A new study from the McGovern Institute shows how interests can modulate language processing in children’s brains and paves the way for personalized brain research.
The paper, which appears in Imaging Neuroscience, was conducted in the lab of McGovern Institute Investigator John Gabrieli, and led by senior author Anila D’Mello, a former McGovern postdoctoral fellow and current assistant professor at the University of Texas Southwestern Medical Center and the University of Texas at Dallas.
“Traditional studies give subjects identical stimuli to avoid confounding the results,” says Gabrieli, who is also the Grover Hermann Professor of Health Sciences and Technology and a professor of brain and cognitive sciences at MIT.
“However, our research tailored stimuli to each child’s interest, eliciting stronger—and more consistent—activity patterns in the brain’s language regions across individuals.” – John Gabrieli
Funded by the Hock E. Tan and K. Lisa Yang Center for Autism Research in MIT’s Yang Tan Collective, this work unveils a new paradigm that challenges current methods and shows how personalization can be a powerful strategy in neuroscience. The paper’s co-first authors are Halie Olson, a postdoctoral associate at the McGovern Institute, and Kristina Johnson, an assistant professor at Northeastern University and former doctoral student at the MIT Media Lab. “Our research integrates participants’ lived experiences into the study design,” says Johnson. “This approach not only enhances the validity of our findings but also captures the diversity of individual perspectives, often overlooked in traditional research.”
Taking interest into account
When it comes to language, our interests are like operators behind the switchboard. They guide what we talk about and who we talk to. Research suggests that interests are also potent motivators and can help improve language skills. For instance, children score higher on reading tests when the material covers topics that are interesting to them.
But neuroscience has shied away from using personal interests to study the brain, especially in the realm of language. This is mainly because interests, which vary between people, could throw a wrench into experimental control—a core principle that drives scientists to limit factors that can muddle the results.
Gabrieli, D’Mello, Olson, and Johnson ventured into this unexplored territory. The team wondered if tailoring language stimuli to children’s interests might lead to higher responses in language regions of the brain. “Our study is unique in its approach to control the kind of brain activity our experiments yield, rather than control the stimuli we give subjects,” says D’Mello. “This stands in stark contrast to most neuroimaging studies that control the stimuli but might introduce differences in each subject’s level of interest in the material.”
Researchers Halie Olson (left), Kristina Johnson (center), and Anila D’Mello (right). Photo: Caitlin Cunningham
In their recent study, the authors recruited a cohort of 20 children to investigate how personal interests affected the way the brain processes language. Caregivers described their child’s interests to the researchers, spanning baseball, train lines, Minecraft, and musicals. During the study, children listened to audio stories tuned to their unique interests. They were also presented with audio stories about nature (this was not an interest among the children) for comparison. To capture brain activity patterns, the team used functional magnetic resonance imaging (fMRI), which measures changes in blood flow caused by underlying neural activity.
New insights into the brain
“We found that, when children listened to stories about topics they were really interested in, they showed stronger neural responses in language areas than when they listened to generic stories that weren’t tailored to their interests,” says Olson. “Not only does this tell us how interests affect the brain, but it also shows that personalizing our experimental stimuli can have a profound impact on neuroimaging results.”
The researchers noticed a particularly striking result. “Even though the children listened to completely different stories, their brain activation patterns were more overlapping with their peers when they listened to idiosyncratic stories compared to when they listened to the same generic stories about nature,” says D’Mello. This, she notes, points to how interests can boost both the magnitude and consistency of signals in language regions across subjects without changing how these areas communicate with each other.
Individual activation maps from three participants showing increased engagement of language regions for personally interesting versus generic narratives. Image courtesy of the researchers.
Gabrieli noted another finding: “In addition to the stronger engagement of language regions for content of interest, there was also stronger activation in brain regions associated with reward and also with self-reflection.” Personal interests are individually relevant and can be rewarding, potentially driving higher activation in these regions during personalized stories.
These personalized paradigms might be particularly well-suited to studies of the brain in unique or neurodivergent populations. Indeed, the team is already applying these methods to study language in the brains of autistic children.
This study breaks new ground in neuroscience and serves as a prototype for future work that personalizes research to unearth further knowledge of the brain. In doing so, scientists can compile a more complete understanding of the type of information that is processed by specific brain circuits and more fully grasp complex functions such as language.
Some people, especially those in public service, perform admirable feats—healthcare workers fighting to keep patients alive or a first responder arriving at the scene of a car crash. But the emotional weight can become a mental burden. Research has shown that emergency personnel are at elevated risk for mental health challenges like post-traumatic stress disorder. How can people undergo such stressful experiences and also maintain their well-being?
A new study from the McGovern Institute reveals that a cognitive strategy focused on social good may be effective in helping people cope with distressing events. The research team found that the approach was comparable to another well-established emotion regulation strategy, unlocking a new tool for dealing with highly adverse situations.
“How you think can improve how you feel.”
– John Gabrieli
“This research suggests that the social good approach might be particularly useful in improving well-being for those constantly exposed to emotionally taxing events,” says John Gabrieli, the Grover Hermann Professor of Health Sciences and Technology and a professor of brain and cognitive sciences at MIT, who is a senior author of the paper.
The study, published today in PLOS ONE, is the first to examine the efficacy of this cognitive strategy. Nancy Tsai, a postdoctoral research scientist in Gabrieli’s lab at the McGovern Institute, is the lead author of the paper.
