be not just the pill that sets up those expectations, but the entire scenario in which the pill is taken. For example, being in a hospital and interacting with doctors can contribute to a patient’s perception of care, and these social and environmental factors can make a placebo effect more probable.

Postdoctoral fellows Bin Chen and Nitsan Goldstein used visual and textural cues to define a specific place. Then they activated pain-suppressing neurons in the brain while the animals were in this “pain-relief box.” Those pain-suppressing neurons, which Wang’s lab discovered a few years ago, are located in an emotion-processing center of the brain called the central amygdala. By expressing light-sensitive channels in these neurons, the researchers were able to suppress pain with light in the pain-relief box and leave the neurons inactive when mice were in a control box.

Animals learned to prefer the pain-relief box to other environments. And when the researchers tested their response to potentially painful stimuli after they had made that association, they found the mice were less sensitive while they were there. “Just by being in the context that they had associated with pain suppression, we saw that reduced pain—even though we weren’t actually activating those [pain-suppressing] neurons,” Goldstein explains.

Acute and chronic pain relief

Some scientists have been able to elicit placebo pain relief in rodents by treating the animals with morphine, linking environmental cues to the pain suppression caused by the drugs similar to the way Wang’s team did by directly activating pain-suppressing neurons. This drug-based approach works best for setting up expectations of relief for acute pain; its placebo effect is short-lived and mostly ineffective against chronic pain. So Wang, Chen, and Goldstein were particularly pleased to find that their engineered placebo effect was effective for relieving both acute and chronic pain.

In their experiments, animals experiencing a chemotherapy-induced hypersensitivity to touch exhibited a preference for the pain relief box as much as animals who were exposed to a chemical that induces acute pain, days after their initial conditioning. Once there, their chemotherapy-induced pain sensitivity was eliminated; they exhibited no more sensitivity to painful stimuli than they had prior to receiving chemotherapy.

One of the biggest surprises came when the researchers turned their attention back to the pain-suppressing neurons in the central amygdala that they had used to trigger pain relief. They suspected that those neurons might be reactivated when mice returned to the pain-relief box. Instead, they found that after the initial conditioning period, those neurons remained quiet. “These neurons are not reactivated, yet the mice appear to be no longer in pain,” Wang says. “So it suggests this memory of feeling well is transferred somewhere else.”

Goldstein adds that there must be a pain-suppressing neural circuit somewhere that is activated by pain-relief-associated contexts—and the team’s new placebo model sets researchers up to investigate those pathways. A deeper understanding of that circuitry could enable clinicians to deploy the placebo effect—alone or in combination with active treatments—to better manage patients’ pain in the future.

Scientists find neurons that process language on different timescales

Using functional magnetic resonance imaging (fMRI), neuroscientists have identified several regions of the brain that are responsible for processing language. However, discovering the specific functions of neurons in those regions has proven difficult because fMRI, which measures changes in blood flow, doesn’t have high enough resolution to reveal what small populations of neurons are doing.

Now, using a more precise technique that involves recording electrical activity directly from the brain, MIT neuroscientists have identified different clusters of neurons that appear to process different amounts of linguistic context. These “temporal windows” range from just one word up to about six words.

The temporal windows may reflect different functions for each population, the researchers say. Populations with shorter windows may analyze the meanings of individual words, while those with longer windows may interpret more complex meanings created when words are strung together.

“This is the first time we see clear heterogeneity within the language network,” says Evelina Fedorenko, an associate professor of neuroscience at MIT. “Across dozens of fMRI experiments, these brain areas all seem to do the same thing, but it’s a large, distributed network, so there’s got to be some structure there. This is the first clear demonstration that there is structure, but the different neural populations are spatially interleaved so we can’t see these distinctions with fMRI.”

Fedorenko, who is also a member of MIT’s McGovern Institute for Brain Research, is the senior author of the study, which appears today in Nature Human Behavior. MIT postdoc Tamar Regev and Harvard University graduate student Colton Casto are the lead authors of the paper.

Temporal windows

Functional MRI, which has helped scientists learn a great deal about the roles of different parts of the brain, works by measuring changes in blood flow in the brain. These measurements act as a proxy of neural activity during a particular task. However, each “voxel,” or three-dimensional chunk, of an fMRI image represents hundreds of thousands to millions of neurons and sums up activity across about two seconds, so it can’t reveal fine-grained detail about what those neurons are doing.

One way to get more detailed information about neural function is to record electrical activity using electrodes implanted in the brain. These data are hard to come by because this procedure is done only in patients who are already undergoing surgery for a neurological condition such as severe epilepsy.

“It can take a few years to get enough data for a task because these patients are relatively rare, and in a given patient electrodes are implanted in idiosyncratic locations based on clinical needs, so it takes a while to assemble a dataset with sufficient coverage of some target part of the cortex. But these data, of course, are the best kind of data we can get from human brains: You know exactly where you are spatially and you have very fine-grained temporal information,” Fedorenko says.

In a 2016 study, Fedorenko reported using this approach to study the language processing regions of six people. Electrical activity was recorded while the participants read four different types of language stimuli: complete sentences, lists of words, lists of non-words, and “jabberwocky” sentences — sentences that have grammatical structure but are made of nonsense words.

Those data showed that in some neural populations in language processing regions, activity would gradually build up over a period of several words, when the participants were reading sentences. However, this did not happen when they read lists of words, lists of nonwords, of Jabberwocky sentences.

In the new study, Regev and Casto went back to those data and analyzed the temporal response profiles in greater detail. In their original dataset, they had recordings of electrical activity from 177 language-responsive electrodes across the six patients. Conservative estimates suggest that each electrode represents an average of activity from about 200,000 neurons. They also obtained new data from a second set of 16 patients, which included recordings from another 362 language-responsive electrodes.

When the researchers analyzed these data, they found that in some of the neural populations, activity would fluctuate up and down with each word. In others, however, activity would build up over multiple words before falling again, and yet others would show a steady buildup of neural activity over longer spans of words.

By comparing their data with predictions made by a computational model that the researchers designed to process stimuli with different temporal windows, the researchers found that neural populations from language processing areas could be divided into three clusters. These clusters represent temporal windows of either one, four, or six words.

“It really looks like these neural populations integrate information across different timescales along the sentence,” Regev says.

Processing words and meaning

These differences in temporal window size would have been impossible to see using fMRI, the researchers say.

“At the resolution of fMRI, we don’t see much heterogeneity within language-responsive regions. If you localize in individual participants the voxels in their brain that are most responsive to language, you find that their responses to sentences, word lists, jabberwocky sentences and non-word lists are highly similar,” Casto says.

