Machines that learn language more like kids do

Children learn language by observing their environment, listening to the people around them, and connecting the dots between what they see and hear. Among other things, this helps children establish their language’s word order, such as where subjects and verbs fall in a sentence.

In computing, learning language is the task of syntactic and semantic parsers. These systems are trained on sentences annotated by humans that describe the structure and meaning behind words. Parsers are becoming increasingly important for web searches, natural-language database querying, and voice-recognition systems such as Alexa and Siri. Soon, they may also be used for home robotics.

But gathering the annotation data can be time-consuming and difficult for less common languages. Additionally, humans don’t always agree on the annotations, and the annotations themselves may not accurately reflect how people naturally speak.

In a paper being presented at this week’s Empirical Methods in Natural Language Processing conference, MIT researchers describe a parser that learns through observation to more closely mimic a child’s language-acquisition process, which could greatly extend the parser’s capabilities. To learn the structure of language, the parser observes captioned videos, with no other information, and associates the words with recorded objects and actions. Given a new sentence, the parser can then use what it’s learned about the structure of the language to accurately predict a sentence’s meaning, without the video.

This “weakly supervised” approach — meaning it requires limited training data — mimics how children can observe the world around them and learn language, without anyone providing direct context. The approach could expand the types of data and reduce the effort needed for training parsers, according to the researchers. A few directly annotated sentences, for instance, could be combined with many captioned videos, which are easier to come by, to improve performance.

In the future, the parser could be used to improve natural interaction between humans and personal robots. A robot equipped with the parser, for instance, could constantly observe its environment to reinforce its understanding of spoken commands, including when the spoken sentences aren’t fully grammatical or clear. “People talk to each other in partial sentences, run-on thoughts, and jumbled language. You want a robot in your home that will adapt to their particular way of speaking … and still figure out what they mean,” says co-author Andrei Barbu, a researcher in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Center for Brains, Minds, and Machines (CBMM) within MIT’s McGovern Institute.

The parser could also help researchers better understand how young children learn language. “A child has access to redundant, complementary information from different modalities, including hearing parents and siblings talk about the world, as well as tactile information and visual information, [which help him or her] to understand the world,” says co-author Boris Katz, a principal research scientist and head of the InfoLab Group at CSAIL. “It’s an amazing puzzle, to process all this simultaneous sensory input. This work is part of bigger piece to understand how this kind of learning happens in the world.”

Co-authors on the paper are: first author Candace Ross, a graduate student in the Department of Electrical Engineering and Computer Science and CSAIL, and a researcher in CBMM; Yevgeni Berzak PhD ’17, a postdoc in the Computational Psycholinguistics Group in the Department of Brain and Cognitive Sciences; and CSAIL graduate student Battushig Myanganbayar.

Visual learner

For their work, the researchers combined a semantic parser with a computer-vision component trained in object, human, and activity recognition in video. Semantic parsers are generally trained on sentences annotated with code that ascribes meaning to each word and the relationships between the words. Some have been trained on still images or computer simulations.

The new parser is the first to be trained using video, Ross says. In part, videos are more useful in reducing ambiguity. If the parser is unsure about, say, an action or object in a sentence, it can reference the video to clear things up. “There are temporal components — objects interacting with each other and with people — and high-level properties you wouldn’t see in a still image or just in language,” Ross says.

The researchers compiled a dataset of about 400 videos depicting people carrying out a number of actions, including picking up an object or putting it down, and walking toward an object. Participants on the crowdsourcing platform Mechanical Turk then provided 1,200 captions for those videos. They set aside 840 video-caption examples for training and tuning, and used 360 for testing. One advantage of using vision-based parsing is “you don’t need nearly as much data — although if you had [the data], you could scale up to huge datasets,” Barbu says.

In training, the researchers gave the parser the objective of determining whether a sentence accurately describes a given video. They fed the parser a video and matching caption. The parser extracts possible meanings of the caption as logical mathematical expressions. The sentence, “The woman is picking up an apple,” for instance, may be expressed as: λxy. woman x, pick_up x y, apple y.

Those expressions and the video are inputted to the computer-vision algorithm, called “Sentence Tracker,” developed by Barbu and other researchers. The algorithm looks at each video frame to track how objects and people transform over time, to determine if actions are playing out as described. In this way, it determines if the meaning is possibly true of the video.

Connecting the dots

The expression with the most closely matching representations for objects, humans, and actions becomes the most likely meaning of the caption. The expression, initially, may refer to many different objects and actions in the video, but the set of possible meanings serves as a training signal that helps the parser continuously winnow down possibilities. “By assuming that all of the sentences must follow the same rules, that they all come from the same language, and seeing many captioned videos, you can narrow down the meanings further,” Barbu says.

In short, the parser learns through passive observation: To determine if a caption is true of a video, the parser by necessity must identify the highest probability meaning of the caption. “The only way to figure out if the sentence is true of a video [is] to go through this intermediate step of, ‘What does the sentence mean?’ Otherwise, you have no idea how to connect the two,” Barbu explains. “We don’t give the system the meaning for the sentence. We say, ‘There’s a sentence and a video. The sentence has to be true of the video. Figure out some intermediate representation that makes it true of the video.’”

The training produces a syntactic and semantic grammar for the words it’s learned. Given a new sentence, the parser no longer requires videos, but leverages its grammar and lexicon to determine sentence structure and meaning.

Ultimately, this process is learning “as if you’re a kid,” Barbu says. “You see world around you and hear people speaking to learn meaning. One day, I can give you a sentence and ask what it means and, even without a visual, you know the meaning.”

“This research is exactly the right direction for natural language processing,” says Stefanie Tellex, a professor of computer science at Brown University who focuses on helping robots use natural language to communicate with humans. “To interpret grounded language, we need semantic representations, but it is not practicable to make it available at training time. Instead, this work captures representations of compositional structure using context from captioned videos. This is the paper I have been waiting for!”

In future work, the researchers are interested in modeling interactions, not just passive observations. “Children interact with the environment as they’re learning. Our idea is to have a model that would also use perception to learn,” Ross says.

This work was supported, in part, by the CBMM, the National Science Foundation, a Ford Foundation Graduate Research Fellowship, the Toyota Research Institute, and the MIT-IBM Brain-Inspired Multimedia Comprehension project.

Electrical properties of dendrites help explain our brain’s unique computing power

Neurons in the human brain receive electrical signals from thousands of other cells, and long neural extensions called dendrites play a critical role in incorporating all of that information so the cells can respond appropriately.

Using hard-to-obtain samples of human brain tissue, MIT neuroscientists have now discovered that human dendrites have different electrical properties from those of other species. Their studies reveal that electrical signals weaken more as they flow along human dendrites, resulting in a higher degree of electrical compartmentalization, meaning that small sections of dendrites can behave independently from the rest of the neuron.

These differences may contribute to the enhanced computing power of the human brain, the researchers say.

“It’s not just that humans are smart because we have more neurons and a larger cortex. From the bottom up, neurons behave differently,” says Mark Harnett, the Fred and Carole Middleton Career Development Assistant Professor of Brain and Cognitive Sciences. “In human neurons, there is more electrical compartmentalization, and that allows these units to be a little bit more independent, potentially leading to increased computational capabilities of single neurons.”

Harnett, who is also a member of MIT’s McGovern Institute for Brain Research, and Sydney Cash, an assistant professor of neurology at Harvard Medical School and Massachusetts General Hospital, are the senior authors of the study, which appears in the Oct. 18 issue of Cell. The paper’s lead author is Lou Beaulieu-Laroche, a graduate student in MIT’s Department of Brain and Cognitive Sciences.

Neural computation

Dendrites can be thought of as analogous to transistors in a computer, performing simple operations using electrical signals. Dendrites receive input from many other neurons and carry those signals to the cell body. If stimulated enough, a neuron fires an action potential — an electrical impulse that then stimulates other neurons. Large networks of these neurons communicate with each other to generate thoughts and behavior.