Emotion regulation tools
Emotion regulation is the ability to mentally reframe how we experience emotions—a skill critical to maintaining good mental health. Doing so can make one feel better when dealing with adverse events, and emotion regulation has been shown to boost emotional, social, cognitive, and physiological outcomes across the lifespan.
MIT postdoctoral researcher Nancy Tsai. Photo: Steph Stevens
One emotion regulation strategy is “distancing,” where a person copes with a negative event by imagining it as happening far away, a long time ago, or from a third-person perspective. Distancing has been well-documented as a useful cognitive tool, but it may be less effective in certain situations, especially ones that are socially charged—like a firefighter rescuing a family from a burning home. Rather than distancing themselves, a person may instead be forced to engage directly with the situation.
“In these cases, the ‘social good’ approach may be a powerful alternative,” says Tsai. “When a person uses the social good method, they view a negative situation as an opportunity to help others or prevent further harm.” For example, a firefighter experiencing emotional distress might focus on the fact that their work enables them to save lives. The idea had yet to be backed by scientific investigation, so Tsai and her team, alongside Gabrieli, saw an opportunity to rigorously probe this strategy.
A novel study
The MIT researchers recruited a cohort of adults and had them complete a questionnaire to gather information including demographics, personality traits, and current well-being, as well as how they regulated their emotions and dealt with stress. The cohort was randomly split into two groups: a distancing group and a social good group. In the online study, each group was shown a series of images that were either neutral (such as fruit) or contained highly aversive content (such as bodily injury). Participants were fully informed of the types of images they might see and could opt out of the study at any time.
Each group was asked to use their assigned cognitive strategy to respond to half of the negative images. For example, while looking at a distressing image, a person in the distancing group could have imagined that it was a screenshot from a movie. Conversely, a subject in the social good group might have responded to the image by envisioning that they were a first responder saving people from harm. For the other half of the negative images, participants were asked to only look at them and pay close attention to their emotions. The researchers asked the participants how they felt after each image was shown.
Social good as a potent strategy
The MIT team found that distancing and social good approaches helped diminish negative emotions. Participants reported feeling better when they used these strategies after viewing adverse content compared to when they did not and stated that both strategies were easy to implement.
The results also revealed that, overall, distancing yielded a stronger effect. Importantly, however, Tsai and Gabrieli believe that this study offers compelling evidence for social good as a powerful method better suited to situations when people cannot distance themselves, like rescuing someone from a car crash, “Which is more probable for people in the real world,” notes Tsai. Moreover, the team discovered that people who most successfully used the social good approach were more likely to view stress as enhancing rather than debilitating. Tsai says this link may point to psychological mechanisms that underlie both emotion regulation and how people respond to stress.
“The social good approach may be a potent strategy to combat the immense emotional demands of certain professions.”
– John Gabrieli
Additionally, the results showed that older adults used the cognitive strategies more effectively than younger adults. The team suspects that this is probably because, as prior research has shown, older adults are more adept at regulating their emotions likely due to having greater life experiences. The authors note that successful emotion regulation also requires cognitive flexibility, or having a malleable mindset to adapt well to different situations.
“This is not to say that people, such as physicians, should reframe their emotions to the point where they fully detach themselves from negative situations,” says Gabrieli. “But our study shows that the social good approach may be a potent strategy to combat the immense emotional demands of certain professions.”
The MIT team says that future studies are needed to further validate this work, and that such research is promising in that it can uncover new cognitive tools to equip individuals to take care of themselves as they bravely assume the challenge of taking care of others.
Digital technologies, such as smartphones and machine learning, have revolutionized education. At the McGovern Institute for Brain Research’s 2024 Spring Symposium, “Transformational Strategies in Mental Health,” experts from across the sciences — including psychiatry, psychology, neuroscience, computer science, and others — agreed that these technologies could also play a significant role in advancing the diagnosis and treatment of mental health disorders and neurological conditions.
Co-hosted by the McGovern Institute, MIT Open Learning, McClean Hospital, the Poitras Center for Psychiatric Disorders Research at MIT, and the Wellcome Trust, the symposium raised the alarm about the rise in mental health challenges and showcased the potential for novel diagnostic and treatment methods.
“We have to do something together as a community of scientists and partners of all kinds to make a difference.” – John Gabrieli
John Gabrieli, the Grover Hermann Professor of Health Sciences and Technology at MIT, kicked off the symposium with a call for an effort on par with the Manhattan Project, which in the 1940s saw leading scientists collaborate to do what seemed impossible. While the challenge of mental health is quite different, Gabrieli stressed, the complexity and urgency of the issue are similar. In his later talk, “How can science serve psychiatry to enhance mental health?,” he noted a 35 percent rise in teen suicide deaths between 1999 and 2000 and, between 2007 and 2015, a 100 percent increase in emergency room visits for youths ages 5 to 18 who experienced a suicide attempt or suicidal ideation.
“We have no moral ambiguity, but all of us speaking today are having this meeting in part because we feel this urgency,” said Gabrieli, who is also a professor of brain and cognitive sciences, the director of the Integrated Learning Initiative (MITili) at MIT Open Learning, and a member of the McGovern Institute. “We have to do something together as a community of scientists and partners of all kinds to make a difference.”