The researchers were also able to determine the anatomical locations where these clusters were found. Neural populations with the shortest temporal window were found predominantly in the posterior temporal lobe, though some were also found in the frontal or anterior temporal lobes. Neural populations from the two other clusters, with longer temporal windows, were spread more evenly throughout the temporal and frontal lobes.

Fedorenko’s lab now plans to study whether these timescales correspond to different functions. One possibility is that the shortest timescale populations may be processing the meanings of a single word, while those with longer timescales interpret the meanings represented by multiple words.

“We already know that in the language network, there is sensitivity to how words go together and to the meanings of individual words,” Regev says. “So that could potentially map to what we’re finding, where the longest timescale is sensitive to things like syntax or relationships between words, and maybe the shortest timescale is more sensitive to features of single words or parts of them.”

The research was funded by the Zuckerman-CHE STEM Leadership Program, the Poitras Center for Psychiatric Disorders Research, the Kempner Institute for the Study of Natural and Artificial Intelligence at Harvard University, the U.S. National Institutes of Health, an American Epilepsy Society Research and Training Fellowship, the McDonnell Center for Systems Neuroscience, Fondazione Neurone, the McGovern Institute, MIT’s Department of Brain and Cognitive Sciences, and the Simons Center for the Social Brain.

Five MIT faculty elected to the National Academy of Sciences for 2024

The National Academy of Sciences has elected 120 members and 24 international members, including five faculty members from MIT. Guoping Feng, Piotr Indyk, Daniel J. Kleitman, Daniela Rus, and Senthil Todadri were elected in recognition of their “distinguished and continuing achievements in original research.” Membership to the National Academy of Sciences is one of the highest honors a scientist can receive in their career.

Among the new members added this year are also nine MIT alumni, including Zvi Bern ’82; Harold Hwang ’93, SM ’93; Leonard Kleinrock SM ’59, PhD ’63; Jeffrey C. Lagarias ’71, SM ’72, PhD ’74; Ann Pearson PhD ’00; Robin Pemantle PhD ’88; Jonas C. Peters PhD ’98; Lynn Talley PhD ’82; and Peter T. Wolczanski ’76. Those elected this year bring the total number of active members to 2,617, with 537 international members.

The National Academy of Sciences is a private, nonprofit institution that was established under a congressional charter signed by President Abraham Lincoln in 1863. It recognizes achievement in science by election to membership, and — with the National Academy of Engineering and the National Academy of Medicine — provides science, engineering, and health policy advice to the federal government and other organizations.

Guoping Feng

Guoping Feng is the James W. (1963) and Patricia T. Poitras Professor in the Department of Brain and Cognitive Sciences. He is also associate director and investigator in the McGovern Institute for Brain Research, a member of the Broad Institute of MIT and Harvard, and director of the Hock E. Tan and K. Lisa Yang Center for Autism Research.

His research focuses on understanding the molecular mechanisms that regulate the development and function of synapses, the places in the brain where neurons connect and communicate. He’s interested in how defects in the synapses can contribute to psychiatric and neurodevelopmental disorders. By understanding the fundamental mechanisms behind these disorders, he’s producing foundational knowledge that may guide the development of new treatments for conditions like obsessive-compulsive disorder and schizophrenia.

Feng received his medical training at Zhejiang University Medical School in Hangzhou, China, and his PhD in molecular genetics from the State University of New York at Buffalo. He did his postdoctoral training at Washington University at St. Louis and was on the faculty at Duke University School of Medicine before coming to MIT in 2010. He is a member of the American Academy of Arts and Sciences, a fellow of the American Association for the Advancement of Science, and was elected to the National Academy of Medicine in 2023.

Piotr Indyk

Piotr Indyk is the Thomas D. and Virginia W. Cabot Professor of Electrical Engineering and Computer Science. He received his magister degree from the University of Warsaw and his PhD from Stanford University before coming to MIT in 2000.

Indyk’s research focuses on building efficient, sublinear, and streaming algorithms. He’s developed, for example, algorithms that can use limited time and space to navigate massive data streams, that can separate signals into individual frequencies faster than other methods, and can address the “nearest neighbor” problem by finding highly similar data points without needing to scan an entire database. His work has applications on everything from machine learning to data mining.

He has been named a Simons Investigator and a fellow of the Association for Computer Machinery. In 2023, he was elected to the American Academy of Arts and Sciences.

Daniel J. Kleitman

Daniel Kleitman, a professor emeritus of applied mathematics, has been at MIT since 1966. He received his undergraduate degree from Cornell University and his master’s and PhD in physics from Harvard University before doing postdoctoral work at Harvard and the Niels Bohr Institute in Copenhagen, Denmark.

Kleitman’s research interests include operations research, genomics, graph theory, and combinatorics, the area of math concerned with counting. He was actually a professor of physics at Brandeis University before changing his field to math, encouraged by the prolific mathematician Paul Erdős. In fact, Kleitman has the rare distinction of having an Erdős number of just one. The number is a measure of the “collaborative distance” between a mathematician and Erdős in terms of authorship of papers, and studies have shown that leading mathematicians have particularly low numbers.

He’s a member of the American Academy of Arts and Sciences and has made important contributions to the MIT community throughout his career. He was head of the Department of Mathematics and served on a number of committees, including the Applied Mathematics Committee. He also helped create web-based technology and an online textbook for several of the department’s core undergraduate courses. He was even a math advisor for the MIT-based film “Good Will Hunting.”

Daniela Rus

Daniela Rus, the Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and Computer Science, is the director of the Computer Science and Artificial Intelligence Laboratory (CSAIL). She also serves as director of the Toyota-CSAIL Joint Research Center.

Her research on robotics, artificial intelligence, and data science is geared toward understanding the science and engineering of autonomy. Her ultimate goal is to create a future where machines are seamlessly integrated into daily life to support people with cognitive and physical tasks, and deployed in way that ensures they benefit humanity. She’s working to increase the ability of machines to reason, learn, and adapt to complex tasks in human-centered environments with applications for agriculture, manufacturing, medicine, construction, and other industries. She’s also interested in creating new tools for designing and fabricating robots and in improving the interfaces between robots and people, and she’s done collaborative projects at the intersection of technology and artistic performance.

Rus received her undergraduate degree from the University of Iowa and her PhD in computer science from Cornell University. She was a professor of computer science at Dartmouth College before coming to MIT in 2004. She is part of the Class of 2002 MacArthur Fellows; was elected to the National Academy of Engineering and the American Academy of Arts and Sciences; and is a fellow of the Association for Computer Machinery, the Institute of Electrical and Electronics Engineers, and the Association for the Advancement of Artificial Intelligence.

