Season’s Greetings from the McGovern Institute

This year’s holiday video (shown above) was inspired by Ev Fedorenko’s July 2022 Nature Neuroscience paper, which found similar patterns of brain activation and language selectivity across speakers of 45 different languages.

Universal language network

Ev Fedorenko uses the widely translated book “Alice in Wonderland” to test brain responses to different languages. Photo: Caitlin Cunningham

Over several decades, neuroscientists have created a well-defined map of the brain’s “language network,” or the regions of the brain that are specialized for processing language. Found primarily in the left hemisphere, this network includes regions within Broca’s area, as well as in other parts of the frontal and temporal lobes. Although roughly 7,000 languages are currently spoken and signed across the globe, the vast majority of those mapping studies have been done in English speakers as they listened to or read English texts.

To truly understand the cognitive and neural mechanisms that allow us to learn and process such diverse languages, Fedorenko and her team scanned the brains of speakers of 45 different languages while they listened to Alice in Wonderland in their native language. The results show that the speakers’ language networks appear to be essentially the same as those of native English speakers — which suggests that the location and key properties of the language network appear to be universal.

The many languages of McGovern

English may be the primary language used by McGovern researchers, but more than 35 other languages are spoken by scientists and engineers at the McGovern Institute. Our holiday video features 30 of these researchers saying Happy New Year in their native (or learned) language. Below is the complete list of languages included in our video. Expand each accordion to learn more about the speaker of that particular language and the meaning behind their new year’s greeting.

Brains on conlangs

For a few days in November, the McGovern Institute hummed with invented languages. Strangers greeted one another in Esperanto; trivia games were played in High Valyrian; Klingon and Na’vi were heard inside MRI scanners. Creators and users of these constructed languages (conlangs) had gathered at MIT in the name of neuroscience. McGovern Institute investigator Evelina Fedorenko and her team wanted to know what happened in their brains when they heard and understood these “foreign” tongues.

The constructed languages spoken by attendees had all been created for specific purposes. Most, like the Na’vi language spoken in the movie Avatar, had given identity and voice to the inhabitants of fictional worlds, while Esperanto was created to reduce barriers to international communication. But despite their distinct origins, a familiar pattern of activity emerged when researchers scanned speakers’ brains. The brain, they found, processes constructed languages with the same network of areas it uses for languages that evolved naturally over millions of years.

The meaning of language

“There’s all these things that people call language,” Fedorenko says. “Music is a kind of language and math is a kind of language.” But the brain processes these metaphorical languages differently than it does the languages humans use to communicate broadly about the world. To neuroscientists like Fedorenko, they can’t legitimately be considered languages at all. In contrast, she says, “these constructed languages seem really quite like natural languages.”

The “Brains on Conlangs” event that Fedorenko’s team hosted was part of its ongoing effort to understand the way language is generated and understood by the brain. Her lab and others have identified specific brain regions involved in linguistic processing, but it’s not yet clear how universal the language network is. Most studies of language cognition have focused on languages widely spoken in well-resourced parts of the world—primarily English, German, and Dutch. There are thousands of languages—spoken or signed—that have not been included.

Brain activation in a Klingon speaker while listening to English (left) and Klingon (right). Image: Saima Malik Moraleda

Fedorenko and her team are deliberately taking a broader approach. “If we’re making claims about language as a whole, it’s kind of weird to make it based on a handful of languages,” she says. “So we’re trying to create tools and collect some data on as many languages as possible.”

So far, they have found that the language networks used by native speakers of dozens of different languages do share key architectural similarities. And by including a more diverse set of languages in their research, Fedorenko and her team can begin to explore how the brain makes sense of linguistic features that are not part of English or other well studied languages. The Brains on Conlangs event was a chance to expand their studies even further.

Connecting conlangs

Nearly 50 speakers of Esperanto, Klingon, High Valyrian, Dothraki, and Na’vi attended Brains on Conlangs, drawn by the opportunity to connect with other speakers, hear from language creators, and contribute to the science. Graduate student Saima Malik-Moraleda and postbac research assistant Maya Taliaferro, along with other members of both the Fedorenko lab and brain and cognitive sciences professor Ted Gibson’s lab, and with help from Steve Shannon, Operations Manager of the Martinos Imaging Center, worked tirelessly to collect data from all participants. Two MRI scanners ran nearly continuously as speakers listened to passages in their chosen languages and researchers captured images of the brain’s response. To enable the research team to find the language-specific network in each person’s brain, participants also performed other tasks inside the scanner, including a memory task and listening to muffled audio in which the constructed languages were spoken, but unintelligible. They performed language tasks in English, as well.

To understand how the brain processes constructed languages (conlangs), McGovern Investigator Ev Fedorenko (center) gathered with conlang creators/speakers Marc Okrand (Klingon), Paul Frommer (Na’vi), Damian Blasi, Jessie Sams (méníshè), David Peterson (High Valyrian and Dothraki) and Aroka Okrent at the McGovern Institute for the “Brains on Colangs” event in November 2022. Photo: Elise Malvicini

Prior to the study, Fedorenko says, she had suspected constructed languages would activate the brain’s natural language-processing network, but she couldn’t be sure. Another possibility was that languages like Klingon and Esperanto would be handled instead by a problem-solving network known to be used when people work with some other so-called “languages,” like mathematics or computer programming. But once the data was in, the answer was clear. The five constructed languages included in the study all activated the brain’s language network.

That makes sense, Fedorenko says, because like natural languages, constructed languages enable people to communicate by associating words or signs with objects and ideas. Any language is essentially a way of mapping forms to meanings, she says. “You can construe it as a set of memories of how a particular sequence of sounds corresponds to some meaning. You’re learning meanings of words and constructions, and how to put them together to get more complex meanings. And it seems like the brain’s language system is very well suited for that set of computations.”