The structure of a single neuron often resembles a tree, with many branches bringing in information that arrives far from the cell body. Previous research has found that the strength of electrical signals arriving at the cell body depends, in part, on how far they travel along the dendrite to get there. As the signals propagate, they become weaker, so a signal that arrives far from the cell body has less of an impact than one that arrives near the cell body.

Dendrites in the cortex of the human brain are much longer than those in rats and most other species, because the human cortex has evolved to be much thicker than that of other species. In humans, the cortex makes up about 75 percent of the total brain volume, compared to about 30 percent in the rat brain.

Although the human cortex is two to three times thicker than that of rats, it maintains the same overall organization, consisting of six distinctive layers of neurons. Neurons from layer 5 have dendrites long enough to reach all the way to layer 1, meaning that human dendrites have had to elongate as the human brain has evolved, and electrical signals have to travel that much farther.

In the new study, the MIT team wanted to investigate how these length differences might affect dendrites’ electrical properties. They were able to compare electrical activity in rat and human dendrites, using small pieces of brain tissue removed from epilepsy patients undergoing surgical removal of part of the temporal lobe. In order to reach the diseased part of the brain, surgeons also have to take out a small chunk of the anterior temporal lobe.

With the help of MGH collaborators Cash, Matthew Frosch, Ziv Williams, and Emad Eskandar, Harnett’s lab was able to obtain samples of the anterior temporal lobe, each about the size of a fingernail.

Evidence suggests that the anterior temporal lobe is not affected by epilepsy, and the tissue appears normal when examined with neuropathological techniques, Harnett says. This part of the brain appears to be involved in a variety of functions, including language and visual processing, but is not critical to any one function; patients are able to function normally after it is removed.

Once the tissue was removed, the researchers placed it in a solution very similar to cerebrospinal fluid, with oxygen flowing through it. This allowed them to keep the tissue alive for up to 48 hours. During that time, they used a technique known as patch-clamp electrophysiology to measure how electrical signals travel along dendrites of pyramidal neurons, which are the most common type of excitatory neurons in the cortex.

These experiments were performed primarily by Beaulieu-Laroche. Harnett’s lab (and others) have previously done this kind of experiment in rodent dendrites, but his team is the first to analyze electrical properties of human dendrites.

Unique features

The researchers found that because human dendrites cover longer distances, a signal flowing along a human dendrite from layer 1 to the cell body in layer 5 is much weaker when it arrives than a signal flowing along a rat dendrite from layer 1 to layer 5.

They also showed that human and rat dendrites have the same number of ion channels, which regulate the current flow, but these channels occur at a lower density in human dendrites as a result of the dendrite elongation. They also developed a detailed biophysical model that shows that this density change can account for some of the differences in electrical activity seen between human and rat dendrites, Harnett says.

Nelson Spruston, senior director of scientific programs at the Howard Hughes Medical Institute Janelia Research Campus, described the researchers’ analysis of human dendrites as “a remarkable accomplishment.”

“These are the most carefully detailed measurements to date of the physiological properties of human neurons,” says Spruston, who was not involved in the research. “These kinds of experiments are very technically demanding, even in mice and rats, so from a technical perspective, it’s pretty amazing that they’ve done this in humans.”

The question remains, how do these differences affect human brainpower? Harnett’s hypothesis is that because of these differences, which allow more regions of a dendrite to influence the strength of an incoming signal, individual neurons can perform more complex computations on the information.

“If you have a cortical column that has a chunk of human or rodent cortex, you’re going to be able to accomplish more computations faster with the human architecture versus the rodent architecture,” he says.

There are many other differences between human neurons and those of other species, Harnett adds, making it difficult to tease out the effects of dendritic electrical properties. In future studies, he hopes to explore further the precise impact of these electrical properties, and how they interact with other unique features of human neurons to produce more computing power.

The research was funded by the National Sciences and Engineering Research Council of Canada, the Dana Foundation David Mahoney Neuroimaging Grant Program, and the National Institutes of Health.

Fujitsu Laboratories and MIT’s Center for Brains, Minds and Machines broaden partnership

Fujitsu Laboratories Ltd. and MIT’s Center for Brains, Minds and Machines (CBMM) has announced a multi-year philanthropic partnership focused on advancing the science and engineering of intelligence while supporting the next generation of researchers in this emerging field. The new commitment follows on several years of collaborative research among scientists at the two organizations.

Founded in 1968, Fujitsu Laboratories has conducted a wide range of basic and applied research in the areas of next-generation services, computer servers, networks, electronic devices, and advanced materials. CBMM, a multi-institutional, National Science Foundation funded science and technology center focusing on the interdisciplinary study of intelligence, was established in 2013 and is headquartered at MIT’s McGovern Institute for Brain Research. CBMM is also the foundation of “The Core” of the MIT Quest for Intelligence launched earlier this year. The partnership between the two organizations started in March 2017 when Fujitsu Laboratories sent a visiting scientist to CBMM.

“A fundamental understanding of how humans think, feel, and make decisions is critical to developing revolutionary technologies that will have a real impact on societal problems,” said Shigeru Sasaki, CEO of Fujitsu Laboratories. “The partnership between MIT’s Center for Brains, Minds and Machines and Fujitsu Laboratories will help advance critical R&D efforts in both human intelligence and the creation of next-generation technologies that will shape our lives,” he added.

The new Fujitsu Laboratories Co-Creation Research Fund, established with a philanthropic gift from Fujitsu Laboratories, will fuel new, innovative and challenging projects in areas of interest to both Fujitsu and CBMM, including the basic study of computations underlying visual recognition and language processing, creation of new machine learning methods, and development of the theory of deep learning. Alongside funding for research projects, Fujitsu Laboratories will also fund fellowships for graduate students attending CBMM’s summer course from 2019 to contribute to the future of research and society on a long term basis. The intensive three-week course gives advanced students from universities worldwide a “deep end” introduction to the problem of intelligence. These students will later have the opportunity to travel to Fujitsu Laboratories in Japan or its overseas locations in the U.S., Canada, U.K., Spain, and China to meet with Fujitsu researchers.

“CBMM faculty, students, and fellows are excited for the opportunity to work alongside scientists from Fujitsu to make advances in complex problems of intelligence, both real and artificial,” said CBMM’s director Tomaso Poggio, who is also an investigator at the McGovern Institute and the Eugene McDermott Professor in MIT’s Department of Brain and Cognitive Sciences. “Both Fujitsu Laboratories and MIT are committed to creating revolutionary tools and systems that will transform many industries, and to do that we are first looking to the extraordinary computations made by the human mind in everyday life.”

As part of the partnership, Poggio will be a featured keynote speaker at the Fujitsu Laboratories Advanced Technology Symposium on Oct. 9. In addition, Tomotake Sasaki, a former visiting scientist and current research affiliate in the Poggio Lab, will continue to collaborate with CBMM scientists and engineers on reinforcement learning and deep learning research projects. Moyuru Yamada, a visiting scientist in the Lab of Professor Josh Tenenbaum, is also studying the computational model of human cognition and exploring its industrial applications. Moreover, Fujitsu Laboratories is planning to invite CBMM researchers to Japan or overseas offices and arrange internships for interested students.

Model helps robots navigate more like humans do

When moving through a crowd to reach some end goal, humans can usually navigate the space safely without thinking too much. They can learn from the behavior of others and note any obstacles to avoid. Robots, on the other hand, struggle with such navigational concepts.

MIT researchers have now devised a way to help robots navigate environments more like humans do. Their novel motion-planning model lets robots determine how to reach a goal by exploring the environment, observing other agents, and exploiting what they’ve learned before in similar situations. A paper describing the model was presented at this week’s IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Popular motion-planning algorithms will create a tree of possible decisions that branches out until it finds good paths for navigation. A robot that needs to navigate a room to reach a door, for instance, will create a step-by-step search tree of possible movements and then execute the best path to the door, considering various constraints. One drawback, however, is these algorithms rarely learn: Robots can’t leverage information about how they or other agents acted previously in similar environments.