Senthil Todadri

Senthil Todadri, a professor of physics, came to MIT in 2001. He received his undergraduate degree from the Indian Institute of Technology in Kanpur and his PhD from Yale University before working as a postdoc at the Kavli Institute for Theoretical Physics in Santa Barbara, California.

Todadri’s research focuses on condensed matter theory. He’s interested in novel phases and phase transitions of quantum matter that expand beyond existing paradigms. Combining modeling experiments and abstract methods, he’s working to develop a theoretical framework for describing the physics of these systems. Much of that work involves understanding the phenomena that arise because of impurities or strong interactions between electrons in solids that don’t conform with conventional physical theories. He also pioneered the theory of deconfined quantum criticality, which describes a class of phase transitions, and he discovered the dualities of quantum field theories in two dimensional superconducting states, which has important applications to many problems in the field.

Todadri has been named a Simons Investigator, a Sloan Research Fellow, and a fellow of the American Physical Society. In 2023, he was elected to the American Academy of Arts and Sciences

Using MRI, engineers have found a way to detect light deep in the brain

Scientists often label cells with proteins that glow, allowing them to track the growth of a tumor, or measure changes in gene expression that occur as cells differentiate.

A man stands with his arms crossed in front of a board with mathematical equations written on it.
Alan Jasanoff, associate member of the McGovern Institute, and a professor of brain and cognitive sciences, biological engineering, and nuclear science and engineering at MIT. Photo: Justin Knight

While this technique works well in cells and some tissues of the body, it has been difficult to apply this technique to image structures deep within the brain, because the light scatters too much before it can be detected.

MIT engineers have now come up with a novel way to detect this type of light, known as bioluminescence, in the brain: They engineered blood vessels of the brain to express a protein that causes them to dilate in the presence of light. That dilation can then be observed with magnetic resonance imaging (MRI), allowing researchers to pinpoint the source of light.

“A well-known problem that we face in neuroscience, as well as other fields, is that it’s very difficult to use optical tools in deep tissue. One of the core objectives of our study was to come up with a way to image bioluminescent molecules in deep tissue with reasonably high resolution,” says Alan Jasanoff, an MIT professor of biological engineering, brain and cognitive sciences, and nuclear science and engineering.

The new technique developed by Jasanoff and his colleagues could enable researchers to explore the inner workings of the brain in more detail than has previously been possible.

Jasanoff, who is also an associate investigator at MIT’s McGovern Institute for Brain Research, is the senior author of the study, which appears today in Nature Biomedical Engineering. Former MIT postdocs Robert Ohlendorf and Nan Li are the lead authors of the paper.

Detecting light

Bioluminescent proteins are found in many organisms, including jellyfish and fireflies. Scientists use these proteins to label specific proteins or cells, whose glow can be detected by a luminometer. One of the proteins often used for this purpose is luciferase, which comes in a variety of forms that glow in different colors.

Jasanoff’s lab, which specializes in developing new ways to image the brain using MRI, wanted to find a way to detect luciferase deep within the brain. To achieve that, they came up with a method for transforming the blood vessels of the brain into light detectors. A popular form of MRI works by imaging changes in blood flow in the brain, so the researchers engineered the blood vessels themselves to respond to light by dilating.

“Blood vessels are a dominant source of imaging contrast in functional MRI and other non-invasive imaging techniques, so we thought we could convert the intrinsic ability of these techniques to image blood vessels into a means for imaging light, by photosensitizing the blood vessels themselves,” Jasanoff says.

“We essentially turn the vasculature of the brain into a three-dimensional camera.” – Alan Jasanoff

To make the blood vessels sensitive to light, the researcher engineered them to express a bacterial protein called Beggiatoa photoactivated adenylate cyclase (bPAC). When exposed to light, this enzyme produces a molecule called cAMP, which causes blood vessels to dilate. When blood vessels dilate, it alters the balance of oxygenated and deoxygenated hemoglobin, which have different magnetic properties. This shift in magnetic properties can be detected by MRI.

BPAC responds specifically to blue light, which has a short wavelength, so it detects light generated within close range. The researchers used a viral vector to deliver the gene for bPAC specifically to the smooth muscle cells that make up blood vessels. When this vector was injected in rats, blood vessels throughout a large area of the brain became light-sensitive.

“Blood vessels form a network in the brain that is extremely dense. Every cell in the brain is within a couple dozen microns of a blood vessel,” Jasanoff says. “The way I like to describe our approach is that we essentially turn the vasculature of the brain into a three-dimensional camera.”

Once the blood vessels were sensitized to light, the researchers implanted cells that had been engineered to express luciferase if a substrate called CZT is present. In the rats, the researchers were able to detect luciferase by imaging the brain with MRI, which revealed dilated blood vessels.

Tracking changes in the brain

The researchers then tested whether their technique could detect light produced by the brain’s own cells, if they were engineered to express luciferase. They delivered the gene for a type of luciferase called GLuc to cells in a deep brain region known as the striatum. When the CZT substrate was injected into the animals, MRI imaging revealed the sites where light had been emitted.

This technique, which the researchers dubbed bioluminescence imaging using hemodynamics, or BLUsH, could be used in a variety of ways to help scientists learn more about the brain, Jasanoff says.

For one, it could be used to map changes in gene expression, by linking the expression of luciferase to a specific gene. This could help researchers observe how gene expression changes during embryonic development and cell differentiation, or when new memories form. Luciferase could also be used to map anatomical connections between cells or to reveal how cells communicate with each other.

The researchers now plan to explore some of those applications, as well as adapting the technique for use in mice and other animal models.

The research was funded by the U.S. National Institutes of Health, the G. Harold and Leila Y. Mathers Foundation, Lore Harp McGovern, Gardner Hendrie, a fellowship from the German Research Foundation, a Marie Sklodowska-Curie Fellowship from the European Union, and a Y. Eva Tan Fellowship and a J. Douglas Tan Fellowship, both from the McGovern Institute for Brain Research.

Women in STEM — A celebration of excellence and curiosity

What better way to commemorate Women’s History Month and International Women’s Day than to give  three of the world’s most accomplished scientists an opportunity to talk about their careers? On March 7, MindHandHeart invited professors Paula Hammond, Ann Graybiel, and Sangeeta Bhatia to share their career journeys, from the progress they have witnessed to the challenges they have faced as women in STEM. Their conversation was moderated by Mary Fuller, chair of the faculty and professor of literature.