Machine learning can predict bipolar disorder in children and teens

Bipolar disorder often begins in childhood or adolescence, triggering dramatic mood shifts and intense emotions that cause problems at home and school. But the condition is often overlooked or misdiagnosed until patients are older. New research suggests that machine learning, a type of artificial intelligence, could help by identifying children who are at risk of bipolar disorder so doctors are better prepared to recognize the condition if it develops.

On October 13, 2022, researchers led by McGovern Institute investigator John Gabrieli and collaborators at Massachusetts General Hospital reported in the Journal of Psychiatric Research that when presented with clinical data on nearly 500 children and teenagers, a machine learning model was able to identify about 75 percent of those who were later diagnosed with bipolar disorder. The approach performs better than any other method of predicting bipolar disorder, and could be used to develop a simple risk calculator for health care providers.

Gabrieli says such a tool would be particularly valuable because bipolar disorder is less common in children than conditions like major depression, with which it shares symptoms, and attention-deficit/ hyperactivity disorder (ADHD), with which it often co-occurs. “Humans are not well tuned to watch out for rare events,” he says. “If you have a decent measure, it’s so much easier for a machine to identify than humans. And in this particular case, [the machine learning prediction] was surprisingly robust.”

Detecting bipolar disorder

Mai Uchida, Director of Massachusetts General Hospital’s Child Depression Program, says that nearly two percent of youth worldwide are estimated to have bipolar disorder, but diagnosing pediatric bipolar disorder can be challenging. A certain amount of emotional turmoil is to be expected in children and teenagers, and even when moods become seriously disruptive, children with bipolar disorder are often initially diagnosed with major depression or ADHD. That’s a problem, because the medications used to treat those conditions often worsen the symptoms of bipolar disorder. Tailoring treatment to a diagnosis of bipolar disorder, in contrast, can lead to significant improvements for patients and their families. “When we can give them a little bit of ease and give them a little bit of control over themselves, it really goes a long way,” Uchida says.

In fact, a poor response to antidepressants or ADHD medications can help point a psychiatrist toward a diagnosis of bipolar disorder. So too can a child’s family history, in addition to their own behavior and psychiatric history. But, Uchida says, “it’s kind of up to the individual clinician to pick up on these things.”

Uchida and Gabrieli wondered whether machine learning, which can find patterns in large, complex datasets, could focus in on the most relevant features to identify individuals with bipolar disorder. To find out, they turned to data from a study that began in the 1990s. The study, headed by Joseph Biederman, Chief of the Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD at Massachusetts General Hospital, had collected extensive psychiatric assessments of hundreds of children with and without ADHD, then followed those individuals for ten years.

To explore whether machine learning could find predictors of bipolar disorder within that data, Gabrieli, Uchida, and colleagues focused on 492 children and teenagers without ADHD, who were recruited to the study as controls. Over the ten years of the study, 45 of those individuals developed bipolar disorder.

Within the data collected at the study’s outset, the machine learning model was able to find patterns that associated with a later diagnosis of bipolar disorder. A few behavioral measures turned out to be particularly relevant to the model’s predictions: children and teens with combined problems with attention, aggression, and anxiety were most likely to later be diagnosed with bipolar disorder. These indicators were all picked up by a standard assessment tool called the Child Behavior Checklist.

Uchida and Gabrieli say the machine learning model could be integrated into the medical record system to help pediatricians and child psychiatrists catch early warning signs of bipolar disorder. “The information that’s collected could alert a clinician to the possibility of a bipolar disorder developing,” Uchida says. “Then at least they’re aware of the risk, and they may be able to maybe pick up on some of the deterioration when it’s happening and think about either referring them or treating it themselves.”

Not every reader’s struggle is the same

Many children struggle to learn to read, and studies have shown that students from a lower socioeconomic status (SES) background are more likely to have difficulty than those from a higher SES background.

MIT neuroscientists have now discovered that the types of difficulties that lower-SES students have with reading, and the underlying brain signatures, are, on average, different from those of higher-SES students who struggle with reading.

In a new study, which included brain scans of more than 150 children as they performed tasks related to reading, researchers found that when students from higher SES backgrounds struggled with reading, it could usually be explained by differences in their ability to piece sounds together into words, a skill known as phonological processing.

However, when students from lower SES backgrounds struggled, it was best explained by differences in their ability to rapidly name words or letters, a task associated with orthographic processing, or visual interpretation of words and letters. This pattern was further confirmed by brain activation during phonological and orthographic processing.

These differences suggest that different types of interventions may needed for different groups of children, the researchers say. The study also highlights the importance of including a wide range of SES levels in studies of reading or other types of academic learning.

“Within the neuroscience realm, we tend to rely on convenience samples of participants, so a lot of our understanding of the neuroscience components of reading in general, and reading disabilities in particular, tends to be based on higher-SES families,” says Rachel Romeo, a former graduate student in the Harvard-MIT Program in Health Sciences and Technology and the lead author of the study. “If we only look at these nonrepresentative samples, we can come away with a relatively biased view of how the brain works.”

Romeo is now an assistant professor in the Department of Human Development and Quantitative Methodology at the University of Maryland. John Gabrieli, the Grover Hermann Professor of Health Sciences and Technology and a professor of brain and cognitive sciences at MIT, is the senior author of the paper, which appears today in the journal Developmental Cognitive Neuroscience.

Components of reading

For many years, researchers have known that children’s scores on standardized assessments of reading are correlated with socioeconomic factors such as school spending per student or the number of children at the school who qualify for free or reduced-price lunches.

Studies of children who struggle with reading, mostly done in higher-SES environments, have shown that the aspect of reading they struggle with most is phonological awareness: the understanding of how sounds combine to make a word, and how sounds can be split up and swapped in or out to make new words.

“That’s a key component of reading, and difficulty with phonological processing is often one of the hallmarks of dyslexia or other reading disorders,” Romeo says.

In the new study, the MIT team wanted to explore how SES might affect phonological processing as well as another key aspect of reading, orthographic processing. This relates more to the visual components of reading, including the ability to identify letters and read words.

To do the study, the researchers recruited first and second grade students from the Boston area, making an effort to include a range of SES levels. For the purposes of this study, SES was assessed by parents’ total years of formal education, which is commonly used as a measure of the family’s SES.