“Just like when playing chess, these decisions branch out until [the robots] find a good way to navigate. But unlike chess players, [the robots] explore what the future looks like without learning much about their environment and other agents,” says co-author Andrei Barbu, a researcher at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Center for Brains, Minds, and Machines (CBMM) within MIT’s McGovern Institute. “The thousandth time they go through the same crowd is as complicated as the first time. They’re always exploring, rarely observing, and never using what’s happened in the past.”

The researchers developed a model that combines a planning algorithm with a neural network that learns to recognize paths that could lead to the best outcome, and uses that knowledge to guide the robot’s movement in an environment.

In their paper, “Deep sequential models for sampling-based planning,” the researchers demonstrate the advantages of their model in two settings: navigating through challenging rooms with traps and narrow passages, and navigating areas while avoiding collisions with other agents. A promising real-world application is helping autonomous cars navigate intersections, where they have to quickly evaluate what others will do before merging into traffic. The researchers are currently pursuing such applications through the Toyota-CSAIL Joint Research Center.

“When humans interact with the world, we see an object we’ve interacted with before, or are in some location we’ve been to before, so we know how we’re going to act,” says Yen-Ling Kuo, a PhD student in CSAIL and first author on the paper. “The idea behind this work is to add to the search space a machine-learning model that knows from past experience how to make planning more efficient.”

Boris Katz, a principal research scientist and head of the InfoLab Group at CSAIL, is also a co-author on the paper.

Trading off exploration and exploitation

Traditional motion planners explore an environment by rapidly expanding a tree of decisions that eventually blankets an entire space. The robot then looks at the tree to find a way to reach the goal, such as a door. The researchers’ model, however, offers “a tradeoff between exploring the world and exploiting past knowledge,” Kuo says.

The learning process starts with a few examples. A robot using the model is trained on a few ways to navigate similar environments. The neural network learns what makes these examples succeed by interpreting the environment around the robot, such as the shape of the walls, the actions of other agents, and features of the goals. In short, the model “learns that when you’re stuck in an environment, and you see a doorway, it’s probably a good idea to go through the door to get out,” Barbu says.

The model combines the exploration behavior from earlier methods with this learned information. The underlying planner, called RRT*, was developed by MIT professors Sertac Karaman and Emilio Frazzoli. (It’s a variant of a widely used motion-planning algorithm known as Rapidly-exploring Random Trees, or  RRT.) The planner creates a search tree while the neural network mirrors each step and makes probabilistic predictions about where the robot should go next. When the network makes a prediction with high confidence, based on learned information, it guides the robot on a new path. If the network doesn’t have high confidence, it lets the robot explore the environment instead, like a traditional planner.

For example, the researchers demonstrated the model in a simulation known as a “bug trap,” where a 2-D robot must escape from an inner chamber through a central narrow channel and reach a location in a surrounding larger room. Blind allies on either side of the channel can get robots stuck. In this simulation, the robot was trained on a few examples of how to escape different bug traps. When faced with a new trap, it recognizes features of the trap, escapes, and continues to search for its goal in the larger room. The neural network helps the robot find the exit to the trap, identify the dead ends, and gives the robot a sense of its surroundings so it can quickly find the goal.

Results in the paper are based on the chances that a path is found after some time, total length of the path that reached a given goal, and how consistent the paths were. In both simulations, the researchers’ model more quickly plotted far shorter and consistent paths than a traditional planner.

“This model is interesting because it allows a motion planner to adapt to what it sees in the environment,” says Stephanie Tellex, an assistant professor of computer science at Brown University, who was not involved in the research. “This can enable dramatic improvements in planning speed by customizing the planner to what the robot knows. Most planners don’t adapt to the environment at all. Being able to traverse long, narrow passages is notoriously difficult for a conventional planner, but they can solve it. We need more ways that bridge this gap.”

Working with multiple agents

In one other experiment, the researchers trained and tested the model in navigating environments with multiple moving agents, which is a useful test for autonomous cars, especially navigating intersections and roundabouts. In the simulation, several agents are circling an obstacle. A robot agent must successfully navigate around the other agents, avoid collisions, and reach a goal location, such as an exit on a roundabout.

“Situations like roundabouts are hard, because they require reasoning about how others will respond to your actions, how you will then respond to theirs, what they will do next, and so on,” Barbu says. “You eventually discover your first action was wrong, because later on it will lead to a likely accident. This problem gets exponentially worse the more cars you have to contend with.”

Results indicate that the researchers’ model can capture enough information about the future behavior of the other agents (cars) to cut off the process early, while still making good decisions in navigation. This makes planning more efficient. Moreover, they only needed to train the model on a few examples of roundabouts with only a few cars. “The plans the robots make take into account what the other cars are going to do, as any human would,” Barbu says.

Going through intersections or roundabouts is one of the most challenging scenarios facing autonomous cars. This work might one day let cars learn how humans behave and how to adapt to drivers in different environments, according to the researchers. This is the focus of the Toyota-CSAIL Joint Research Center work.

“Not everybody behaves the same way, but people are very stereotypical. There are people who are shy, people who are aggressive. The model recognizes that quickly and that’s why it can plan efficiently,” Barbu says.

More recently, the researchers have been applying this work to robots with manipulators that face similarly daunting challenges when reaching for objects in ever-changing environments.

Recognizing the partially seen

When we open our eyes in the morning and take in that first scene of the day, we don’t give much thought to the fact that our brain is processing the objects within our field of view with great efficiency and that it is compensating for a lack of information about our surroundings — all in order to allow us to go about our daily functions. The glass of water you left on the nightstand when preparing for bed is now partially blocked from your line of sight by your alarm clock, yet you know that it is a glass.

This seemingly simple ability for humans to recognize partially occluded objects — defined in this situation as the effect of one object in a 3-D space blocking another object from view — has been a complicated problem for the computer vision community. Martin Schrimpf, a graduate student in the DiCarlo lab in the Department of Brain and Cognitive Sciences at MIT, explains that machines have become increasingly adept at recognizing whole items quickly and confidently, but when something covers part of that item from view, this task becomes increasingly difficult for the models to accurately recognize the article.

“For models from computer vision to function in everyday life, they need to be able to digest occluded objects just as well as whole ones — after all, when you look around, most objects are partially hidden behind another object,” says Schrimpf, co-author of a paper on the subject that was recently published in the Proceedings of the National Academy of Sciences (PNAS).

In the new study, he says, “we dug into the underlying computations in the brain and then used our findings to build computational models. By recapitulating visual processing in the human brain, we are thus hoping to also improve models in computer vision.”

How are we as humans able to repeatedly do this everyday task without putting much thought and energy into this action, identifying whole scenes quickly and accurately after injesting just pieces? Researchers in the study started with the human visual cortex as a model for how to improve the performance of machines in this setting, says Gabriel Kreiman, an affiliate of the MIT Center for Brains, Minds, and Machines. Kreinman is a professor of ophthalmology at Boston Children’s Hospital and Harvard Medical School and was lead principal investigator for the study.

In their paper, “Recurrent computations for visual pattern completion,” the team showed how they developed a computational model, inspired by physiological and anatomical constraints, that was able to capture the behavioral and neurophysiological observations during pattern completion. In the end, the model provided useful insights towards understanding how to make inferences from minimal information.

Work for this study was conducted at the Center for Brains, Minds and Machines within the McGovern Institute for Brain Research at MIT.

School of Science welcomes 10 professors

The MIT School of Science recently welcomed 10 new professors, including Ila Fiete in the departments of Brain and Cognitive Sciences, Chemistry, Biology, Physics, Mathematics, and Earth, Atmospheric and Planetary Sciences.