Hammond, an Institute professor with appointments in the Department of Chemical Engineering and the Koch Institute for Integrative Cancer Research, reflected on the strides made by women faculty at MIT, while acknowledging ongoing challenges. “I think that we have advanced a great deal in the last few decades in terms of the numbers of women who are present, although we still have a long way to go,” Hammond noted in her opening. “We’ve seen a remarkable increase over the past couple of decades in our undergraduate population here at MIT, and now we’re beginning to see it in the graduate population, which is really exciting.” Hammond was recently appointed to the role of vice provost for faculty.

Ann Graybiel, also an Institute professor, who has appointments in the Department of Brain and Cognitive Sciences and the McGovern Institute for Brain Research, described growing up in the Deep South. “Girls can’t do science,” she remembers being told in school, and they “can’t do research.” Yet her father, a physician scientist, often took her with him to work and had her assist from a young age, eventually encouraging her directly to pursue a career in science. Graybiel, who first came to MIT in 1973, noted that she continued to face barriers and rejection throughout her career long after leaving the South, but that individual gestures of inspiration, generosity, or simple statements of “You can do it” from her peers helped her power through and continue in her scientific pursuits.

Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science, director of the Marble Center for Cancer Nanomedicine at the Koch Institute for Integrative Cancer Research, and a member of the Institute for Medical Engineering and Science, is also the mother of two teenage girls. She shared her perspective on balancing career and family life: “I wanted to pick up my kids from school and I wanted to know their friends. … I had a vision for the life that I wanted.” Setting boundaries at work, she noted, empowered her to achieve both personal and professional goals. Bhatia also described her collaboration with President Emerita Susan Hockfield and MIT Amgen Professor of Biology Emerita Nancy Hopkins to spearhead the Future Founders Initiative, which aims to boost the representation of female faculty members pursuing biotechnology ventures.

A video of the full panel discussion is available on the MindHandHeart YouTube channel.

From neurons to learning and memory

Mark Harnett, an associate professor at MIT, still remembers the first time he saw electrical activity spiking from a living neuron.

He was a senior at Reed College and had spent weeks building a patch clamp rig — an experimental setup with an electrode that can be used to gently probe a neuron and measure its electrical activity.

“The first time I stuck one of these electrodes onto one of these cells and could see the electrical activity happening in real time on the oscilloscope, I thought, ‘Oh my God, this is what I’m going to do for the rest of my life. This is the coolest thing I’ve ever seen!’” Harnett says.

Harnett, who recently earned tenure in MIT’s Department of Brain and Cognitive Sciences, now studies the electrical properties of neurons and how these properties enable neural circuits to perform the computations that give rise to brain functions such as learning, memory, and sensory perception.

“My lab’s ultimate goal is to understand how the cortex works,” Harnett says. “What are the computations? How do the cells and the circuits and the synapses support those computations? What are the molecular and structural substrates of learning and memory? How do those things interact with circuit dynamics to produce flexible, context-dependent computation?”

“We go after that by looking at molecules, like synaptic receptors and ion channels, all the way up to animal behavior, and building theoretical models of neural circuits,” he adds.

Influence on the mind

Harnett’s interest in science was sparked in middle school, when he had a teacher who made the subject come to life. “It was middle school science, which was a lot of just mixing random things together. It wasn’t anything particularly advanced, but it was really fun,” he says. “Our teacher was just super encouraging and inspirational, and she really sparked what became my lifelong interest in science.”

When Harnett was 11, his father got a new job at a technology company in Minneapolis and the family moved from New Jersey to Minnesota, which proved to be a difficult adjustment. When choosing a college, Harnett decided to go far away, and ended up choosing Reed College, a school in Portland, Oregon, that encourages a great deal of independence in both academics and personal development.

“Reed was really free,” he recalls. “It let you grow into who you wanted to be, and try things, both for what you wanted to do academically or artistically, but also the kind of person you wanted to be.”

While in college, Harnett enjoyed both biology and English, especially Shakespeare. His English professors encouraged him to go into science, believing that the field needed scientists who could write and think creatively. He was interested in neuroscience, but Reed didn’t have a neuroscience department, so he took the closest subject he could find — a course in neuropharmacology.

“That class totally blew my mind. It was just fascinating to think about all these pharmacological agents, be they from plants or synthetic or whatever, influencing how your mind worked,” Harnett says. “That class really changed my whole way of thinking about what I wanted to do, and that’s when I decided I wanted to become a neuroscientist.”

For his senior research thesis, Harnett joined an electrophysiology lab at Oregon Health Sciences University (OHSU), working with Professor Larry Trussell, who studies synaptic transmission in the auditory system. That lab was where he first built and used a patch clamp rig to measure neuron activity.

After graduating from college, he spent a year as a research technician in a lab at the University of Minnesota, then returned to OHSU to work in a different research lab studying ion channels and synaptic physiology. Eventually he decided to go to graduate school, ending up at the University of Texas at Austin, where his future wife was studying public policy.

For his PhD research, he studied the neurons that release the neuromodulator dopamine and how they are affected by drugs of abuse and addiction. However, once he finished his degree, he decided to return to studying the biophysics of computation, which he pursued during a postdoc at the Howard Hughes Medical Institute Janelia Research Campus with Jeff Magee.

A broad approach

When he started his lab at MIT’s McGovern Institute in 2015, Harnett set out to expand his focus. While the physiology of ion channels and synapses forms the basis of much of his lab’s work, they connect these processes to neuronal computation, cortical circuit operation, and higher-level cognitive functions.

Electrical impulses that flow between neurons, allowing them to communicate with each other, are produced by ion channels that control the flow of ions such as potassium and sodium. In a 2021 study, Harnett and his students discovered that human neurons have a much smaller number of these channels than expected, compared to the neurons of other mammals.

This reduction in density may have evolved to help the brain operate more efficiently, allowing it to divert resources to other energy-intensive processes that are required to perform complex cognitive tasks. Harnett’s lab has also found that in human neurons, electrical signals weaken as they flow along dendrites, meaning that small sections of dendrites can form units that perform individual computations within a neuron.

Harnett’s lab also recently discovered, to their surprise, that the adult brain contains millions of “silent synapses” — immature connections that remain inactive until they’re recruited to help form new memories. The existence of these synapses offers a clue to how the adult brain is able to continually form new memories and learn new things without having to modify mature synapses.

Many of these projects fall into areas that Harnett didn’t necessarily envision himself working on when he began his faculty career, but they naturally grew out of the broad approach he wanted to take to studying the cortex. To that end, he sought to bring people to the lab who wanted to work at different levels — from molecular physiology up to behavior and computational modeling.