“We went into this not necessarily with any hypothesis about how SES might relate to the two types of processing, but just trying to understand whether SES might be impacting one or the other more, or if it affects both types the same,” Romeo says.

The researchers first gave each child a series of standardized tests designed to measure either phonological processing or orthographic processing. Then, they performed fMRI scans of each child while they carried out additional phonological or orthographic tasks.

The initial series of tests allowed the researchers to determine each child’s abilities for both types of processing, and the brain scans allowed them to measure brain activity in parts of the brain linked with each type of processing.

The results showed that at the higher end of the SES spectrum, differences in phonological processing ability accounted for most of the differences between good readers and struggling readers. This is consistent with the findings of previous studies of reading difficulty. In those children, the researchers also found greater differences in activity in the parts of the brain responsible for phonological processing.

However, the outcomes were different when the researchers analyzed the lower end of the SES spectrum. There, the researchers found that variance in orthographic processing ability accounted for most of the differences between good readers and struggling readers. MRI scans of these children revealed greater differences in brain activity in parts of the brain that are involved in orthographic processing.

Optimizing interventions

There are many possible reasons why a lower SES background might lead to difficulties in orthographic processing, the researchers say. It might be less exposure to books at home, or limited access to libraries and other resources that promote literacy. For children from this background who struggle with reading, different types of interventions might benefit them more than the ones typically used for children who have difficulty with phonological processing.

In a 2017 study, Gabrieli, Romeo, and others found that a summer reading intervention that focused on helping students develop the sensory and cognitive processing necessary for reading was more beneficial for students from lower-SES backgrounds than children from higher-SES backgrounds. Those findings also support the idea that tailored interventions may be necessary for individual students, they say.

“There are two major reasons we understand that cause children to struggle as they learn to read in these early grades. One of them is learning differences, most prominently dyslexia, and the other one is socioeconomic disadvantage,” Gabrieli says. “In my mind, schools have to help all these kinds of kids become the best readers they can, so recognizing the source or sources of reading difficulty ought to inform practices and policies that are sensitive to these differences and optimize supportive interventions.”

Gabrieli and Romeo are now working with researchers at the Harvard University Graduate School of Education to evaluate language and reading interventions that could better prepare preschool children from lower SES backgrounds to learn to read. In her new lab at the University of Maryland, Romeo also plans to further delve into how different aspects of low SES contribute to different areas of language and literacy development.

“No matter why a child is struggling with reading, they need the education and the attention to support them. Studies that try to tease out the underlying factors can help us in tailoring educational interventions to what a child needs,” she says.

The research was funded by the Ellison Medical Foundation, the Halis Family Foundation, and the National Institutes of Health.

Understanding reality through algorithms

Although Fernanda De La Torre still has several years left in her graduate studies, she’s already dreaming big when it comes to what the future has in store for her.

“I dream of opening up a school one day where I could bring this world of understanding of cognition and perception into places that would never have contact with this,” she says.

It’s that kind of ambitious thinking that’s gotten De La Torre, a doctoral student in MIT’s Department of Brain and Cognitive Sciences, to this point. A recent recipient of the prestigious Paul and Daisy Soros Fellowship for New Americans, De La Torre has found at MIT a supportive, creative research environment that’s allowed her to delve into the cutting-edge science of artificial intelligence. But she’s still driven by an innate curiosity about human imagination and a desire to bring that knowledge to the communities in which she grew up.

An unconventional path to neuroscience

De La Torre’s first exposure to neuroscience wasn’t in the classroom, but in her daily life. As a child, she watched her younger sister struggle with epilepsy. At 12, she crossed into the United States from Mexico illegally to reunite with her mother, exposing her to a whole new language and culture. Once in the States, she had to grapple with her mother’s shifting personality in the midst of an abusive relationship. “All of these different things I was seeing around me drove me to want to better understand how psychology works,” De La Torre says, “to understand how the mind works, and how it is that we can all be in the same environment and feel very different things.”

But finding an outlet for that intellectual curiosity was challenging. As an undocumented immigrant, her access to financial aid was limited. Her high school was also underfunded and lacked elective options. Mentors along the way, though, encouraged the aspiring scientist, and through a program at her school, she was able to take community college courses to fulfill basic educational requirements.

It took an inspiring amount of dedication to her education, but De La Torre made it to Kansas State University for her undergraduate studies, where she majored in computer science and math. At Kansas State, she was able to get her first real taste of research. “I was just fascinated by the questions they were asking and this entire space I hadn’t encountered,” says De La Torre of her experience working in a visual cognition lab and discovering the field of computational neuroscience.

Although Kansas State didn’t have a dedicated neuroscience program, her research experience in cognition led her to a machine learning lab led by William Hsu, a computer science professor. There, De La Torre became enamored by the possibilities of using computation to model the human brain. Hsu’s support also convinced her that a scientific career was a possibility. “He always made me feel like I was capable of tackling big questions,” she says fondly.

With the confidence imparted in her at Kansas State, De La Torre came to MIT in 2019 as a post-baccalaureate student in the lab of Tomaso Poggio, the Eugene McDermott Professor of Brain and Cognitive Sciences and an investigator at the McGovern Institute for Brain Research. With Poggio, also the director of the Center for Brains, Minds and Machines, De La Torre began working on deep-learning theory, an area of machine learning focused on how artificial neural networks modeled on the brain can learn to recognize patterns and learn.

“It’s a very interesting question because we’re starting to use them everywhere,” says De La Torre of neural networks, listing off examples from self-driving cars to medicine. “But, at the same time, we don’t fully understand how these networks can go from knowing nothing and just being a bunch of numbers to outputting things that make sense.”

Her experience as a post-bac was De La Torre’s first real opportunity to apply the technical computer skills she developed as an undergraduate to neuroscience. It was also the first time she could fully focus on research. “That was the first time that I had access to health insurance and a stable salary. That was, in itself, sort of life-changing,” she says. “But on the research side, it was very intimidating at first. I was anxious, and I wasn’t sure that I belonged here.”