Ila Fiete uses computational and theoretical tools to better understand the dynamical mechanisms and coding strategies that underlie computation in the brain, with a focus on elucidating how plasticity and development shape networks to perform computation and why information is encoded the way that it is. Her recent focus is on error control in neural codes, rules for synaptic plasticity that enable neural circuit organization, and questions at the nexus of information and dynamics in neural systems, such as understand how coding and statistics fundamentally constrain dynamics and vice-versa.

Tristan Collins conducts research at the intersection of geometric analysis, partial differential equations, and algebraic geometry. In joint work with Valentino Tosatti, Collins described the singularity formation of the Ricci flow on Kahler manifolds in terms of algebraic data. In recent work with Gabor Szekelyhidi, he gave a necessary and sufficient algebraic condition for existence of Ricci-flat metrics, which play an important role in string theory and mathematical physics. This result lead to the discovery of infinitely many new Einstein metrics on the 5-dimensional sphere. With Shing-Tung Yau and Adam Jacob, Collins is currently studying the relationship between categorical stability conditions and existence of solutions to differential equations arising from mirror symmetry.

Collins earned his BS in mathematics at the University of British Columbia in 2009, after which he completed his PhD in mathematics at Columbia University in 2014 under the direction of Duong H. Phong. Following a four-year appointment as a Benjamin Peirce Assistant Professor at Harvard University, Collins joins MIT as an assistant professor in the Department of Mathematics.

Julien de Wit develops and applies new techniques to study exoplanets, their atmospheres, and their interactions with their stars. While a graduate student in the Sara Seager group at MIT, he developed innovative analysis techniques to map exoplanet atmospheres, studied the radiative and tidal planet-star interactions in eccentric planetary systems, and constrained the atmospheric properties and mass of exoplanets solely from transmission spectroscopy. He plays a critical role in the TRAPPIST/SPECULOOS project, headed by Université of Liège, leading the atmospheric characterization of the newly discovered TRAPPIST-1 planets, for which he has already obtained significant results with the Hubble Space Telescope. De Wit’s efforts are now also focused on expanding the SPECULOOS network of telescopes in the northern hemisphere to continue the search for new potentially habitable TRAPPIST-1-like systems.

De Wit earned a BEng in physics and mechanics from the Université de Liège in Belgium in 2008, an MS in aeronautic engineering and an MRes in astrophysics, planetology, and space sciences from the Institut Supérieur de l’Aéronautique et de l’Espace at the Université de Toulouse, France in 2010; he returned to the Université de Liège for an MS in aerospace engineering, completed in 2011. After finishing his PhD in planetary sciences in 2014 and a postdoc at MIT, both under the direction of Sara Seager, he joins the MIT faculty in the Department of Earth, Atmospheric and Planetary Sciences as an assistant professor.

After earning a BS in mathematics and physics at the University of Michigan, Fiete obtained her PhD in 2004 at Harvard University in the Department of Physics. While holding an appointment at the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara from 2004 to 2006, she was also a visiting member of the Center for Theoretical Biophysics at the University of California at San Diego. Fiete subsequently spent two years at Caltech as a Broad Fellow in brain circuitry, and in 2008 joined the faculty of the University of Texas at Austin. She joins the MIT faculty in the Department of Brain and Cognitive Sciences as an associate professor with tenure.

Ankur Jain explores the biology of RNA aggregation. Several genetic neuromuscular disorders, such as myotonic dystrophy and amyotrophic lateral sclerosis, are caused by expansions of nucleotide repeats in their cognate disease genes. Such repeats cause the transcribed RNA to form pathogenic clumps or aggregates. Jain uses a variety of biophysical approaches to understand how the RNA aggregates form, and how they can be disrupted to restore normal cell function. Jain will also study the role of RNA-DNA interactions in chromatin organization, investigating whether the RNA transcribed from telomeres (the protective repetitive sequences that cap the ends of chromosomes) undergoes the phase separation that characterizes repeat expansion diseases.

Jain completed a bachelor’s of technology degree in biotechnology and biochemical engineering at the Indian Institute of Technology Kharagpur, India in 2007, followed by a PhD in biophysics and computational biology at the University of Illinois at Urbana-Champaign under the direction of Taekjip Ha in 2013. After a postdoc at the University of California at San Francisco, he joins the MIT faculty in the Department of Biology as an assistant professor with an appointment as a member of the Whitehead Institute for Biomedical Research.

Kiyoshi Masui works to understand fundamental physics and the evolution of the universe through observations of the large-scale structure — the distribution of matter on scales much larger than galaxies. He works principally with radio-wavelength surveys to develop new observational methods such as hydrogen intensity mapping and fast radio bursts. Masui has shown that such observations will ultimately permit precise measurements of properties of the early and late universe and enable sensitive searches for primordial gravitational waves. To this end, he is working with a new generation of rapid-survey digital radio telescopes that have no moving parts and rely on signal processing software running on large computer clusters to focus and steer, including work on the Canadian Hydrogen Intensity Mapping Experiment (CHIME).

Masui obtained a BSCE in engineering physics at Queen’s University, Canada in 2008 and a PhD in physics at the University of Toronto in 2013 under the direction of Ue-Li Pen. After postdoctoral appointments at the University of British Columbia as the Canadian Institute for Advanced Research Global Scholar and the Canadian Institute for Theoretical Astrophysics National Fellow, Masui joins the MIT faculty in the Department of Physics as an assistant professor.

Phiala Shanahan studies theoretical nuclear and particle physics, in particular the structure and interactions of hadrons and nuclei from the fundamental (quark and gluon) degrees of freedom encoded in the Standard Model of particle physics. Shanahan’s recent work has focused on the role of gluons, the force carriers of the strong interactions described by quantum chromodynamics (QCD), in hadron and nuclear structure by using analytic tools and high-performance supercomputing. She recently achieved the first calculation of the gluon structure of light nuclei, making predictions that will be testable in new experiments proposed at Jefferson National Accelerator Facility and at the planned Electron-Ion Collider. She has also undertaken extensive studies of the role of strange quarks in the proton and light nuclei that sharpen theory predictions for dark matter cross-sections in direct detection experiments. To overcome computational limitations in QCD calculations for hadrons and in particular for nuclei, Shanahan is pursuing a program to integrate modern machine learning techniques in computational nuclear physics studies.

Shanahan obtained her BS in 2012 and her PhD in 2015, both in physics, from the University of Adelaide. She completed postdoctoral work at MIT in 2017, then held a joint position as an assistant professor at the College of William and Mary and senior staff scientist at the Thomas Jefferson National Accelerator Facility until 2018. She returns to MIT in the Department of Physics as an assistant professor.

Nike Sun works in probability theory at the interface of statistical physics and computation. Her research focuses in particular on phase transitions in average-case (randomized) formulations of classical computational problems. Her joint work with Jian Ding and Allan Sly establishes the satisfiability threshold of random k-SAT for large k, and relatedly the independence ratio of random regular graphs of large degree. Both are long-standing open problems where heuristic methods of statistical physics yield detailed conjectures, but few rigorous techniques exist. More recently she has been investigating phase transitions of dense graph models.

Sun completed BA mathematics and MA statistics degrees at Harvard in 2009, and an MASt in mathematics at Cambridge in 2010. She received her PhD in statistics from Stanford University in 2014 under the supervision of Amir Dembo. She held a Schramm fellowship at Microsoft New England and MIT Mathematics in 2014-2015 and a Simons postdoctoral fellowship at the University of California at Berkeley in 2016, and joined the Berkeley Department of Statistics as an assistant professor in 2016. She returns to the MIT Department of Mathematics as an associate professor with tenure.

Alison Wendlandt focuses on the development of selective, catalytic reactions using the tools of organic and organometallic synthesis and physical organic chemistry. Mechanistic study plays a central role in the development of these new transformations. Her projects involve the design of new catalysts and catalytic transformations, identification of important applications for selective catalytic processes, and elucidation of new mechanistic principles to expand powerful existing catalytic reaction manifolds.