As a postdoc studying electrophysiology, Harnett spent most of his time working alone with his patch clamp device and two-photon microscope. While that type of work still goes on his lab, the overall atmosphere is much more collaborative and convivial, and as a mentor, he likes to give his students broad leeway to come up with their own projects that fit in with the lab’s overall mission.

“I have this incredible, dynamic group that has been really great to work with. We take a broad approach to studying the cortex, and I think that’s what makes it fun,” he says. “Working with the folks that I’ve been able to recruit — grad students, techs, undergrads, and postdocs — is probably the thing that really matters the most to me.”

A new computational technique could make it easier to engineer useful proteins

To engineer proteins with useful functions, researchers usually begin with a natural protein that has a desirable function, such as emitting fluorescent light, and put it through many rounds of random mutation that eventually generate an optimized version of the protein.

This process has yielded optimized versions of many important proteins, including green fluorescent protein (GFP). However, for other proteins, it has proven difficult to generate an optimized version. MIT researchers have now developed a computational approach that makes it easier to predict mutations that will lead to better proteins, based on a relatively small amount of data.

Using this model, the researchers generated proteins with mutations that were predicted to lead to improved versions of GFP and a protein from adeno-associated virus (AAV), which is used to deliver DNA for gene therapy. They hope it could also be used to develop additional tools for neuroscience research and medical applications.

Woman gestures with her hand in front of a glass wall with equations written on it.
MIT Professor of Brain and Cognitive Sciences Ila Fiete in her lab at the McGovern Institute. Photo: Steph Stevens

“Protein design is a hard problem because the mapping from DNA sequence to protein structure and function is really complex. There might be a great protein 10 changes away in the sequence, but each intermediate change might correspond to a totally nonfunctional protein. It’s like trying to find your way to the river basin in a mountain range, when there are craggy peaks along the way that block your view. The current work tries to make the riverbed easier to find,” says Ila Fiete, a professor of brain and cognitive sciences at MIT, a member of MIT’s McGovern Institute for Brain Research, director of the K. Lisa Yang Integrative Computational Neuroscience Center, and one of the senior authors of the study.

Regina Barzilay, the School of Engineering Distinguished Professor for AI and Health at MIT, and Tommi Jaakkola, the Thomas Siebel Professor of Electrical Engineering and Computer Science at MIT, are also senior authors of an open-access paper on the work, which will be presented at the International Conference on Learning Representations in May. MIT graduate students Andrew Kirjner and Jason Yim are the lead authors of the study. Other authors include Shahar Bracha, an MIT postdoc, and Raman Samusevich, a graduate student at Czech Technical University.

Optimizing proteins

Many naturally occurring proteins have functions that could make them useful for research or medical applications, but they need a little extra engineering to optimize them. In this study, the researchers were originally interested in developing proteins that could be used in living cells as voltage indicators. These proteins, produced by some bacteria and algae, emit fluorescent light when an electric potential is detected. If engineered for use in mammalian cells, such proteins could allow researchers to measure neuron activity without using electrodes.

While decades of research have gone into engineering these proteins to produce a stronger fluorescent signal, on a faster timescale, they haven’t become effective enough for widespread use. Bracha, who works in Edward Boyden’s lab at the McGovern Institute, reached out to Fiete’s lab to see if they could work together on a computational approach that might help speed up the process of optimizing the proteins.

“This work exemplifies the human serendipity that characterizes so much science discovery,” Fiete says.

“This work grew out of the Yang Tan Collective retreat, a scientific meeting of researchers from multiple centers at MIT with distinct missions unified by the shared support of K. Lisa Yang. We learned that some of our interests and tools in modeling how brains learn and optimize could be applied in the totally different domain of protein design, as being practiced in the Boyden lab.”

For any given protein that researchers might want to optimize, there is a nearly infinite number of possible sequences that could generated by swapping in different amino acids at each point within the sequence. With so many possible variants, it is impossible to test all of them experimentally, so researchers have turned to computational modeling to try to predict which ones will work best.

In this study, the researchers set out to overcome those challenges, using data from GFP to develop and test a computational model that could predict better versions of the protein.

They began by training a type of model known as a convolutional neural network (CNN) on experimental data consisting of GFP sequences and their brightness — the feature that they wanted to optimize.

The model was able to create a “fitness landscape” — a three-dimensional map that depicts the fitness of a given protein and how much it differs from the original sequence — based on a relatively small amount of experimental data (from about 1,000 variants of GFP).

These landscapes contain peaks that represent fitter proteins and valleys that represent less fit proteins. Predicting the path that a protein needs to follow to reach the peaks of fitness can be difficult, because often a protein will need to undergo a mutation that makes it less fit before it reaches a nearby peak of higher fitness. To overcome this problem, the researchers used an existing computational technique to “smooth” the fitness landscape.

Once these small bumps in the landscape were smoothed, the researchers retrained the CNN model and found that it was able to reach greater fitness peaks more easily. The model was able to predict optimized GFP sequences that had as many as seven different amino acids from the protein sequence they started with, and the best of these proteins were estimated to be about 2.5 times fitter than the original.

“Once we have this landscape that represents what the model thinks is nearby, we smooth it out and then we retrain the model on the smoother version of the landscape,” Kirjner says. “Now there is a smooth path from your starting point to the top, which the model is now able to reach by iteratively making small improvements. The same is often impossible for unsmoothed landscapes.”

Proof-of-concept

The researchers also showed that this approach worked well in identifying new sequences for the viral capsid of adeno-associated virus (AAV), a viral vector that is commonly used to deliver DNA. In that case, they optimized the capsid for its ability to package a DNA payload.

“We used GFP and AAV as a proof-of-concept to show that this is a method that works on data sets that are very well-characterized, and because of that, it should be applicable to other protein engineering problems,” Bracha says.

The researchers now plan to use this computational technique on data that Bracha has been generating on voltage indicator proteins.

“Dozens of labs having been working on that for two decades, and still there isn’t anything better,” she says. “The hope is that now with generation of a smaller data set, we could train a model in silico and make predictions that could be better than the past two decades of manual testing.”

The research was funded, in part, by the U.S. National Science Foundation, the Machine Learning for Pharmaceutical Discovery and Synthesis consortium, the Abdul Latif Jameel Clinic for Machine Learning in Health, the DTRA Discovery of Medical Countermeasures Against New and Emerging threats program, the DARPA Accelerated Molecular Discovery program, the Sanofi Computational Antibody Design grant, the U.S. Office of Naval Research, the Howard Hughes Medical Institute, the National Institutes of Health, the K. Lisa Yang ICoN Center, and the K. Lisa Yang and Hock E. Tan Center for Molecular Therapeutics at MIT.