Fortunately, De La Torre says she was able to overcome those insecurities, both through a growing unabashed enthusiasm for the field and through the support of Poggio and her other colleagues in MIT’s Department of Brain and Cognitive Sciences. When the opportunity came to apply to the department’s PhD program, she jumped on it. “It was just knowing these kinds of mentors are here and that they cared about their students,” says De La Torre of her decision to stay on at MIT for graduate studies. “That was really meaningful.”

Expanding notions of reality and imagination

In her two years so far in the graduate program, De La Torre’s work has expanded the understanding of neural networks and their applications to the study of the human brain. Working with Guangyu Robert Yang, an associate investigator at the McGovern Institute and an assistant professor in the departments of Brain and Cognitive Sciences and Electrical Engineering and Computer Sciences, she’s engaged in what she describes as more philosophical questions about how one develops a sense of self as an independent being. She’s interested in how that self-consciousness develops and why it might be useful.

De La Torre’s primary advisor, though, is Professor Josh McDermott, who leads the Laboratory for Computational Audition. With McDermott, De La Torre is attempting to understand how the brain integrates vision and sound. While combining sensory inputs may seem like a basic process, there are many unanswered questions about how our brains combine multiple signals into a coherent impression, or percept, of the world. Many of the questions are raised by audiovisual illusions in which what we hear changes what we see. For example, if one sees a video of two discs passing each other, but the clip contains the sound of a collision, the brain will perceive that the discs are bouncing off, rather than passing through each other. Given an ambiguous image, that simple auditory cue is all it takes to create a different perception of reality.

There’s something interesting happening where our brains are receiving two signals telling us different things and, yet, we have to combine them somehow to make sense of the world.

De La Torre is using behavioral experiments to probe how the human brain makes sense of multisensory cues to construct a particular perception. To do so, she’s created various scenes of objects interacting in 3D space over different sounds, asking research participants to describe characteristics of the scene. For example, in one experiment, she combines visuals of a block moving across a surface at different speeds with various scraping sounds, asking participants to estimate how rough the surface is. Eventually she hopes to take the experiment into virtual reality, where participants will physically push blocks in response to how rough they perceive the surface to be, rather than just reporting on what they experience.

Once she’s collected data, she’ll move into the modeling phase of the research, evaluating whether multisensory neural networks perceive illusions the way humans do. “What we want to do is model exactly what’s happening,” says De La Torre. “How is it that we’re receiving these two signals, integrating them and, at the same time, using all of our prior knowledge and inferences of physics to really make sense of the world?”

Although her two strands of research with Yang and McDermott may seem distinct, she sees clear connections between the two. Both projects are about grasping what artificial neural networks are capable of and what they tell us about the brain. At a more fundamental level, she says that how the brain perceives the world from different sensory cues might be part of what gives people a sense of self. Sensory perception is about constructing a cohesive, unitary sense of the world from multiple sources of sensory data. Similarly, she argues, “the sense of self is really a combination of actions, plans, goals, emotions, all of these different things that are components of their own, but somehow create a unitary being.”

It’s a fitting sentiment for De La Torre, who has been working to make sense of and integrate different aspects of her own life. Working in the Computational Audition lab, for example, she’s started experimenting with combining electronic music with folk music from her native Mexico, connecting her “two worlds,” as she says. Having the space to undertake those kinds of intellectual explorations, and colleagues who encourage it, is one of De La Torre’s favorite parts of MIT.

“Beyond professors, there’s also a lot of students whose way of thinking just amazes me,” she says. “I see a lot of goodness and excitement for science and a little bit of — it’s not nerdiness, but a love for very niche things — and I just kind of love that.”

Modeling the social mind

Typically, it would take two graduate students to do the research that Setayesh Radkani is doing.

Driven by an insatiable curiosity about the human mind, she is working on two PhD thesis projects in two different cognitive neuroscience labs at MIT. For one, she is studying punishment as a social tool to influence others. For the other, she is uncovering the neural processes underlying social learning — that is, learning from others. By piecing together these two research programs, Radkani is hoping to gain a better understanding of the mechanisms underpinning social influence in the mind and brain.

Radkani lived in Iran for most of her life, growing up alongside her younger brother in Tehran. The two spent a lot of time together and have long been each other’s best friends. Her father is a civil engineer, and her mother is a midwife. Her parents always encouraged her to explore new things and follow her own path, even if it wasn’t quite what they imagined for her. And her uncle helped cultivate her sense of curiosity, teaching her to “always ask why” as a way to understand how the world works.

Growing up, Radkani most loved learning about human psychology and using math to model the world around her. But she thought it was impossible to combine her two interests. Prioritizing math, she pursued a bachelor’s degree in electrical engineering at the Sharif University of Technology in Iran.

Then, late in her undergraduate studies, Radkani took a psychology course and discovered the field of cognitive neuroscience, in which scientists mathematically model the human mind and brain. She also spent a summer working in a computational neuroscience lab at the Swiss Federal Institute of Technology in Lausanne. Seeing a way to combine her interests, she decided to pivot and pursue the subject in graduate school.

An experience leading a project in her engineering ethics course during her final year of undergrad further helped her discover some of the questions that would eventually form the basis of her PhD. The project investigated why some students cheat and how to change this.

“Through this project I learned how complicated it is to understand the reasons that people engage in immoral behavior, and even more complicated than that is how to devise policies and react in these situations in order to change people’s attitudes,” Radkani says. “It was this experience that made me realize that I’m interested in studying the human social and moral mind.”

She began looking into social cognitive neuroscience research and stumbled upon a relevant TED talk by Rebecca Saxe, the John W. Jarve Professor in Brain and Cognitive Sciences at MIT, who would eventually become one of Radkani’s research advisors. Radkani knew immediately that she wanted to work with Saxe. But she needed to first get into the BCS PhD program at MIT, a challenging obstacle given her minimal background in the field.