An urgent problem
In 2021, U.S. Surgeon General Vivek Murthy issued an advisory on the increase in mental health challenges in youth; in 2023, he issued another, warning of the effects of social media on youth mental health. At the symposium, Susan Whitfield-Gabrieli, a research affiliate at the McGovern Institute and a professor of psychology and director of the Biomedical Imaging Center at Northeastern University, cited these recent advisories, saying they underscore the need to “innovate new methods of intervention.”
Other symposium speakers also highlighted evidence of growing mental health challenges for youth and adolescents. Christian Webb, associate professor of psychology at Harvard Medical School, stated that by the end of adolescence, 15-20 percent of teens will have experienced at least one episode of clinical depression, with girls facing the highest risk. Most teens who experience depression receive no treatment, he added.
Adults who experience mental health challenges need new interventions, too. John Krystal, the Robert L. McNeil Jr. Professor of Translational Research and chair of the Department of Psychiatry at Yale University School of Medicine, pointed to the limited efficacy of antidepressants, which typically take about two months to have an effect on the patient. Patients with treatment-resistant depression face a 75 percent likelihood of relapse within a year of starting antidepressants. Treatments for other mental health disorders, including bipolar and psychotic disorders, have serious side effects that can deter patients from adherence, said Virginie-Anne Chouinard, director of research at McLean OnTrackTM, a program for first episode psychosis at McLean Hospital.
New treatments, new technologies
Emerging technologies, including smartphone technology and artificial intelligence, are key to the interventions that symposium speakers shared.
In a talk on AI and the brain, Dina Katabi, the Thuan and Nicole Pham Professor of Electrical Engineering and Computer Science at MIT, discussed novel ways to detect Parkinson’s and Alzheimer’s, among other diseases. Early-stage research involved developing devices that can analyze how movement within a space impacts the surrounding electromagnetic field, as well as how wireless signals can detect breathing and sleep stages.
“I realize this may sound like la-la land,” Katabi said. “But it’s not! This device is used today by real patients, enabled by a revolution in neural networks and AI.”
Parkinson’s disease often cannot be diagnosed until significant impairment has already occurred. In a set of studies, Katabi’s team collected data on nocturnal breathing and trained a custom neural network to detect occurrences of Parkinson’s. They found the network was over 90 percent accurate in its detection. Next, the team used AI to analyze two sets of breathing data collected from patients at a six-year interval. Could their custom neural network identify patients who did not have a Parkinson’s diagnosis on the first visit, but subsequently received one? The answer was largely yes: Machine learning identified 75 percent of patients who would go on to receive a diagnosis.
Detecting high-risk patients at an early stage could make a substantial difference for intervention and treatment. Similarly, research by Jordan Smoller, professor of psychiatry at Harvard Medical School and director of the Center for Precision Psychiatry at Massachusetts General Hospital, demonstrated that AI-aided suicide risk prediction model could detect 45 percent of suicide attempts or deaths with 90 percent specificity, about two to three years in advance.
Other presentations, including a series of lightning talks, shared new and emerging treatments, such as the use of ketamine to treat depression; the use of smartphones, including daily text surveys and mindfulness apps, in treating depression in adolescents; metabolic interventions for psychotic disorders; the use of machine learning to detect impairment from THC intoxication; and family-focused treatment, rather than individual therapy, for youth depression.
Advancing understanding
The frequency and severity of adverse mental health events for children, adolescents, and adults demonstrate the necessity of funding for mental health research — and the open sharing of these findings.
Niall Boyce, head of mental health field building at the Wellcome Trust — a global charitable foundation dedicated to using science to solve urgent health challenges — outlined the foundation’s funding philosophy of supporting research that is “collaborative, coherent, and focused” and centers on “What is most important to those most affected?” Wellcome research managers Anum Farid and Tayla McCloud stressed the importance of projects that involve people with lived experience of mental health challenges and “blue sky thinking” that takes risks and can advance understanding in innovative ways. Wellcome requires that all published research resulting from its funding be open and accessible in order to maximize their benefits.
Whether through therapeutic models, pharmaceutical treatments, or machine learning, symposium speakers agreed that transformative approaches to mental health call for collaboration and innovation.
“Understanding mental health requires us to understand the unbelievable diversity of humans,” Gabrieli said. “We have to use all the tools we have now to develop new treatments that will work for people for whom our conventional treatments don’t.”
MIT neuroscientists have found that the brain’s sensitivity to rewarding experiences — a critical factor in motivation and attention — can be shaped by socioeconomic conditions.
In a study of 12 to 14-year-olds whose socioeconomic status (SES) varied widely, the researchers found that children from lower SES backgrounds showed less sensitivity to reward than those from more affluent backgrounds.
Using functional magnetic resonance imaging (fMRI), the research team measured brain activity as the children played a guessing game in which they earned extra money for each correct guess. When participants from higher SES backgrounds guessed correctly, a part of the brain called the striatum, which is linked to reward, lit up much more than in children from lower SES backgrounds.
The brain imaging results also coincided with behavioral differences in how participants from lower and higher SES backgrounds responded to correct guesses. The findings suggest that lower SES circumstances may prompt the brain to adapt to the environment by dampening its response to rewards, which are often scarcer in low SES environments.