How the brain coordinates speaking and breathing

MIT researchers have discovered a brain circuit that drives vocalization and ensures that you talk only when you breathe out, and stop talking when you breathe in.

McGovern Investigator Fan Wang. Photo: Caitliin Cunningham

The newly discovered circuit controls two actions that are required for vocalization: narrowing of the larynx and exhaling air from the lungs. The researchers also found that this vocalization circuit is under the command of a brainstem region that regulates the breathing rhythm, which ensures that breathing remains dominant over speech.

“When you need to breathe in, you have to stop vocalization. We found that the neurons that control vocalization receive direct inhibitory input from the breathing rhythm generator,” says Fan Wang, an MIT professor of brain and cognitive sciences, a member of MIT’s McGovern Institute for Brain Research, and the senior author of the study.

Jaehong Park, a Duke University graduate student who is currently a visiting student at MIT, is the lead author of the study, which appears today in Science. Other authors of the paper include MIT technical associates Seonmi Choi and Andrew Harrahill, former MIT research scientist Jun Takatoh, and Duke University researchers Shengli Zhao and Bao-Xia Han.

Vocalization control

Located in the larynx, the vocal cords are two muscular bands that can open and close. When they are mostly closed, or adducted, air exhaled from the lungs generates sound as it passes through the cords.

The MIT team set out to study how the brain controls this vocalization process, using a mouse model. Mice communicate with each other using sounds known as ultrasonic vocalizations (USVs), which they produce using the unique whistling mechanism of exhaling air through a small hole between nearly closed vocal cords.

“We wanted to understand what are the neurons that control the vocal cord adduction, and then how do those neurons interact with the breathing circuit?” Wang says.

To figure that out, the researchers used a technique that allows them to map the synaptic connections between neurons. They knew that vocal cord adduction is controlled by laryngeal motor neurons, so they began by tracing backward to find the neurons that innervate those motor neurons.

This revealed that one major source of input is a group of premotor neurons found in the hindbrain region called the retroambiguus nucleus (RAm). Previous studies have shown that this area is involved in vocalization, but it wasn’t known exactly which part of the RAm was required or how it enabled sound production.

Image of green and magenta cells under a microscope.
Laryngeal premotor neurons (green) and Fos (magenta) labeling in the RAm. Image: Fan Wang

The researchers found that these synaptic tracing-labeled RAm neurons were strongly activated during USVs. This observation prompted the team to use an activity-dependent method to target these vocalization-specific RAm neurons, termed as RAmVOC. They used chemogenetics and optogenetics to explore what would happen if they silenced or stimulated their activity. When the researchers blocked the RAmVOC neurons, the mice were no longer able to produce USVs or any other kind of vocalization. Their vocal cords did not close, and their abdominal muscles did not contract, as they normally do during exhalation for vocalization.

Conversely, when the RAmVOC neurons were activated, the vocal cords closed, the mice exhaled, and USVs were produced. However, if the stimulation lasted two seconds or longer, these USVs would be interrupted by inhalations, suggesting that the process is under control of the same part of the brain that regulates breathing.

“Breathing is a survival need,” Wang says. “Even though these neurons are sufficient to elicit vocalization, they are under the control of breathing, which can override our optogenetic stimulation.”

Rhythm generation

Additional synaptic mapping revealed that neurons in a part of the brainstem called the pre-Bötzinger complex, which acts as a rhythm generator for inhalation, provide direct inhibitory input to the RAmVOC neurons.

“The pre-Bötzinger complex generates inhalation rhythms automatically and continuously, and the inhibitory neurons in that region project to these vocalization premotor neurons and essentially can shut them down,” Wang says.

This ensures that breathing remains dominant over speech production, and that we have to pause to breathe while speaking.

The researchers believe that although human speech production is more complex than mouse vocalization, the circuit they identified in mice plays the conserved role in speech production and breathing in humans.

“Even though the exact mechanism and complexity of vocalization in mice and humans is really different, the fundamental vocalization process, called phonation, which requires vocal cord closure and the exhalation of air, is shared in both the human and the mouse,” Park says.

The researchers now hope to study how other functions such as coughing and swallowing food may be affected by the brain circuits that control breathing and vocalization.

The research was funded by the National Institutes of Health.

Imaging method reveals new cells and structures in human brain tissue

Using a novel microscopy technique, MIT and Brigham and Women’s Hospital/Harvard Medical School researchers have imaged human brain tissue in greater detail than ever before, revealing cells and structures that were not previously visible.

McGovern Institute Investigator Edward Boyden. Photo: Justin Knight

Among their findings, the researchers discovered that some “low-grade” brain tumors contain more putative aggressive tumor cells than expected, suggesting that some of these tumors may be more aggressive than previously thought.

The researchers hope that this technique could eventually be deployed to diagnose tumors, generate more accurate prognoses, and help doctors choose treatments.

“We’re starting to see how important the interactions of neurons and synapses with the surrounding brain are to the growth and progression of tumors. A lot of those things we really couldn’t see with conventional tools, but now we have a tool to look at those tissues at the nanoscale and try to understand these interactions,” says Pablo Valdes, a former MIT postdoc who is now an assistant professor of neuroscience at the University of Texas Medical Branch and the lead author of the study.

Edward Boyden, the Y. Eva Tan Professor in Neurotechnology at MIT; a professor of biological engineering, media arts and sciences, and brain and cognitive sciences; a Howard Hughes Medical Institute investigator; and a member of MIT’s McGovern Institute for Brain Research and Koch Institute for Integrative Cancer Research; and E. Antonio Chiocca, a professor of neurosurgery at Harvard Medical School and chair of neurosurgery at Brigham and Women’s Hospital, are the senior authors of the study, which appears today in Science Translational Medicine.

Making molecules visible

The new imaging method is based on expansion microscopy, a technique developed in Boyden’s lab in 2015 based on a simple premise: Instead of using powerful, expensive microscopes to obtain high-resolution images, the researchers devised a way to expand the tissue itself, allowing it to be imaged at very high resolution with a regular light microscope.

The technique works by embedding the tissue into a polymer that swells when water is added, and then softening up and breaking apart the proteins that normally hold tissue together. Then, adding water swells the polymer, pulling all the proteins apart from each other. This tissue enlargement allows researchers to obtain images with a resolution of around 70 nanometers, which was previously possible only with very specialized and expensive microscopes such as scanning electron microscopes.