After two application cycles and a year’s worth of graduate courses in cognitive neuroscience, Radkani was accepted into the program. But to come to MIT, she had to leave her family behind. Coming from Iran, Radkani has a single-entry visa, making it difficult for her to travel outside the U.S. She hasn’t been able to visit her family since starting her PhD and won’t be able to until at least after she graduates. Her visa also limits her research contributions, restricting her from attending conferences outside the U.S. “That is definitely a huge burden on my education and on my mental health,” she says.

Still, Radkani is grateful to be at MIT, indulging her curiosity in the human social mind. And she’s thankful for her supportive family, who she calls over FaceTime every day.

Modeling how people think about punishment

In Saxe’s lab, Radkani is researching how people approach and react to punishment, through behavioral studies and neuroimaging. By synthesizing these findings, she’s developing a computational model of the mind that characterizes how people make decisions in situations involving punishment, such as when a parent disciplines a child, when someone punishes their romantic partner, or when the criminal justice system sentences a defendant. With this model, Radkani says she hopes to better understand “when and why punishment works in changing behavior and influencing beliefs about right and wrong, and why sometimes it fails.”

Punishment isn’t a new research topic in cognitive neuroscience, Radkani says, but in previous studies, scientists have often only focused on people’s behavior in punitive situations and haven’t considered the thought processes that underlie those behaviors. Characterizing these thought processes, though, is key to understanding whether punishment in a situation can be effective in changing people’s attitudes.

People bring their prior beliefs into a punitive situation. Apart from moral beliefs about the appropriateness of different behaviors, “you have beliefs about the characteristics of the people involved, and you have theories about their intentions and motivations,” Radkani says. “All those come together to determine what you do or how you are influenced by punishment,” given the circumstances. Punishers decide a suitable punishment based on their interpretation of the situation, in light of their beliefs. Targets of punishment then decide whether they’ll change their attitude as a result of the punishment, depending on their own beliefs. Even outside observers make decisions, choosing whether to keep or change their moral beliefs based on what they see.

To capture these decision-making processes, Radkani is developing a computational model of the mind for punitive situations. The model mathematically represents people’s beliefs and how they interact with certain features of the situation to shape their decisions. The model then predicts a punisher’s decisions, and how punishment will influence the target and observers. Through this model, Radkani will provide a foundational understanding of how people think in various punitive situations.

Researching the neural mechanisms of social learning

In parallel, working in the lab of Professor Mehrdad Jazayeri, Radkani is studying social learning, uncovering its underlying neural processes. Through social learning, people learn from other people’s experiences and decisions, and incorporate this socially acquired knowledge into their own decisions or beliefs.

Humans are extraordinary in their social learning abilities, however our primary form of learning, shared by all other animals, is learning from self-experience. To investigate how learning from others is similar to or different from learning from our own experiences, Radkani has designed a two-player video game that involves both types of learning. During the game, she and her collaborators in Jazayeri’s lab record neural activity in the brain. By analyzing these neural measurements, they plan to uncover the computations carried out by neural circuits during social learning, and compare those to learning from self-experience.

Radkani first became curious about this comparison as a way to understand why people sometimes draw contrasting conclusions from very similar situations. “For example, if I get Covid from going to a restaurant, I’ll blame the restaurant and say it was not clean,” Radkani says. “But if I hear the same thing happen to my friend, I’ll say it’s because they were not careful.” Radkani wanted to know the root causes of this mismatch in how other people’s experiences affect our beliefs and judgements differently from our own similar experiences, particularly because it can lead to “errors that color the way that we judge other people,” she says.

By combining her two research projects, Radkani hopes to better understand how social influence works, particularly in moral situations. From there, she has a slew of research questions that she’s eager to investigate, including: How do people choose who to trust? And which types of people tend to be the most influential? As Radkani’s research grows, so does her curiosity.

Studies of autism tend to exclude women, researchers find

In recent years, researchers who study autism have made an effort to include more women and girls in their studies. However, despite these efforts, most studies of autism consistently enroll small numbers of female subjects or exclude them altogether, according to a new study from MIT.

The researchers found that a screening test commonly used to determine eligibility for studies of autism consistently winnows out a much higher percentage of women than men, creating a “leaky pipeline” that results in severe underrepresentation of women in studies of autism.

This lack of representation makes it more difficult to develop useful interventions or provide accurate diagnoses for girls and women, the researchers say.

“I think the findings favor having a more inclusive approach and widening the lens to end up being less biased in terms of who participates in research,” says John Gabrieli, the Grover Hermann Professor of Health Sciences and Technology and a professor of brain and cognitive sciences at MIT. “The more we understand autism in men and women and nonbinary individuals, the better services and more accurate diagnoses we can provide.”

Gabrieli, who is also a member of MIT’s McGovern Institute for Brain Research, is the senior author of the study, which appears in the journal Autism Research. Anila D’Mello, a former MIT postdoc who is now an assistant professor at the University of Texas Southwestern, is the lead author of the paper. MIT Technical Associate Isabelle Frosch, Research Coordinator Cindy Li, and Research Specialist Annie Cardinaux are also authors of the paper.

Gabrieli lab researchers Annie Cardinaux (left), Anila D’Mello (center), Cindy Li (right), and Isabelle Frosch (not pictured) have
uncovered sex biases in ASD research. Photo: Steph Stevens

Screening out females

Autism spectrum disorders are diagnosed based on observation of traits such as repetitive behaviors and difficulty with language and social interaction. Doctors may use a variety of screening tests to help them make a diagnosis, but these screens are not required.

For research studies of autism, it is routine to use a screening test called the Autism Diagnostic Observation Schedule (ADOS) to determine eligibility for the study. This test, which assesses social interaction, communication, play, and repetitive behaviors, provides a quantitative score in each category, and only participants who reach certain scores qualify for inclusion in studies.

While doing a study exploring how quickly the brains of autistic adults adapt to novel events in the environment, scientists in Gabrieli’s lab began to notice that the ADOS appeared to have unequal effects on male and female participation in research. As the study progressed, D’Mello noticed some significant brain differences between the male and female subjects in the study.