“If you’re in a highly resourced environment, with many rewards available, your brain gets tuned in a certain way. If you’re in an environment in which rewards are more scarce, then your brain accommodates the environment in which you live. Instead of being overresponsive to rewards, it seems like these brains, on average, are less responsive, because probably their environment has been less consistent in the availability of rewards,” says John Gabrieli, the Grover Hermann Professor of Health Sciences and Technology, a professor of brain and cognitive sciences, and a member of MIT’s McGovern Institute for Brain Research.
Gabrieli and Rachel Romeo, a former MIT postdoc who is now an assistant professor in the Department of Human Development and Quantitative Methodology at the University of Maryland, are the senior authors of the study. MIT postdoc Alexandra Decker is the lead author of the paper, which appears today in the Journal of Neuroscience.
Reward response
Previous research has shown that children from lower SES backgrounds tend to perform worse on tests of attention and memory, and they are more likely to experience depression and anxiety. However, until now, few studies have looked at the possible association between SES and reward sensitivity.
In the new study, the researchers focused on a part of the brain called the striatum, which plays a significant role in reward response and decision-making. Studies in people and animal models have shown that this region becomes highly active during rewarding experiences.
To investigate potential links between reward sensitivity, the striatum, and socioeconomic status, the researchers recruited more than 100 adolescents from a range of SES backgrounds, as measured by household income and how much education their parents received.
Each of the participants underwent fMRI scanning while they played a guessing game. The participants were shown a series of numbers between 1 and 9, and before each trial, they were asked to guess whether the next number would be greater than or less than 5. They were told that for each correct guess, they would earn an extra dollar, and for each incorrect guess, they would lose 50 cents.
Unbeknownst to the participants, the game was set up to control whether the guess would be correct or incorrect. This allowed the researchers to ensure that each participant had a similar experience, which included periods of abundant rewards or few rewards. In the end, everyone ended up winning the same amount of money (in addition to a stipend that each participant received for participating in the study).
Previous work has shown that the brain appears to track the rate of rewards available. When rewards are abundant, people or animals tend to respond more quickly because they don’t want to miss out on the many available rewards. The researchers saw that in this study as well: When participants were in a period when most of their responses were correct, they tended to respond more quickly.
“If your brain is telling you there’s a really high chance that you’re going to receive a reward in this environment, it’s going to motivate you to collect rewards, because if you don’t act, you’re missing out on a lot of rewards,” Decker says.
Brain scans showed that the degree of activation in the striatum appeared to track fluctuations in the rate of rewards across time, which the researchers think could act as a motivational signal that there are many rewards to collect. The striatum lit up more during periods in which rewards were abundant and less during periods in which rewards were scarce. However, this effect was less pronounced in the children from lower SES backgrounds, suggesting their brains were less attuned to fluctuations in the rate of reward over time.
The researchers also found that during periods of scarce rewards, participants tended to take longer to respond after a correct guess, another phenomenon that has been shown before. It’s unknown exactly why this happens, but two possible explanations are that people are savoring their reward or that they are pausing to update the reward rate. However, once again, this effect was less pronounced in the children from lower SES backgrounds — that is, they did not pause as long after a correct guess during the scarce-reward periods.
“There was a reduced response to reward, which is really striking. It may be that if you’re from a lower SES environment, you’re not as hopeful that the next response will gain similar benefits, because you may have a less reliable environment for earning rewards,” Gabrieli says. “It just points out the power of the environment. In these adolescents, it’s shaping their psychological and brain response to reward opportunity.”
Environmental effects
The fMRI scans performed during the study also revealed that children from lower SES backgrounds showed less activation in the striatum when they guessed correctly, suggesting that their brains have a dampened response to reward.
The researchers hypothesize that these differences in reward sensitivity may have evolved over time, in response to the children’s environments.
“Socioeconomic status is associated with the degree to which you experience rewards over the course of your lifetime,” Decker says. “So, it’s possible that receiving a lot of rewards perhaps reinforces behaviors that make you receive more rewards, and somehow this tunes the brain to be more responsive to rewards. Whereas if you are in an environment where you receive fewer rewards, your brain might become, over time, less attuned to them.”
The study also points out the value of recruiting study subjects from a range of SES backgrounds, which takes more effort but yields important results, the researchers say.
“Historically, many studies have involved the easiest people to recruit, who tend to be people who come from advantaged environments. If we don’t make efforts to recruit diverse pools of participants, we almost always end up with children and adults who come from high-income, high-education environments,” Gabrieli says. “Until recently, we did not realize that principles of brain development vary in relation to the environment in which one grows up, and there was very little evidence about the influence of SES.”
The research was funded by the William and Flora Hewlett Foundation and a Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship.
This year’s holiday greeting (video above) was inspired by research conducted in John Gabrieli’s lab, which found that practicing mindfulness reduced children’s stress levels and negative emotions during the pandemic. These findings contribute to a growing body of evidence that practicing mindfulness can change patterns of brain activity associated with emotions and mental health.
Coloring is one form of mindfulness, or focusing awareness on the present. Visit our postcard collection to download and color your own brain-themed postcards and may the spirit of mindfulness bring you peace in the year ahead!