Wendlandt received a BS in chemistry and biological chemistry from the University of Chicago in 2007, an MS in chemistry from Yale University in 2009, and a PhD in chemistry from the University of Wisconsin at Madison in 2015 under the direction of Shannon S. Stahl. Following an NIH Ruth L. Krichstein Postdoctoral Fellowship at Harvard University, Wendlandt joins the MIT faculty in the Department of Chemistry as an assistant professor.

Chenyang Xu specializes in higher-dimensional algebraic geometry, an area that involves classifying algebraic varieties, primarily through the minimal model program (MMP). MMP was introduced by Fields Medalist S. Mori in the early 1980s to make advances in higher dimensional birational geometry. The MMP was further developed by Hacon and McKernan in the mid-2000s, so that the MMP could be applied to other questions. Collaborating with Hacon, Xu expanded the MMP to varieties of certain conditions, such as those of characteristic p, and, with Hacon and McKernan, proved a fundamental conjecture on the MMP, generating a great deal of follow-up activity. In collaboration with Chi Li, Xu proved a conjecture of Gang Tian concerning higher-dimensional Fano varieties, a significant achievement. In a series of papers with different collaborators, he successfully applied MMP to singularities.

Xu received his BS in 2002 and MS in 2004 in mathematics from Peking University, and completed his PhD at Princeton University under János Kollár in 2008. He came to MIT as a CLE Moore Instructor in 2008-2011, and was subsequently appointed assistant professor at the University of Utah. He returned to Peking University as a research fellow at the Beijing International Center of Mathematical Research in 2012, and was promoted to professor in 2013. Xu joins the MIT faculty as a full professor in the Department of Mathematics.

Zhiwei Yun’s research is at the crossroads between algebraic geometry, number theory, and representation theory. He studies geometric structures aiming at solving problems in representation theory and number theory, especially those in the Langlands program. While he was a CLE Moore Instructor at MIT, he started to develop the theory of rigid automorphic forms, and used it to answer an open question of J-P Serre on motives, which also led to a major result on the inverse Galois problem in number theory. More recently, in his joint work with Wei Zhang, they give geometric interpretation of higher derivatives of automorphic L- functions in terms of intersection numbers, which sheds new light on the geometric analogue of the Birch and Swinnerton-Dyer conjecture.

Yun earned his BS at Peking University in 2004, after which he completed his PhD at Princeton University in 2009 under the direction of Robert MacPherson. After appointments at the Institute for Advanced Study and as a CLE Moore Instructor at MIT, he held faculty appointments at Stanford and Yale. He returned to the MIT Department of Mathematics as a full professor in the spring of 2018.

Testing the limits of artificial visual recognition systems

While it can sometimes seem hard to see the forest from the trees, pat yourself on the back: as a human you are actually pretty good at object recognition. A major goal for artificial visual recognition systems is to be able to distinguish objects in the way that humans do. If you see a tree or a bush from almost any angle, in any degree of shading (or even rendered in pastels and pixels in a Monet), you would recognize it as a tree or a bush. However, such recognition has traditionally been a challenge for artificial visual recognition systems. Researchers at MIT’s McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences (BCS) have now directly examined and shown that artificial object recognition is quickly becoming more primate-like, but still lags behind when scrutinized at higher resolution.

In recent years, dramatic advances in “deep learning” have produced artificial neural network models that appear remarkably similar to aspects of primate brains. James DiCarlo, Peter de Florez Professor and Department Head of BCS, set out to determine and carefully quantify how well the current leading artificial visual recognition systems match humans and other higher primates when it comes to image categorization. In recent years, dramatic advances in “deep learning” have produced artificial neural network models that appear remarkably similar to aspects of primate brains, so DiCarlo and his team put these latest models through their paces.

Rishi Rajalingham, a graduate student in DiCarlo’s lab conducted the study as part of his thesis work at the McGovern Institute. As Rajalingham puts it “one might imagine that artificial vision systems should behave like humans in order to seamlessly be integrated into human society, so this tests to what extent that is true.”

The team focused on testing so-called “deep, convolutional neural networks” (DCNNs), and specifically those that had trained on ImageNet, a collection of large-scale category-labeled image sets that have recently been used as a library to train neural networks (called DCNNIC models). These specific models have thus essentially been trained in an intense image recognition bootcamp. The models were then pitted against monkeys and humans and asked to differentiate objects in synthetically constructed images. These synthetic images put the object being categorized in unusual backgrounds and orientations. The resulting images (such as the floating camel shown above) evened the playing field for the machine models (humans would ordinarily have a leg up on image categorization based on assessing context, so this was specifically removed as a confounder to allow a pure comparison of specific object categorization).

DiCarlo and his team found that humans, monkeys and DCNNIC models all appeared to perform similarly, when examined at a relatively coarse level. Essentially, each group was shown 100 images of 24 different objects. When you averaged how they did across 100 photos of a given object, they could distinguish, for example, camels pretty well overall. The researchers then zoomed in and examined the behavioral data at a much finer resolution (i.e. for each single photo of a camel), thus deriving more detailed “behavioral fingerprints” of primates and machines. These detailed analyses of how they did for each individual image revealed strong differences: monkeys still behaved very consistently like their human primate cousins, but the artificial neural networks could no longer keep up.

“I thought it was quite surprising that monkeys and humans are remarkably similar in their recognition behaviors, especially given that these objects (e.g. trucks, tanks, camels, etc.) don’t “mean” anything to monkeys” says Rajalingham. “It’s indicative of how closely related these two species are, at least in terms of these visual abilities.”

DiCarlo’s team gave the neural networks remedial homework to see if they could catch up upon extra-curricular training by now training the models on images that more closely resembled the synthetic images used in their study. Even with this extra training (which the humans and monkeys did not receive), they could not match a primate’s ability to discern what was in each individual image.

DiCarlo conveys that this is a glass half-empty and half-full story. Says DiCarlo, “The half full part is that, today’s deep artificial neural networks that have been developed based on just some aspects of brain function are far better and far more human-like in their object recognition behavior than artificial systems just a few years ago,” explains DiCarlo. “However, careful and systematic behavioral testing reveals that even for visual object recognition, the brain’s neural network still has some tricks up its sleeve that these artificial neural networks do not yet have.”

Dicarlo’s study begins to define more precisely when it is that the leading artificial neural networks start to “trip up”, and highlights a fundamental aspect of their architecture that struggles with categorization of single images. This flaw seems to be unaddressable through further brute force training. The work also provides an unprecedented and rich dataset of human (1476 anonymous humans to be exact) and primate behavior that will help act as a quantitative benchmark for improvement of artificial neural networks.

 

Image: Example of synthetic image used in the study. For category ‘camel’, 100 distinct, synthetic camel images were shown to DCNNIC models, humans and rhesus monkeys. 24 different categories were tested altogether.

Engineering intelligence

Go is an ancient board game that demands not only strategy and logic, but intuition, creativity, and subtlety—in other words, it’s a game of quintessentially human abilities. Or so it seemed, until Google’s DeepMind AI program, AlphaGo, roundly defeated the world’s top Go champion.

But ask it to read social cues or interpret what another person is thinking and it wouldn’t know where to start. It wouldn’t even understand that it didn’t know where to start. Outside of its game-playing milieu, AlphaGo is as smart as a rock.

“The problem of intelligence is the greatest problem in science,” says Tomaso Poggio, Eugene McDermott Professor of Brain and Cognitive Sciences at the McGovern Institute. One reason why? We still don’t really understand intelligence in ourselves.

Right now, most advanced AI developments are led by industry giants like Facebook, Google, Tesla and Apple, with an emphasis on engineering and computation, and very little work in humans. That has yielded enormous breakthroughs including Siri and Alexa, ever-better autonomous cars and AlphaGo.