To investigate these differences further, D’Mello tried to find more female participants using an MIT database of autistic adults who have expressed interest in participating in research studies. However, when she sorted through the subjects, she found that only about half of the women in the database had met the ADOS cutoff scores typically required for inclusion in autism studies, compared to 80 percent of the males.

“We realized then that there’s a discrepancy and that the ADOS is essentially screening out who eventually participated in research,” D’Mello says. “We were really surprised at how many males we retained and how many females we lost to the ADOS.”

To see if this phenomenon was more widespread, the researchers looked at six publicly available datasets, which include more than 40,000 adults who have been diagnosed as autistic. For some of these datasets, participants were screened with ADOS to determine their eligibility to participate in studies, while for others, a “community diagnosis” — diagnosis from a doctor or other health care provider — was sufficient.

The researchers found that in datasets that required ADOS screening for eligibility, the ratio of male to female participants ended up being around 8:1, while in those that required only a community diagnosis the ratios ranged from about 2:1 to 1:1.

Previous studies have found differences between behavioral patterns in autistic men and women, but the ADOS test was originally developed using a largely male sample, which may explain why it often excludes women from research studies, D’Mello says.

“There were few females in the sample that was used to create this assessment, so it might be that it’s not great at picking up the female phenotype, which may differ in certain ways — primarily in domains like social communication,” she says.

Effects of exclusion

Failure to include more women and girls in studies of autism may contribute to shortcomings in the definitions of the disorder, the researchers say.

“The way we think about it is that the field evolved perhaps an implicit bias in how autism is defined, and it was driven disproportionately by analysis of males, and recruitment of males, and so on,” Gabrieli says. “So, the definition doesn’t fit as well, on average, with the different expression of autism that seems to be more common in females.”

This implicit bias has led to documented difficulties in receiving a diagnosis for girls and women, even when their symptoms are the same as those presented by autistic boys and men.

“Many females might be missed altogether in terms of diagnoses, and then our study shows that in the research setting, what is already a small pool gets whittled down at a much larger rate than that of males,” D’Mello says.

Excluding girls and women from this kind of research study can lead to treatments that don’t work as well for them, and it contributes to the perception that autism doesn’t affect women as much as men.

“The goal is that research should directly inform treatment, therapies, and public perception,” D’Mello says. “If the research is saying that there aren’t females with autism, or that the brain basis of autism only looks like the patterns established in males, then you’re not really helping females as much as you could be, and you’re not really getting at the truth of what the disorder might be.”

The researchers now plan to further explore some of the gender and sex-based differences that appear in autism, and how they arise. They also plan to expand the gender categories that they include. In the current study, the surveys that each participant filled out asked them to choose male or female, but the researchers have updated their questionnaire to include nonbinary and transgender options.

The research was funded by the Hock E. Tan and K. Lisa Yang Center for Autism Research, the Simons Center for the Social Brain at MIT, and the National Institutes of Mental Health.

These neurons have food on the brain

A gooey slice of pizza. A pile of crispy French fries. Ice cream dripping down a cone on a hot summer day. When you look at any of these foods, a specialized part of your visual cortex lights up, according to a new study from MIT neuroscientists.

This newly discovered population of food-responsive neurons is located in the ventral visual stream, alongside populations that respond specifically to faces, bodies, places, and words. The unexpected finding may reflect the special significance of food in human culture, the researchers say.

“Food is central to human social interactions and cultural practices. It’s not just sustenance,” says Nancy Kanwisher, the Walter A. Rosenblith Professor of Cognitive Neuroscience and a member of MIT’s McGovern Institute for Brain Research and Center for Brains, Minds, and Machines. “Food is core to so many elements of our cultural identity, religious practice, and social interactions, and many other things that humans do.”

The findings, based on an analysis of a large public database of human brain responses to a set of 10,000 images, raise many additional questions about how and why this neural population develops. In future studies, the researchers hope to explore how people’s responses to certain foods might differ depending on their likes and dislikes, or their familiarity with certain types of food.

MIT postdoc Meenakshi Khosla is the lead author of the paper, along with MIT research scientist N. Apurva Ratan Murty. The study appears today in the journal Current Biology.

Visual categories

More than 20 years ago, while studying the ventral visual stream, the part of the brain that recognizes objects, Kanwisher discovered cortical regions that respond selectively to faces. Later, she and other scientists discovered other regions that respond selectively to places, bodies, or words. Most of those areas were discovered when researchers specifically set out to look for them. However, that hypothesis-driven approach can limit what you end up finding, Kanwisher says.

“There could be other things that we might not think to look for,” she says. “And even when we find something, how do we know that that’s actually part of the basic dominant structure of that pathway, and not something we found just because we were looking for it?”

To try to uncover the fundamental structure of the ventral visual stream, Kanwisher and Khosla decided to analyze a large, publicly available dataset of full-brain functional magnetic resonance imaging (fMRI) responses from eight human subjects as they viewed thousands of images.

“We wanted to see when we apply a data-driven, hypothesis-free strategy, what kinds of selectivities pop up, and whether those are consistent with what had been discovered before. A second goal was to see if we could discover novel selectivities that either haven’t been hypothesized before, or that have remained hidden due to the lower spatial resolution of fMRI data,” Khosla says.

To do that, the researchers applied a mathematical method that allows them to discover neural populations that can’t be identified from traditional fMRI data. An fMRI image is made up of many voxels — three-dimensional units that represent a cube of brain tissue. Each voxel contains hundreds of thousands of neurons, and if some of those neurons belong to smaller populations that respond to one type of visual input, their responses may be drowned out by other populations within the same voxel.

The new analytical method, which Kanwisher’s lab has previously used on fMRI data from the auditory cortex, can tease out responses of neural populations within each voxel of fMRI data.

Using this approach, the researchers found four populations that corresponded to previously identified clusters that respond to faces, places, bodies, and words. “That tells us that this method works, and it tells us that the things that we found before are not just obscure properties of that pathway, but major, dominant properties,” Kanwisher says.