Funded by philanthropist Lisa Yang, the K. Lisa Yang Postbaccalaureate Scholar Program provides two years of paid laboratory experience, mentorship, and education to recent college graduates from backgrounds underrepresented in neuroscience. This year, two young researchers in McGovern Institute labs, Joseph Itiat and Sam Merrow, are the recipients of the Yang postbac program.
Itiat moved to the United States from Nigeria in 2019 to pursue a degree in psychology and cognitive neuroscience at Temple University. Today, he is a Yang postbac in John Gabrieli’s lab studying the relationship between learning and value processes and their influence on future-oriented decision-making. Ultimately, Itiat hopes to develop models that map the underlying mechanisms driving these processes.
“Being African, with limited research experience and little representation in the domain of neuroscience research,” Itiat says, “I chose to pursue a postbaccalaureate
research program to prepare me for a top graduate school and a career in cognitive neuroscience.”
Merrow first fell in love with science while working at the Barrow Neurological Institute in Arizona during high school. After graduating from Simmons University in Boston, Massachusetts, Merrow joined Guoping Feng’s lab as a Yang postbac to pursue research on glial cells and brain disorders. “As a queer, nonbinary, LatinX person, I have not met anyone like me in my field, nor have I had role models that hold a similar identity to myself,” says Merrow.
“My dream is to one day become a professor, where I will be able to show others that science is for anyone.”
Previous Yang postbacs include Alex Negron, Zoe Pearce, Ajani Stewart, and Maya Taliaferro.
Mental health is the defining public health crisis of our time, according to U.S. Surgeon General Vivek Murthy, and the nation’s youth is at the center of this crisis.
Psychiatrists and pediatricians have sounded an alarm. The mental health of youth in the United States is worsening. Youth visits to emergency departments related to depression, anxiety, and behavioral challenges have been on the rise for years. Suicide rates among young people have escalated, too. Researchers have tracked these trends for more than a decade, and the Covid-19 pandemic only exacerbated the situation.
“It’s all over the news, how shockingly common mental health difficulties are,” says John Gabrieli, the Grover Hermann Professor of Health Sciences and Technology at MIT and an investigator at the McGovern Institute. “It’s worsening by every measure.”
Experts worry that our mental health systems are inadequate to meet the growing need. “This has gone from bad to catastrophic, from my perspective,” says Susan Whitfeld-Gabrieli, a professor of psychology at Northeastern University and a research affiliate at the McGovern Institute.
“We really need to come up with novel interventions that target the neural mechanisms that we believe potentiate depression and anxiety.”
Training the brain
One approach may be to help young people learn to modulate some of the relevant brain circuitry themselves. Evidence is accumulating that practicing mindfulness — focusing awareness on the present, typically through meditation — can change patterns of brain activity associated with emotions and mental health.
“There’s been a steady flow of moderate-size studies showing that when you help people gain mindfulness through training programs, you get all kinds of benefits in terms of people feeling less stress, less anxiety, fewer negative emotions, and sometimes more positive ones as well,” says Gabrieli, who is also a professor of brain and cognitive sciences at MIT. “Those are the things you wish for people.”
“If there were a medicine with as much evidence of its effectiveness as mindfulness, it would be flying off the shelves of every pharmacy.”
– John Gabrieli
Researchers have even begun testing mindfulness-based interventions head-to-head against standard treatments for psychiatric disorders. The results of recent studies involving hundreds of adults with anxiety disorders or depression are encouraging. “It’s just as good as the best medicines and the best behavioral treatments that we know a ton about,” Gabrieli says.
Much mindfulness research has focused on adults, but promising data about the benefits of mindfulness training for children and adolescents is emerging as well. In studies supported by the McGovern Institute’s Poitras Center for Psychiatric Disorders Research in 2019 and 2020, Gabrieli and Whitfield-Gabrieli found that sixth-graders in a Boston middle school who participated in eight weeks of mindfulness training experienced reductions in feelings of stress and increases in sustained attention. More recently, Gabrieli and Whitfeld-Gabrieli’s teams have shown how new tools can support mindfulness training and make it accessible to more children and their families — from a smartphone app that can be used anywhere to real-time neurofeedback inside an MRI scanner.
Isaac Treves (center), a PhD student in the lab of John Gabrieli, is the lead author of two studies which found that mindfulness training may improve children’s mental health. Treves and his co-authors Kimberly Wang (left) and Cindy Li (right) also practice mindfulness in their daily lives. Photo: Steph Stevens
Mindfulness and mental health
Mindfulness is not just a practice, it is a trait — an open, non-judgmental way of attending to experiences that some people exhibit more than others. By assessing individuals’ mindfulness with questionnaires that ask about attention and awareness, researchers have found the trait associates with many measures of mental health. Gabrieli and his team measured mindfulness in children between the ages of eight and ten and found it was highest in those who were most emotionally resilient to the stress they experienced during the Covid-19 pandemic. As the team reported this year in the journal PLOS One, children who were more mindful rated the impact of the pandemic on their own lives lower than other participants in the study. They also reported lower levels of stress, anxiety, and depression.
Mindfulness doesn’t come naturally to everyone, but brains are malleable, and both children and adults can cultivate mindfulness with training and practice. In their studies of middle schoolers, Gabrieli and Whitfeld-Gabrieli showed that the emotional effects of mindfulness training corresponded to measurable changes in the brain: Functional MRI scans revealed changes in regions involved in stress, negative feelings, and focused attention.