In 2017, the Boyden lab developed a way to expand preserved human tissue specimens, but the chemical reagents that they used also destroyed the proteins that the researchers were interested in labeling. By labeling the proteins with fluorescent antibodies before expansion, the proteins’ location and identity could be visualized after the expansion process was complete. However, the antibodies typically used for this kind of labeling can’t easily squeeze through densely packed tissue before it’s expanded.

So, for this study, the authors devised a different tissue-softening protocol that breaks up the tissue but preserves proteins in the sample. After the tissue is expanded, proteins can be labelled with commercially available fluorescent antibodies. The researchers then can perform several rounds of imaging, with three or four different proteins labeled in each round. This labeling of proteins enables many more structures to be imaged, because once the tissue is expanded, antibodies can squeeze through and label proteins they couldn’t previously reach.

The technique works by embedding the tissue into a polymer that swells when water is added, and then softening up and breaking apart the proteins that normally hold tissue together.

“We open up the space between the proteins so that we can get antibodies into crowded spaces that we couldn’t otherwise,” Valdes says. “We saw that we could expand the tissue, we could decrowd the proteins, and we could image many, many proteins in the same tissue by doing multiple rounds of staining.”

Working with MIT Assistant Professor Deblina Sarkar, the researchers demonstrated a form of this “decrowding” in 2022 using mouse tissue.

The new study resulted in a decrowding technique for use with human brain tissue samples that are used in clinical settings for pathological diagnosis and to guide treatment decisions. These samples can be more difficult to work with because they are usually embedded in paraffin and treated with other chemicals that need to be broken down before the tissue can be expanded.

In this study, the researchers labeled up to 16 different molecules per tissue sample. The molecules they targeted include markers for a variety of structures, including axons and synapses, as well as markers that identify cell types such as astrocytes and cells that form blood vessels. They also labeled molecules linked to tumor aggressiveness and neurodegeneration.

Using this approach, the researchers analyzed healthy brain tissue, along with samples from patients with two types of glioma — high-grade glioblastoma, which is the most aggressive primary brain tumor, with a poor prognosis, and low-grade gliomas, which are considered less aggressive.

“We wanted to look at brain tumors so that we can understand them better at the nanoscale level, and by doing that, to be able to develop better treatments and diagnoses in the future. At this point, it was more developing a tool to be able to understand them better, because currently in neuro-oncology, people haven’t done much in terms of super-resolution imaging,” Valdes says.

A diagnostic tool

To identify aggressive tumor cells in gliomas they studied, the researchers labeled vimentin, a protein that is found in highly aggressive glioblastomas. To their surprise, they found many more vimentin-expressing tumor cells in low-grade gliomas than had been seen using any other method.

“This tells us something about the biology of these tumors, specifically, how some of them probably have a more aggressive nature than you would suspect by doing standard staining techniques,” Valdes says.

When glioma patients undergo surgery, tumor samples are preserved and analyzed using immunohistochemistry staining, which can reveal certain markers of aggressiveness, including some of the markers analyzed in this study.

“These are incurable brain cancers, and this type of discovery will allow us to figure out which cancer molecules to target so we can design better treatments. It also proves the profound impact of having clinicians like us at the Brigham and Women’s interacting with basic scientists such as Ed Boyden at MIT to discover new technologies that can improve patient lives,” Chiocca says.

The researchers hope their expansion microscopy technique could allow doctors to learn much more about patients’ tumors, helping them to determine how aggressive the tumor is and guiding treatment choices. Valdes now plans to do a larger study of tumor types to try to establish diagnostic guidelines based on the tumor traits that can be revealed using this technique.

“Our hope is that this is going to be a diagnostic tool to pick up marker cells, interactions, and so on, that we couldn’t before,” he says. “It’s a practical tool that will help the clinical world of neuro-oncology and neuropathology look at neurological diseases at the nanoscale like never before, because fundamentally it’s a very simple tool to use.”

Boyden’s lab also plans to use this technique to study other aspects of brain function, in healthy and diseased tissue.

“Being able to do nanoimaging is important because biology is about nanoscale things — genes, gene products, biomolecules — and they interact over nanoscale distances,” Boyden says. “We can study all sorts of nanoscale interactions, including synaptic changes, immune interactions, and changes that occur during cancer and aging.”

The research was funded by K. Lisa Yang, the Howard Hughes Medical Institute, John Doerr, Open Philanthropy, the Bill and Melinda Gates Foundation, the Koch Institute Frontier Research Program, the National Institutes of Health, and the Neurosurgery Research and Education Foundation.

Simons Center’s collaborative approach propels autism research, at MIT and beyond

The secret to the success of MIT’s Simons Center for the Social Brain is in the name. With a founding philosophy of “collaboration and community” that has supported scores of scientists across more than a dozen Boston-area research institutions, the SCSB advances research by being inherently social.

SCSB’s mission is “to understand the neural mechanisms underlying social cognition and behavior and to translate this knowledge into better diagnosis and treatment of autism spectrum disorders.” When Director Mriganka Sur founded the center in 2012 in partnership with the Simons Foundation Autism Research Initiative (SFARI) of Jim and Marilyn Simons, he envisioned a different way to achieve urgently needed research progress than the traditional approach of funding isolated projects in individual labs. Sur wanted SCSB’s contribution to go beyond papers, though it has generated about 350 and counting. He sought the creation of a sustained, engaged autism research community at MIT and beyond.

“When you have a really big problem that spans so many issues  a clinical presentation, a gene, and everything in between  you have to grapple with multiple scales of inquiry,” says Sur, the Newton Professor of Neuroscience in MIT’s Department of Brain and Cognitive Sciences (BCS) and The Picower Institute for Learning and Memory. “This cannot be solved by one person or one lab. We need to span multiple labs and multiple ways of thinking. That was our vision.”

In parallel with a rich calendar of public colloquia, lunches, and special events, SCSB catalyzes multiperspective, multiscale research collaborations in two programmatic ways. Targeted projects fund multidisciplinary teams of scientists with complementary expertise to collectively tackle a pressing scientific question. Meanwhile, the center supports postdoctoral Simons Fellows with not one, but two mentors, ensuring a further cross-pollination of ideas and methods.

Complementary collaboration

In 11 years, SCSB has funded nine targeted projects. Each one, by design, involves a deep and multifaceted exploration of a major question with both fundamental importance and clinical relevance. The first project, back in 2013, for example, marshaled three labs spanning BCS, the Department of Biology, and The Whitehead Institute for Biomedical Research to advance understanding of how mutation of the Shank3 gene leads to the pathophysiology of Phelan-McDermid Syndrome by working across scales ranging from individual neural connections to whole neurons to circuits and behavior.