Intriguingly, a fifth population also emerged, and this one appeared to be selective for images of food.

“We were first quite puzzled by this because food is not a visually homogenous category,” Khosla says. “Things like apples and corn and pasta all look so unlike each other, yet we found a single population that responds similarly to all these diverse food items.”

The food-specific population, which the researchers call the ventral food component (VFC), appears to be spread across two clusters of neurons, located on either side of the FFA. The fact that the food-specific populations are spread out between other category-specific populations may help explain why they have not been seen before, the researchers say.

“We think that food selectivity had been harder to characterize before because the populations that are selective for food are intermingled with other nearby populations that have distinct responses to other stimulus attributes. The low spatial resolution of fMRI prevents us from seeing this selectivity because the responses of different neural population get mixed in a voxel,” Khosla says.

“The technique which the researchers used to identify category-sensitive cells or areas is impressive, and it recovered known category-sensitive systems, making the food category findings most impressive,” says Paul Rozin, a professor of psychology at the University of Pennsylvania, who was not involved in the study. “I can’t imagine a way for the brain to reliably identify the diversity of foods based on sensory features. That makes this all the more fascinating, and likely to clue us in about something really new.”

Food vs non-food

The researchers also used the data to train a computational model of the VFC, based on previous models Murty had developed for the brain’s face and place recognition areas. This allowed the researchers to run additional experiments and predict the responses of the VFC. In one experiment, they fed the model matched images of food and non-food items that looked very similar — for example, a banana and a yellow crescent moon.

“Those matched stimuli have very similar visual properties, but the main attribute in which they differ is edible versus inedible,” Khosla says. “We could feed those arbitrary stimuli through the predictive model and see whether it would still respond more to food than non-food, without having to collect the fMRI data.”

They could also use the computational model to analyze much larger datasets, consisting of millions of images. Those simulations helped to confirm that the VFC is highly selective for images of food.

From their analysis of the human fMRI data, the researchers found that in some subjects, the VFC responded slightly more to processed foods such as pizza than unprocessed foods like apples. In the future they hope to explore how factors such as familiarity and like or dislike of a particular food might affect individuals’ responses to that food.

They also hope to study when and how this region becomes specialized during early childhood, and what other parts of the brain it communicates with. Another question is whether this food-selective population will be seen in other animals such as monkeys, who do not attach the cultural significance to food that humans do.

The research was funded by the National Institutes of Health, the National Eye Institute, and the National Science Foundation through the MIT Center for Brains, Minds, and Machines.

Why do we dream?

As part of our Ask the Brain series, science writer Shafaq Zia answers the question, “Why do we dream?”

_____

One night, Albert Einstein dreamt that he was walking through a farm where he found a herd of cows against an electric fence. When the farmer switched on the fence, the cows suddenly jumped back, all at the same time. But to the farmer’s eyes, who was standing at the other end of the field, they seemed to have jumped one after another, in a wave formation. Einstein woke up and the Theory of Relativity was born.

Dreaming is one of the oldest biological phenomena; for as long as humans have slept, they’ve dreamt. But through most of our history, dreams have remained mystified, leaving scientists, philosophers, and artists alike searching for meaning.

In many aboriginal cultures, such as the Esa Eja community in Peruvian Amazon, dreaming is a sacred practice for gaining knowledge, or solving a problem, through the dream narrative. But in the last century or so, technological advancements have allowed neuroscientists to take up dreams as a matter of scientific inquiry in order to answer a much-pondered question — what is the purpose of dreaming?

Falling asleep

The human brain is a fascinating place. It is composed of approximately 80 billion neurons and it is their combined electrical chatter that generates oscillations known as brain waves. There are five types of brain waves —  alpha, beta, theta, delta, and gamma — that each indicate a different state between sleep and wakefulness.

Using EEG, a test that records electrical activity in the brain, scientists have identified that when we’re awake, our brain emits beta and gamma waves. These tend to have a stimulating effect and help us remain actively engaged in mental activities.

The differently named frequency bands of neural oscillations, or brainwaves: delta, theta, alpha, beta, and gamma.

But during the transition to sleep, the number of beta waves lowers significantly and the brain produces high levels of alpha waves. These waves regulate attention and help filter out distractions. A recent study led by McGovern Institute Director Robert Desimone, showed that people can actually enhance their attention by controlling their own alpha brain waves using neurofeedback training. It’s unknown how long these effects might last and whether this kind of control could be achieved with other types of brain waves, but the researchers are now planning additional studies to explore these questions.

Alpha waves are also produced when we daydream, meditate, or listen to the sound of rain. As our minds wander, many parts of the brain are engaged, including a specialized system called the “default mode network.” Disturbances in this network, explains Susan Whitfield-Gabrieli, a professor of psychology at Northeastern University and a McGovern Institute research affiliate, have been linked to various brain disorders including schizophrenia, depression and ADHD. By identifying the brain circuits associated with mind wandering, she says, we can begin to develop better treatment options for people suffering from these disorders.

Finally, as we enter a dreamlike state, the prefrontal cortex of the brain, responsible for keeping impulses in check, slowly grows less active. This is when there’s a spur in theta waves that leads to an unconstrained window of consciousness; there is little censorship from the mind, allowing for visceral dreams and creative thoughts.

The dreaming brain

“Every time you learn something, it happens so quickly,” said Dheeraj Roy, postdoctoral fellow in Guoping Feng’s lab at the McGovern Institute. “The brain is continuously recording information, but how do you take a break and then make sense of it all?”

This is where dreams come in, says Roy. During sleep, newly-formed memories are gradually stabilized into a more permanent form of long-term storage in the brain. Dreaming, he says, is influenced by the consolidation of these memories during sleep. Most dreams are made up of experiences, thoughts, emotion, places, and people we have already encountered in our lives. But, during dreaming, bits and pieces of these memories seem to be reorganized to create a particularly bizarre scenario: you’re talking to your sister when it suddenly begins to rain roses and you’re dancing at a New Year’s party.