But as Poggio points out, the algorithms behind most of these incredible technologies come right out of past neuroscience research–deep learning networks and reinforcement learning. “So it’s a good bet,” Poggio says, “that one of the next breakthroughs will also come from neuroscience.”

Five years ago, Poggio and a host of researchers at MIT and beyond took that bet when they applied for and won a $25 million Science and Technology Center award from the National Science Foundation to form the Center for Brains, Minds and Machines. The goal of the center was to take those computational approaches and blend them with basic, curiosity-driven research in neuroscience and cognition. They would knock down the divisions that traditionally separated these fields and not only unlock the secrets of human intelligence and develop smarter AIs, but found an entire new field—the science and engineering of intelligence.

A collaborative foundation

CBMM is a sprawling research initiative headquartered at the McGovern Institute, encompassing faculty at Harvard, Johns Hopkins, Rockefeller and Stanford; over a dozen industry collaborators including Siemens, Google, Toyota, Microsoft, Schlumberger and IBM; and partner institutions such as Howard University, Wellesley College and the University of Puerto Rico. The effort has already churned out 397 publications and has just been renewed for five more years and another $25 million.

For the first few years, collaboration in such a complex center posed a challenge. Research efforts were still divided into traditional silos—one research thrust for cognitive science, another for computation, and so on. But as the center grew, colleagues found themselves talking more and a new common language emerged. Immersed in each other’s research, the divisions began to fade.

“It became more than just a center in name,” says Matthew Wilson, associate director of CBMM and the Sherman Fairchild Professor of Neuroscience at MIT’s Department of Brain and Cognitive Sciences (BCS). “It really was trying to drive a new way of thinking about research and motivating intellectual curiosity that was motivated by this shared vision that all the participants had.”

New questioning

Today, the center is structured around four interconnected modules grounded around the problem of visual intelligence—vision, because it is the most understood and easily traced of our senses. The first module, co-directed by Poggio himself, unravels the visual operations that begin within that first few milliseconds of visual recognition as the information travels through the eye and to the visual cortex. Gabriel Kreiman, who studies visual comprehension at Harvard Medical School and Children’s Hospital, leads the second module which takes on the subsequent events as the brain directs the eye where to go next, what it is seeing and what to pay attention to, and then integrates this information into a holistic picture of the world that we experience. His research questions have grown as a result of CBMM’s cross-disciplinary influence.

Leyla Isik, a postdoc in Kreiman’s lab, is now tackling one of his new research initiatives: social intelligence. “So much of what we do and see as humans are social interactions between people. But even the best machines have trouble with it,” she explains.

To reveal the underlying computations of social intelligence, Isik is using data gathered from epilepsy patients as they watch full-length movies. (Certain epileptics spend several weeks before surgery with monitoring electrodes in their brains, providing a rare opportunity for scientists to see inside the brain of a living, thinking human). Isik hopes to be able to pick out reliable patterns in their neural activity that indicate when the patient is processing certain social cues such as faces. “It’s a pretty big challenge, so to start out we’ve tried to simplify the problem a little bit and just look at basic social visual phenomenon,” she explains.

In true CBMM spirit, Isik is co-advised by another McGovern investigator, Nancy Kanwisher, who helps lead CBMM’s third module with BCS Professor of Computational Cognitive Science, Josh Tenenbaum. That module picks up where the second leaves off, asking still deeper questions about how the brain understands complex scenes, and how infants and children develop the ability to piece together the physics and psychology of new events. In Kanwisher’s lab, instead of a stimulus-heavy movie, Isik shows simple stick figures to subjects in an MRI scanner. She’s looking for specific regions of the brain that engage only when the subjects view the “social interactions” between the figures. “I like the approach of tackling this problem both from very controlled experiments as well as something that’s much more naturalistic in terms of what people and machines would see,” Isik explains.

Built-in teamwork

Such complementary approaches are the norm at CBMM. Postdocs and graduate students are required to have at least two advisors in two different labs. The NSF money is even assigned directly to postdoc and graduate student projects. This ensures that collaborations are baked into the center, Wilson explains. “If the idea is to create a new field in the science of intelligence, you can’t continue to support work the way it was done in the old fields—you have to create a new model.”

In other labs, students and postdocs blend imaging with cognitive science to understand how the brain represents physics—like the mass of an object it sees. Or they’re combining human, primate, mouse and computational experiments to better understand how the living brain represents new objects it encounters, and then building algorithms to test the resulting theories.

Boris Katz’s lab is in the fourth and final module, which focuses on figuring out how the brain’s visual intelligence ties into higher-level thinking, like goal planning, language, and abstract concepts. One project, led by MIT research scientist Andrei Barbu and Yen-Ling Kuo, in collaboration with Harvard cognitive scientist Liz Spelke, is attempting to uncover how humans and machines devise plans to navigate around complex and dangerous environments.

“CBMM gives us the opportunity to close the loop between machine learning, cognitive science, and neuroscience,” says Barbu. “The cognitive science informs better machine learning, which helps us understand how humans behave and that in turn points the way toward understanding the structure of the brain. All of this feeds back into creating more capable machines.”

A new field

Every summer, CBMM heads down to Woods Hole, Massachusetts, to deliver an intensive crash course on the science of intelligence to graduate students from across the country. It’s one of many education initiatives designed to spread CBMM’s approach and key to the goal of establishing a new field. The students who come to learn from these courses often find it as transformative as the CBMM faculty did when the center began.

Candace Ross was an undergraduate at Howard University when she got her first taste of CBMM at a summer course with Kreiman trying to model human memory in machine learning algorithms. “It was the best summer of my life,” she says. “There were so many concepts I didn’t know about and didn’t understand. We’d get back to the dorm at night and just sit around talking about science.”

Ross loved it so much that she spent a second summer at CBMM, and is now a third-year graduate student working with Katz and Barbu, teaching computers how to use vision and language to learn more like children. She’s since gone back to the summer programs, now as a teaching assistant. “CBMM is a research center,” says Ellen Hildreth, a computer scientist at Wellesley College who coordinates CBMM’s education programs. “But it also fosters a strong commitment to education, and that effort is helping to create a community of researchers around this new field.”

Quest for intelligence

CBMM has far to go in its mission to understand the mind, but there is good reason to believe that what CBMM started will continue well beyond the NSF-funded ten years.

This February, MIT announced a new institute-wide initiative called the MIT Intelligence Quest, or MIT IQ. It’s a massive interdisciplinary push to study human intelligence and create new tools based on that knowledge. It is also, says McGovern Institute Director Robert Desimone, a sign of the institute’s faith in what CBMM itself has so far accomplished. “The fact that MIT has made this big commitment in this area is an endorsement of the kind of view we’ve been promoting through CBMM,” he says.

MIT IQ consists of two linked entities: “The Core” and “The Bridge.” CBMM is part of the Core, which will advance the science and engineering of both human and machine intelligence. “This combination is unique to MIT,” explains Poggio, “and is designed to win not only Turing but also Nobel prizes.”

And more than that, points out BCS Department Head Jim DiCarlo, it’s also a return to CBMM’s very first mission. Before CBMM began, Poggio and a few other MIT scientists had tested the waters with a small, Institute-funded collaboration called the Intelligence Initiative (I^2), that welcomed all types of intelligence research–even business and organizational intelligence. MIT IQ re-opens that broader door. “In practice, we want to build a bigger tent now around the science of intelligence,” DiCarlo says.

For his part, Poggio finds the name particularly apt. “Because it is going to be a long-term quest,” he says. “Remember, if I’m right, this is the greatest problem in science. Understanding the mind is understanding the very tool we use to try to solve every other problem.”

The quest to understand intelligence

McGovern investigators study intelligence to answer a practical question for both educators and computer scientists. Can intelligence be improved?

A nine-year-old girl, a contestant on a game show, is standing on stage. On a screen in front of her, there appears a twelve-digit number followed by a six-digit number. Her challenge is to divide the two numbers as fast as possible.