Whitfeld-Gabrieli says if mindfulness training makes kids more resilient, it could be a valuable tool for managing symptoms of anxiety and depression before they become severe. “I think it should be part of the standard school day,” she says. “I think we would have a much happier, healthier society if we could be doing this from the ground up.”
Data from Gabrieli’s lab suggests broadly implementing mindfulness training might even pay off in terms of academic achievement. His team found in a 2019 study that middle school students who reported greater levels of mindfulness had, on average, better grades, better scores on standardized tests, fewer absences, and fewer school suspensions than their peers.
Some schools have begun making mindfulness programs available to their students. But those programs don’t reach everyone, and their type and quality vary tremendously. Indeed, not every study of mindfulness training in schools has found the program to significantly benefit participants, which may be because not every approach to mindfulness training is equally effective.
“This is where I think the science matters,” Gabrieli says. “You have to find out what kinds of supports really work and you have to execute them reasonably. A recent report from Gabrieli’s lab offers encouraging news: mindfulness training doesn’t have to be in-person. Gabrieli and his team found that children can benefit from practicing mindfulness at home with the help of an app.
When the pandemic closed schools in 2020, school-based mindfulness programs came to an abrupt halt. Soon thereafter, a group called Inner Explorer had developed a smartphone app that could teach children mindfulness at home. Gabrieli and his team were eager to find out if this easy-access tool could effectively support children’s emotional well-being.
In October of this year, they reported in the journal Mindfulness that after 40 days of app use, children between the ages of eight and ten reported less stress than they had before beginning mindfulness training. Parents reported that their children were also experiencing fewer negative emotions, such as loneliness and fear.
The outcomes suggest a path toward making evidence-based mindfulness training for children broadly accessible. “Tons of people could do this,” says Gabrieli. “It’s super scalable. It doesn’t cost money; you don’t have to go somewhere. We’re very excited about that.”
Visualizing healthy minds
Mindfulness training may be even more effective when practitioners can visualize what’s happening in their brains. In Whitfeld-Gabrieli’s lab, teenagers have had a chance to slide inside an MRI scanner and watch their brain activity shift in real time as they practiced mindfulness meditation. The visualization they see focuses on the brain’s default mode network (DMN), which is most active when attention is not focused on a particular task. Certain patterns of activity in the DMN have been linked to depression, anxiety, and other psychiatric conditions, and mindfulness training may help break these patterns.
McGovern research affiliate Susan Whitfield-Gabrieli in the Martinos Imaging Center. Photo: Caitlin Cunningham
Whitfeld-Gabrieli explains that when the mind is free to wander, two hubs of the DMN become active. “Typically, that means we’re engaged in some kind of mental time travel,” she says. That might mean reminiscing about the past or planning for the future, but can be more distressing when it turns into obsessive rumination or worry. In people with anxiety, depression, and psychosis, these network hubs are often hyperconnected.
“It’s almost as if they’re hijacked,” Whitfeld-Gabrieli says. “The more they’re correlated, the more psychopathology one might be experiencing. We wanted to unlock that hyperconnectivity for kids who are suffering from depression and anxiety.” She hoped that by replacing thoughts of the past and the future with focus on the present, mindfulness meditation would rein in overactive DMNs, and she wanted a way to encourage kids to do exactly that.
The neurofeedback tool that she and her colleagues created focuses on the DMN as well as separate brain region that is called on during attention-demanding tasks. Activity in those regions is monitored with functional MRI and displayed to users in a game-like visualization. Inside the scanner, participants see how that activity changes as they focus on a meditation or when their mind wanders. As their mind becomes more focused on the present moment, changes in brain activity move a ball toward a target.
Whitfeld-Gabrieli says the real-time feedback was motivating for adolescents who participated in a recent study, who all had histories of anxiety or depression. “They’re training their brain to tune their mind, and they love it,” she says.
The default mode network (DMN) is a large-scale brain network that is active when a person is not focused on the outside world and the brain is at wakeful rest. The DMN is often over-engaged in adolescents with depression and anxiety, as well as teens at risk for these affective disorders (left). DMN activation and connectivity can be “tuned” to a healthier state through the practice of mindfulness (right).
In March, she and her team reported in Molecular Psychiatry that the neurofeedback tool helped those study participants reduce connectivity in the DMN and engage a more desirable brain state. It’s not the first success the team has had with the approach. Previously, they found that the decreases in DMN connectivity brought about by mindfulness meditation with neurofeedback were associated with reduced hallucinations for patients with schizophrenia. Testing the clinical benefits of the approach in teens is on the horizon; Whitfeld-Gabrieli and her collaborators plan to investigate how mindfulness meditation with real-time neurofeedback affects depression symptoms in an upcoming clinical trial.
Whitfeld-Gabrieli emphasizes that the neurofeedback is a training tool, helping users improve mindfulness techniques they can later call on anytime, anywhere. While that training currently requires time inside an MRI scanner, she says it may be possible create an EEG-based version of the approach, which could be deployed in doctors’ offices and other more accessible settings.
Both Gabrieli and Whitfeld-Gabrieli continue to explore how mindfulness training impacts different aspects of mental health, in both children and adults and with a range of psychiatric conditions. Whitfeld-Gabrieli expects it will be one powerful tool for combating a youth mental health crisis for which there will be no single solution. “I think it’s going to take a village,” she says. “We are all going to have to work together, and we’ll have to come up some really innovative ways to help.”