This re-organization may not be so random; as the brain is processing memories, it pulls together the ones that are seemingly related to each other. Perhaps you dreamt of your sister because you were at a store recently where a candle smelt like her rose-scented perfume, which reminded you of the time you made a new year resolution to spend less money on flowers.

Some brain disorders, like Parkinson’s disease, have been associated with vivid, unpleasant dreams and erratic brain wave patterns. Researchers at the McGovern Institute hope that a better understanding of mechanics of the brain – including neural circuits and brain waves – will help people with Parkinson’s and other brain disorders.

So perhaps dreams aren’t instilled with meaning, symbolism, and wisdom in the way we’ve always imagined, and they simply reflect important biological processes taking place in our brain. But with all that science has uncovered about dreaming and the ways in which it links to creativity and memory, the magical essence of this universal human experience remains untainted.

_____

Do you have a question for The Brain? Ask it here.

Whether speaking Turkish or Norwegian, the brain’s language network looks the same

Over several decades, neuroscientists have created a well-defined map of the brain’s “language network,” or the regions of the brain that are specialized for processing language. Found primarily in the left hemisphere, this network includes regions within Broca’s area, as well as in other parts of the frontal and temporal lobes.

However, the vast majority of those mapping studies have been done in English speakers as they listened to or read English texts. MIT neuroscientists have now performed brain imaging studies of speakers of 45 different languages. The results show that the speakers’ language networks appear to be essentially the same as those of native English speakers.

The findings, while not surprising, establish that the location and key properties of the language network appear to be universal. The work also lays the groundwork for future studies of linguistic elements that would be difficult or impossible to study in English speakers because English doesn’t have those features.

“This study is very foundational, extending some findings from English to a broad range of languages,” says Evelina Fedorenko, the Frederick A. and Carole J. Middleton Career Development Associate Professor of Neuroscience at MIT and a member of MIT’s McGovern Institute for Brain Research. “The hope is that now that we see that the basic properties seem to be general across languages, we can ask about potential differences between languages and language families in how they are implemented in the brain, and we can study phenomena that don’t really exist in English.”

Fedorenko is the senior author of the study, which appears today in Nature Neuroscience. Saima Malik-Moraleda, a PhD student in the Speech and Hearing Bioscience and Technology program at Harvard University, and Dima Ayyash, a former research assistant, are the lead authors of the paper.

Mapping language networks

The precise locations and shapes of language areas differ across individuals, so to find the language network, researchers ask each person to perform a language task while scanning their brains with functional magnetic resonance imaging (fMRI). Listening to or reading sentences in one’s native language should activate the language network. To distinguish this network from other brain regions, researchers also ask participants to perform tasks that should not activate it, such as listening to an unfamiliar language or solving math problems.

Several years ago, Fedorenko began designing these “localizer” tasks for speakers of languages other than English. While most studies of the language network have used English speakers as subjects, English does not include many features commonly seen in other languages. For example, in English, word order tends to be fixed, while in other languages there is more flexibility in how words are ordered. Many of those languages instead use the addition of morphemes, or segments of words, to convey additional meaning and relationships between words.

“There has been growing awareness for many years of the need to look at more languages, if you want make claims about how language works, as opposed to how English works,” Fedorenko says. “We thought it would be useful to develop tools to allow people to rigorously study language processing in the brain in other parts of the world. There’s now access to brain imaging technologies in many countries, but the basic paradigms that you would need to find the language-responsive areas in a person are just not there.”

For the new study, the researchers performed brain imaging of two speakers of 45 different languages, representing 12 different language families. Their goal was to see if key properties of the language network, such as location, left lateralization, and selectivity, were the same in those participants as in people whose native language is English.

The researchers decided to use “Alice in Wonderland” as the text that everyone would listen to, because it is one of the most widely translated works of fiction in the world. They selected 24 short passages and three long passages, each of which was recorded by a native speaker of the language. Each participant also heard nonsensical passages, which should not activate the language network, and was asked to do a variety of other cognitive tasks that should not activate it.

The team found that the language networks of participants in this study were found in approximately the same brain regions, and had the same selectivity, as those of native speakers of English.

“Language areas are selective,” Malik-Moraleda says. “They shouldn’t be responding during other tasks such as a spatial working memory task, and that was what we found across the speakers of 45 languages that we tested.”

Additionally, language regions that are typically activated together in English speakers, such as the frontal language areas and temporal language areas, were similarly synchronized in speakers of other languages.

The researchers also showed that among all of the subjects, the small amount of variation they saw between individuals who speak different languages was the same as the amount of variation that would typically be seen between native English speakers.

Similarities and differences

While the findings suggest that the overall architecture of the language network is similar across speakers of different languages, that doesn’t mean that there are no differences at all, Fedorenko says. As one example, researchers could now look for differences in speakers of languages that predominantly use morphemes, rather than word order, to help determine the meaning of a sentence.

“There are all sorts of interesting questions you can ask about morphological processing that don’t really make sense to ask in English, because it has much less morphology,” Fedorenko says.

Another possibility is studying whether speakers of languages that use differences in tone to convey different word meanings would have a language network with stronger links to auditory brain regions that encode pitch.

Right now, Fedorenko’s lab is working on a study in which they are comparing the ‘temporal receptive fields’ of speakers of six typologically different languages, including Turkish, Mandarin, and Finnish. The temporal receptive field is a measure of how many words the language processing system can handle at a time, and for English, it has been shown to be six to eight words long.

“The language system seems to be working on chunks of just a few words long, and we’re trying to see if this constraint is universal across these other languages that we’re testing,” Fedorenko says.

The researchers are also working on creating language localizer tasks and finding study participants representing additional languages beyond the 45 from this study.

The research was funded by the National Institutes of Health and research funds from MIT’s Department of Brain and Cognitive Sciences, the McGovern Institute, and the Simons Center for the Social Brain. Malik-Moraleda was funded by a la Caixa Fellowship and a Friends of McGovern fellowship.