The timer begins. She is racing against three other contestants, two from China and one, like her, from Japan. Whoever answers first wins, but only if the answer is correct.

The show, called “The Brain,” is wildly popular in China, and attracts players who display their memory and concentration skills much the way American athletes demonstrate their physical skills in shows like “American Ninja Warrior.” After a few seconds, the girl slams the timer and gives the correct answer, faster than most people could have entered the numbers on a calculator.

The camera pans to a team of expert judges, including McGovern Director Robert Desimone, who had arrived in Nanjing just a few hours earlier. Desimone shakes his head in disbelief. The task appears to make extraordinary demands on working memory and rapid processing, but the girl explains that she solves it by visualizing an abacus in her mind—something she has practiced intensively.

The show raises an age-old question: What is intelligence, exactly?

The study of intelligence has a long and sometimes contentious history, but recently, neuroscientists have begun to dissect intelligence to understand the neural roots of the distinct cognitive skills that contribute to it. One key question is whether these skills can be improved individually with training and, if so, whether those improvements translate into overall intelligence gains. This research has practical implications for multiple domains, from brain science to education to artificial intelligence.

“The problem of intelligence is one of the great problems in science,” says Tomaso Poggio, a McGovern investigator and an expert on machine learning. “If we make progress in understanding intelligence, and if that helps us make progress in making ourselves smarter or in making machines that help us think better, we can solve all other problems more easily.”

Brain training 101

Many studies have reported positive results from brain training, and there is now a thriving industry devoted to selling tools and games such as Lumosity and BrainHQ. Yet the science behind brain training to improve intelligence remains controversial.

A case in point is the “n-back” working memory task, in which subjects are presented with a rapid sequence of letters or visual patterns, and must report whether the current item matches the last, last-but-one, last-but-two, and so on. The field of brain training received a boost in 2008 when a widely discussed study claimed that a few weeks of training on a challenging version of this task could boost fluid intelligence, the ability to solve novel problems. The report generated excitement and optimism when it first appeared, but several subsequent attempts to reproduce the findings have been unsuccessful.

Among those unable to confirm the result was McGovern Investigator John Gabrieli, who recruited 60 young adults and trained them forty minutes a day for four weeks on an n-back task similar to that of the original study.

Six months later, Gabrieli re-evaluated the participants. “They got amazingly better at the difficult task they practiced. We have great imaging data showing changes in brain activation as they performed the task from before to after,” says Gabrieli. “And yet, that didn’t help them do better on any other cognitive abilities we could measure, and we measured a lot of things.”

The results don’t completely rule out the value of n-back training, says Gabrieli. It may be more effective in children, or in populations with a lower average intelligence than the individuals (mostly college students) who were recruited for Gabrieli’s study. The prospect that training might help disadvantaged individuals holds strong appeal. “If you could raise the cognitive abilities of a child with autism, or a child who is struggling in school, the data tells us that their life would be a step better,” says Gabrieli. “It’s something you would wish for people, especially for those where something is holding them back from the expression of their other abilities.”

Music for the brain

The concept of early intervention is now being tested by Desimone, who has teamed with Chinese colleagues at the recently-established IDG/McGovern Institute at Beijing Normal University to explore the effect of music training on the cognitive abilities of young children.

The researchers recruited 100 children at a neighborhood kindergarten in Beijing, and provided them with a semester-long intervention, randomly assigning children either to music training or (as a control) to additional reading instruction. Unlike the so-called “Mozart Effect,” a scientifically unsubstantiated claim that passive listening to music increases intelligence, the new study requires active learning through daily practice. Several smaller studies have reported cognitive benefits from music training, and Desimone finds the idea plausible given that musical cognition involves several mental functions that are also implicated in intelligence. The study is nearly complete, and results are expected to emerge within a few months. “We’re also collecting data on brain activity, so if we see improvements in the kids who had music training, we’ll also be able to ask about its neural basis,” says Desimone. The results may also have immediate practical implications, since the study design reflects decisions that schools must make in determining how children spend their time. “Many schools are deciding to cut their arts and music programs to make room for more instruction in academic core subjects, so our study is relevant to real questions schools are facing.”

Intelligent classrooms

In another school-based study, Gabrieli’s group recently raised questions about the benefits of “teaching to the test.” In this study, postdoc Amy Finn evaluated over 1300 eighth-graders in the Boston public schools, some enrolled at traditional schools and others at charter schools that emphasize standardized test score improvements. The researchers wanted to find out whether raised test scores were accompanied by improvement of cognitive skills that are linked to intelligence. (Charter school students are selected by lottery, meaning that any results are unlikely to reflect preexisting differences between the two groups of students.) As expected, charter school students showed larger improvements in test scores (relative to their scores from 4 years earlier). But when Finn and her colleagues measured key aspects of intelligence, such as working memory, processing speed, and reasoning, they found no difference between the students who enrolled in charter schools and those who did not. “You can look at these skills as the building blocks of cognition. They are useful for reasoning in a novel situation, an ability that is really important for learning,” says Finn. “It’s surprising that school practices that increase achievement don’t also increase these building blocks.”

Gabrieli remains optimistic that it will eventually be possible to design scientifically based interventions that can raise children’s abilities. Allyson Mackey, a postdoc in his lab, is studying the use of games to exercise the cognitive skills in a classroom setting. As a graduate student at University of California, Berkeley, Mackey had studied the effects of games such as “Chocolate Fix,” in which players match shapes and flavors, represented by color, to positions in a grid based on hints, such as, “the upper left position is strawberry.”

These games gave children practice at thinking through and solving novel problems, and at the end of Mackey’s study, the students—from second through fourth grades—showed improved measures of skills associated with intelligence. “Our results suggest that these cognitive skills are specifically malleable, although we don’t yet know what the active ingredients were in this program,” says Mackey, who speaks of the interventions as if they were drugs, with dosages, efficacies and potentially synergistic combinations to be explored. Mackey is now working to identify the most promising interventions—those that boost cognitive abilities, work well in the classroom, and are engaging for kids—to try in Boston charter schools. “It’s just the beginning of a three-year process to methodically test interventions to see if they work,” she says.

Brain training…for machines

While Desimone, Gabrieli and their colleagues look for ways to raise human intelligence, Poggio, who directs the MIT-based Center for Brains, Minds and Machines, is trying to endow computers with more human-like intelligence. Computers can already match human performance on some specific tasks such as chess. Programs such as Apple’s “Siri” can mimic human speech interpretation, not perfectly but well enough to be useful. Computer vision programs are approaching human performance at rapid object recognitions, and one such system, developed by one of Poggio’s former postdocs, is now being used to assist car drivers. “The last decade has been pretty magical for intelligent computer systems,” says Poggio.

Like children, these intelligent systems learn from past experience. But compared to humans or other animals, machines tend to be very slow learners. For example, the visual system for automobiles was trained by presenting it with millions of images—traffic light, pedestrian, and so on—that had already been labeled by humans. “You would never present so many examples to a child,” says Poggio. “One of our big challenges is to understand how to make algorithms in computers learn with many fewer examples, to make them learn more like children do.”

To accomplish this and other goals of machine intelligence, Poggio suspects that the work being done by Desimone, Gabrieli and others to understand the neural basis of intelligence will be critical. But he is not expecting any single breakthrough that will make everything fall into place. “A century ago,” he says, “scientists pondered the problem of life, as if ‘life’—what we now call biology—were just one problem. The science of intelligence is like biology. It’s a lot of problems, and a lot of breakthroughs will have to come before a machine appears that is as intelligent as we are.”

Institute launches the MIT Intelligence Quest

MIT today announced the launch of the MIT Intelligence Quest, an initiative to discover the foundations of human intelligence and drive the development of technological tools that can positively influence virtually every aspect of society.

The announcement was first made in a letter MIT President L. Rafael Reif sent to the Institute community.

At a time of rapid advances in intelligence research across many disciplines, the Intelligence Quest will encourage researchers to investigate the societal implications of their work as they pursue hard problems lying beyond the current horizon of what is known.