Many studies have found that practicing mindfulness — defined as cultivating an open-minded attention to the present moment — has benefits for children. Children who receive mindfulness training at school have demonstrated improvements in attention and behavior, as well as greater mental health.
When the Covid-19 pandemic began in 2020, sending millions of students home from school, a group of MIT researchers wondered if remote, app-based mindfulness practices could offer similar benefits. In a study conducted during 2020 and 2021, they report that children who used a mindfulness app at home for 40 days showed improvements in several aspects of mental health, including reductions in stress and negative emotions such as loneliness and fear.
The findings suggest that remote, app-based mindfulness interventions, which could potentially reach a larger number of children than school-based approaches, could offer mental health benefits, the researchers say.
“There is growing and compelling scientific evidence that mindfulness can support mental well-being and promote mental health in diverse children and adults,” says John Gabrieli, the Grover Hermann Professor of Health Sciences and Technology, a professor of brain and cognitive sciences at MIT, and the senior author of the study, which appears this week in the journal Mindfulness.
Researchers in Gabrieli’s lab also recently reported that children who showed higher levels of mindfulness were more emotionally resilient to the negative impacts of the Covid-19 pandemic.
“To some extent, the impact of Covid is out of your control as an individual, but your ability to respond to it and to interpret it may be something that mindfulness can help with,” says MIT graduate student Isaac Treves, who is the lead author of both studies.
Pandemic resilience
After the pandemic began in early 2020, Gabrieli’s lab decided to investigate the effects of mindfulness on children who had to leave school and isolate from friends. In a study that appeared in the journal PLOS One in July, the researchers explored whether mindfulness could boost children’s resilience to negative emotions that the pandemic generated, such as frustration and loneliness.
Working with students between 8 and 10 years old, the researchers measured the children’s mindfulness using a standardized assessment that captures their tendency to blame themselves, ruminate on negative thoughts, and suppress their feelings.
The researchers also asked the children questions about how much the pandemic had affected different aspects of their lives, as well as questions designed to assess their levels of anxiety, depression, stress, and negative emotions such as worry or fear.
Among children who showed the highest levels of mindfulness, there was no correlation between how much the pandemic impacted them and negative feelings. However, in children with lower levels of mindfulness, there was a strong correlation between Covid-19 impact and negative emotions.
The children in this study did not receive any kind of mindfulness training, so their responses reflect their tendency to be mindful at the time they answered the researchers’ questions. The findings suggest that children with higher levels of mindfulness were less likely to get caught up in negative emotions or blame themselves for the negative things they experienced during the pandemic.
“This paper was our best attempt to look at mindfulness specifically in the context of Covid and to think about what are the factors that may help children adapt to the changing circumstances,” Treves says. “The takeaway is not that we shouldn’t worry about pandemics because we can just help the kids with mindfulness. People are able to be resilient when they’re in systems that support them, and in families that support them.”
Remote interventions
The researchers then built on that study by exploring whether a remote, app-based intervention could effectively increase mindfulness and improve mental health. Researchers in Gabrieli’s lab have previously shown that students who received mindfulness training in middle school showed better academic performance, received fewer suspensions, and reported less stress than those who did not receive the training.
For the new study, reported today in Mindfulness, the researchers worked with the same children they had recruited for the PLOS One study and divided them into three groups of about 80 students each.
One group received mindfulness training through an app created by Inner Explorer, a nonprofit that also develops school-based meditation programs. Those children were instructed to engage in mindfulness training five days a week, including relaxation exercises, breathing exercises, and other forms of meditation.
For comparison purposes, the other two groups were asked to use an app for listening to audiobooks (not related to mindfulness). One group was simply given the audiobook app and encouraged to listen at their own pace, while the other group also had weekly one-on-one virtual meetings with a facilitator.
At the beginning and end of the study, the researchers evaluated each participant’s levels of mindfulness, along with measures of mental health such as anxiety, stress, and depression. They found that in all three groups, mental health improved over the course of the eight-week study, and each group also showed increases in mindfulness and prosociality (engaging in helpful behavior).
Additionally, children in the mindfulness group showed some improvements that the other groups didn’t, including a more significant decrease in stress. They also found that parents in the mindfulness group reported that their children experienced more significant decreases in negative emotions such as anger and sadness. Students who practiced the mindfulness exercises the most days showed the greatest benefits.
The researchers were surprised to see that there were no significant differences in measures of anxiety and depression between the mindfulness group and audiobook groups; they hypothesize that may be because students who interacted with a facilitator in one of the audiobook groups also experienced beneficial effects on their mental health.
Overall, the findings suggest that there is value in remote, app-based mindfulness training, especially if children engage with the exercises consistently and receive encouragement from parents, the researchers say. Apps also offer the ability to reach a larger number of children than school-based programs, which require more training and resources.
“There are a lot of great ways to incorporate mindfulness training into schools, but in general, it’s more resource-intensive than having people download an app. So, in terms of pure scalability and cost-effectiveness, apps are useful,” Treves says. “Another good thing about apps is that the kids can go at their own pace and repeat practices that they like, so there’s more freedom of choice.”