Other past projects have applied similarly integrated, multiscale approaches to topics ranging from how 16p11.2 gene deletion alters the development of brain circuits and cognition to the critical role of the thalamic reticular nucleus in information flow during sleep and wakefulness. Two others produced deep examinations of cognitive functions: how we go from hearing a string of words to understanding a sentence’s intended meaning, and the neural and behavioral correlates of deficits in making predictions about social and sensory stimuli. Yet another project laid the groundwork for developing a new animal model for autism research.

SFARI is especially excited by SCSB’s team science approach, says Kelsey Martin, executive vice president of autism and neuroscience at the Simons Foundation. “I’m delighted by the collaborative spirit of the SCSB,” Martin says. “It’s wonderful to see and learn about the multidisciplinary team-centered collaborations sponsored by the center.”

New projects

In the last year, SCSB has launched three new targeted projects. One team is investigating why many people with autism experience sensory overload and is testing potential interventions to help. The scientists hypothesize that patients experience a deficit in filtering out the mundane stimuli that neurotypical people predict are safe to ignore. Studies suggest the predictive filter relies on relatively low-frequency “alpha/beta” brain rhythms from deep layers of the cortex moderating the higher frequency “gamma” rhythms in superficial layers that process sensory information.

Together, the labs of Charles Nelson, professor of pediatrics at Boston Children’s Hospital (BCH), and BCS faculty members Bob Desimone, the Doris and Don Berkey Professor of Neuroscience at MIT and director of the McGovern Institute, and Earl K. Miller, the Picower Professor, are testing the hypothesis in two different animal models at MIT and in human volunteers at BCH. In the animals they’ll also try out a new real-time feedback system invented in Miller’s lab that can potentially correct the balance of these rhythms in the brain. And in an animal model engineered with a Shank3 mutation, Desimone’s lab will test a gene therapy, too.

“None of us could do all aspects of this project on our own,” says Miller, an investigator in the Picower Institute. “It could only come about because the three of us are working together, using different approaches.”

Right from the start, Desimone says, close collaboration with Nelson’s group at BCH has been essential. To ensure his and Miller’s measurements in the animals and Nelson’s measurements in the humans are as comparable as possible, they have tightly coordinated their research protocols.

“If we hadn’t had this joint grant we would have chosen a completely different, random set of parameters than Chuck, and the results therefore wouldn’t have been comparable. It would be hard to relate them,” says Desimone, who also directs MIT’s McGovern Institute for Brain Research. “This is a project that could not be accomplished by one lab operating in isolation.”

Another targeted project brings together a coalition of seven labs — six based in BCS (professors Evelina Fedorenko, Edward Gibson, Nancy Kanwisher, Roger Levy, Rebecca Saxe, and Joshua Tenenbaum) and one at Dartmouth College (Caroline Robertson) — for a synergistic study of the cognitive, neural, and computational underpinnings of conversational exchanges. The study will integrate the linguistic and non-linguistic aspects of conversational ability in neurotypical adults and children and those with autism.

Fedorenko said the project builds on advances and collaborations from the earlier language Targeted Project she led with Kanwisher.

“Many directions that we started to pursue continue to be active directions in our labs. But most importantly, it was really fun and allowed the PIs [principal investigators] to interact much more than we normally would and to explore exciting interdisciplinary questions,” Fedorenko says. “When Mriganka approached me a few years after the project’s completion asking about a possible new targeted project, I jumped at the opportunity.”

Gibson and Robertson are studying how people align their dialogue, not only in the content and form of their utterances, but using eye contact. Fedorenko and Kanwisher will employ fMRI to discover key components of a conversation network in the cortex. Saxe will examine the development of conversational ability in toddlers using novel MRI techniques. Levy and Tenenbaum will complement these efforts to improve computational models of language processing and conversation.

The newest Targeted Project posits that the immune system can be harnessed to help treat behavioral symptoms of autism. Four labs — three in BCS and one at Harvard Medical School (HMS) — will study mechanisms by which peripheral immune cells can deliver a potentially therapeutic cytokine to the brain. A study by two of the collaborators, MIT associate professor Gloria Choi and HMS associate professor Jun Huh, showed that when IL-17a reaches excitatory neurons in a region of the mouse cortex, it can calm hyperactivity in circuits associated with social and repetitive behavior symptoms. Huh, an immunologist, will examine how IL-17a can get from the periphery to the brain, while Choi will examine how it has its neurological effects. Sur and MIT associate professor Myriam Heiman will conduct studies of cell types that bridge neural circuits with brain circulatory systems.

“It is quite amazing that we have a core of scientists working on very different things coming together to tackle this one common goal,” Choi says. “I really value that.”

Multiple mentors

While SCSB Targeted Projects unify labs around research, the center’s Simons Fellowships unify labs around young researchers, providing not only funding, but a pair of mentors and free-flowing interactions between their labs. Fellows also gain opportunities to inform and inspire their fundamental research by visiting with patients with autism, Sur says.

“The SCSB postdoctoral program serves a critical role in ensuring that a diversity of outstanding scientists are exposed to autism research during their training, providing a pipeline of new talent and creativity for the field,” adds Martin, of the Simons Foundation.

Simons Fellows praise the extra opportunities afforded by additional mentoring. Postdoc Alex Major was a Simons Fellow in Miller’s lab and that of Nancy Kopell, a mathematics professor at Boston University renowned for her modeling of the brain wave phenomena that the Miller lab studies experimentally.

“The dual mentorship structure is a very useful aspect of the fellowship” Major says. “It is both a chance to network with another PI and provides experience in a different neuroscience sub-field.”

Miller says co-mentoring expands the horizons and capabilities of not only the mentees but also the mentors and their labs. “Collaboration is 21st century neuroscience,” Miller says. “Some our studies of the brain have gotten too big and comprehensive to be encapsulated in just one laboratory. Some of these big questions require multiple approaches and multiple techniques.”

Desimone, who recently co-mentored Seng Bum (Michael Yoo) along with BCS and McGovern colleague Mehrdad Jazayeri in a project studying how animals learn from observing others, agrees.

“We hear from postdocs all the time that they wish they had two mentors, just in general to get another point of view,” Desimone says. “This is a really good thing and it’s a way for faculty members to learn about what other faculty members and their postdocs are doing.”

Indeed, the Simons Center model suggests that research can be very successful when it’s collaborative and social.