Some of these advances may be foundational in nature, involving new insight into human intelligence, and new methods to allow machines to learn effectively. Others may be practical tools for use in a wide array of research endeavors, such as disease diagnosis, drug discovery, materials and manufacturing design, automated systems, synthetic biology, and finance.

“Today we set out to answer two big questions, says President Reif. “How does human intelligence work, in engineering terms? And how can we use that deep grasp of human intelligence to build wiser and more useful machines, to the benefit of society?”

MIT Intelligence Quest: The Core and The Bridge

MIT is poised to lead this work through two linked entities within MIT Intelligence Quest. One of them, “The Core,” will advance the science and engineering of both human and machine intelligence. A key output of this work will be machine-learning algorithms. At the same time, MIT Intelligence Quest seeks to advance our understanding of human intelligence by using insights from computer science.

The second entity, “The Bridge” will be dedicated to the application of MIT discoveries in natural and artificial intelligence to all disciplines, and it will host state-of-the-art tools from industry and research labs worldwide.

The Bridge will provide a variety of assets to the MIT community, including intelligence technologies, platforms, and infrastructure; education for students, faculty, and staff about AI tools; rich and unique data sets; technical support; and specialized hardware.

Along with developing and advancing the technologies of intelligence, MIT Intelligence Quest researchers will also investigate the societal and ethical implications of advanced analytical and predictive tools. There are already active projects and groups at the Institute investigating autonomous systems, media and information quality, labor markets and the work of the future, innovation and the digital economy, and the role of AI in the legal system.

In all its activities, MIT Intelligence Quest is intended to take advantage of — and strengthen — the Institute’s culture of collaboration. MIT Intelligence Quest will connect and amplify existing excellence across labs and centers already engaged in intelligence research. It will also establish shared, central spaces conducive to group work, and its resources will directly support research.

“Our quest is meant to power world-changing possibilities,” says Anantha Chandrakasan, dean of the MIT School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. Chandrakasan, in collaboration with Provost Martin Schmidt and all four of MIT’s other school deans, has led the development and establishment of MIT Intelligence Quest.

“We imagine preventing deaths from cancer by using deep learning for early detection and personalized treatment,” Chandrakasan continues. “We imagine artificial intelligence in sync with, complementing, and assisting our own intelligence. And we imagine every scientist and engineer having access to human-intelligence-inspired algorithms that open new avenues of discovery in their fields. Researchers across our campus want to push the boundaries of what’s possible.”

Engaging energetically with partners

In order to power MIT Intelligence Quest and achieve results that are consistent with its ambitions, the Institute will raise financial support through corporate sponsorship and philanthropic giving.

MIT Intelligence Quest will build on the model that was established with the MIT–IBM Watson AI Lab, which was announced in September 2017. MIT researchers will collaborate with each other and with industry on challenges that range in scale from the very broad to the very specific.

“In the short time since we began our collaboration with IBM, the lab has garnered tremendous interest inside and outside MIT, and it will be a vital part of MIT Intelligence Quest,” says President Reif.

John E. Kelly III, IBM senior vice president for cognitive solutions and research, says, “To take on the world’s greatest challenges and seize its biggest opportunities, we need to rapidly advance both AI technology and our understanding of human intelligence. Building on decades of collaboration — including our extensive joint MIT–IBM Watson AI Lab — IBM and MIT will together shape a new agenda for intelligence research and its applications. We are proud to be a cornerstone of this expanded initiative.”

MIT will seek to establish additional entities within MIT Intelligence Quest, in partnership with corporate and philanthropic organizations.

Why MIT

MIT has been on the frontier of intelligence research since the 1950s, when pioneers Marvin Minsky and John McCarthy helped establish the field of artificial intelligence.

MIT now has over 200 principal investigators whose research bears directly on intelligence. Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the MIT Department of Brain and Cognitive Sciences (BCS) — along with the McGovern Institute for Brain Research and the Picower Institute for Learning and Memory — collaborate on a range of projects. MIT is also home to the National Science Foundation–funded center for Brains, Minds and Machines (CBMM) — the only national center of its kind.

Four years ago, MIT launched the Institute for Data, Systems, and Society (IDSS) with a mission promoting data science, particularly in the context of social systems. It is  anticipated that faculty and students from IDSS will play a critical role in this initiative.

Faculty from across the Institute will participate in the initiative, including researchers in the Media Lab, the Operations Research Center, the Sloan School of Management, the School of Architecture and Planning, and the School of Humanities, Arts, and Social Sciences.

“Our quest will amount to a journey taken together by all five schools at MIT,” says Provost Schmidt. “Success will rest on a shared sense of purpose and a mix of contributions from a wide variety of disciplines. I’m excited by the new thinking we can help unlock.”

At the heart of MIT Intelligence Quest will be collaboration among researchers in human and artificial intelligence.

“To revolutionize the field of artificial intelligence, we should continue to look to the roots of intelligence: the brain,” says James DiCarlo, department head and Peter de Florez Professor of Neuroscience in the Department of Brain and Cognitive Sciences. “By working with engineers and artificial intelligence researchers, human intelligence researchers can build models of the brain systems that produce intelligent behavior. The time is now, as model building at the scale of those brain systems is now possible. Discovering how the brain works in the language of engineers will not only lead to transformative AI — it will also illuminate entirely new ways to repair, educate, and augment our own minds.”

Daniela Rus, the Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT, and director of CSAIL, agrees. MIT researchers, she says, “have contributed pioneering and visionary solutions for intelligence since the beginning of the field, and are excited to make big leaps to understand human intelligence and to engineer significantly more capable intelligent machines. Understanding intelligence will give us the knowledge to understand ourselves and to create machines that will support us with cognitive and physical work.”

David Siegel, who earned a PhD in computer science at MIT in 1991 pursuing research at MIT’s Artificial Intelligence Laboratory, and who is a member of the MIT Corporation and an advisor to the MIT Center for Brains, Minds, and Machines, has been integral to the vision and formation of MIT Intelligence Quest and will continue to help shape the effort. “Understanding human intelligence is one of the greatest scientific challenges,” he says, “one that helps us understand who we are while meaningfully advancing the field of artificial intelligence.” Siegel is co-chairman and a founder of Two Sigma Investments, LP.

The fruits of research

MIT Intelligence Quest will thus provide a platform for long-term research, encouraging the foundational advances of the future. At the same time, MIT professors and researchers may develop technologies with near-term value, leading to new kinds of collaborations with existing companies — and to new companies.

Some such entrepreneurial efforts could be supported by The Engine, an Institute initiative launched in October 2016 to support startup companies pursuing particularly ambitious goals.

Other innovations stemming from MIT Intelligence Quest could be absorbed into the innovation ecosystem surrounding the Institute — in Kendall Square, Cambridge, and the Boston metropolitan area. MIT is located in close proximity to a world-leading nexus of biotechnology and medical-device research and development, as well as a cluster of leading-edge technology firms that study and deploy machine intelligence.

MIT also has roots in centers of innovation elsewhere in the United States and around the world, through faculty research projects, institutional and industry collaborations, and the activities and leadership of its alumni. MIT Intelligence Quest will seek to connect to innovative companies and individuals who share MIT’s passion for work in intelligence.

Eric Schmidt, former executive chairman of Alphabet, has helped MIT form the vision for MIT Intelligence Quest. “Imagine the good that can be done by putting novel machine-learning tools in the hands of those who can make great use of them,” he says. “MIT Intelligence Quest can become a fount of exciting new capabilities.”

“I am thrilled by today’s news,” says President Reif. “Drawing on MIT’s deep strengths and signature values, culture, and history, MIT Intelligence Quest promises to make important contributions to understanding the nature of intelligence, and to harnessing it to make a better world.”

“MIT is placing a bet,” he says, “on the central importance of intelligence research to meeting the needs of humanity.”