The research was funded by the Chan Zuckerberg Initiative as part of the Reach Every Reader Project, the National Institutes of Health, and the National Science Foundation.
From summer internships as an undergraduate studying neuroscience at the University of Notre Dame, Sadie Zacharek developed interests in areas ranging from neuroimaging to developmental psychopathologies, from basic-science research to clinical translation. When she interviewed with John Gabrieli, the Grover Hermann Professor of Health Sciences and Technology and Cognitive Neuroscience, for a position in his lab as a graduate fellow, everything came together.
“The brain provides a window not only into dysfunction but also into response to treatment,” she says. “John and I both wanted to explore how we might use neuroimaging as a step toward personalized medicine.”
Zacharek joined the Gabrieli lab in 2020 and currently holds the Sheldon and Janet Razin’59 Fellowship for 2023-2024. In the Gabrieli lab, she has been designing and helping launch studies focusing on the neural mechanisms driving childhood depression and social anxiety disorder with the aim of developing strategies to predict which treatments will be most effective for individual patients.
Helping children and adults
“Depression in children is hugely understudied,” says Zacharek. “Most of the research has focused on adult and adolescent depression.” But the clinical presentation differs in the two groups, she says. “In children, irritability can be the primary presenting symptom rather than melancholy.” To get to the root of childhood depression, she is exploring both the brain basis of the disorder and how the parent-child relationship might influence symptoms. “Parents help children develop their emotion-regulation skills,” she says. “Knowing the underlying mechanisms could, in family-focused therapy, help them turn a ‘downward spiral’ into irritability, into an ‘upward spiral,’ away from it.”
The studies she is conducting include functional magnetic resonance imaging (fMRI) of children to explore their brain responses to positive and negative stimuli, fMRI of both the child and parent to compare maps of their brains’ functional connectivity, and magnetic resonance spectroscopy to explore the neurochemical environment of both, including quantities of neurometabolites that indicate inflammation (higher levels have been found to correlate with depressive pathology).
“If we could find a normative range for neurochemicals and then see how far someone has deviated in depression, or a neural signature of elevated activity in a brain region, that could serve as a biomarker for future interventions,” she says. “Such a biomarker would be especially relevant for children given that they are less able to articulately convey their symptoms or internal experience.”
“The brain provides a window not only into dysfunction but also into response to treatment.” – Sadie Zacharek
Social anxiety disorder is a chronic and disabling condition that affects about 7.1 percent of U.S. adults. Treatment usually involves cognitive behavior therapy (CBT), and then, if there is limited response, the addition of a selective serotonin reuptake inhibitor (SSRI), as an anxiolytic.
But what if research could reveal the key neurocircuitry of social anxiety disorder as well as changes associated with treatment? That could open the door to predicting treatment outcome.
Zacharek is collecting neuroimaging data, as well as clinical assessments, from participants. The participants diagnosed with social anxiety disorder will then undergo 12 weeks of group CBT, followed by more data collection, and then individual CBT for 12 weeks plus an SSRI for those who do not benefit from the group CBT. The results from those two time points will help determine the best treatment for each person.
“We hope to build a predictive model that could enable clinicians to scan a new patient and select the optimal treatment,” says Zacharek. “John’s many long-standing relationships with clinicians in this area make all of these translational studies possible.”
What does a healthy relationship between neuroscience and society look like? How do we set the conditions for that relationship to flourish? Researchers and staff at the McGovern Institute and the MIT Museum have been exploring these questions with a five-month planning grant from the Dana Foundation.
Between October 2022 and March 2023, the team tested the potential for an MIT Center for Neuroscience and Society through a series of MIT-sponsored events that were attended by students and faculty of nearby Cambridge Public Schools. The goal of the project was to learn more about what happens when the distinct fields of neuroscience, ethics, and public engagement are brought together to work side-by-side.
Gabrieli lab members Sadie Zacharek (left) and Shruti Nishith (right) demonstrate how the MRI mock scanner works with a student volunteer from the Cambridge Public Schools. Photo: Emma Skakel, MIT Museum
Middle schoolers visit McGovern
Over four days in February, more than 90 sixth graders from Rindge Avenue Upper Campus (RAUC) in Cambridge, Massachusetts, visited the McGovern Institute and participated in hands-on experiments and discussions about the ethical, legal, and social implications of neuroscience research. RAUC is one of four middle schools in the city of Cambridge with an economically, racially, and culturally diverse student population. The middle schoolers interacted with an MIT team led by McGovern Scientific Advisor Jill R. Crittenden, including seventeen McGovern neuroscientists, three MIT Museum outreach coordinators, and neuroethicist Stephanie Bird, a member of the Dana Foundation planning grant team.
“It is probably the only time in my life I will see a real human brain.” – RAUC student
The students participated in nine activities each day, including trials of brain-machine interfaces, close-up examinations of preserved human brains, a tour of McGovern’s imaging center in which students watched as their teacher’s brain was scanned, and a visit to the MIT Museum’s interactive Artificial Intelligence Gallery.
Imagine-IT, a brain-machine interface designed by a team of middle school students during a visit to the McGovern Institute.
To close out their visit, students worked in groups alongside experts to invent brain-computer interfaces designed to improve or enhance human abilities. At each step, students were introduced to ethical considerations through consent forms, questions regarding the use of animal and human brains, and the possible impacts of their own designs on individuals and society.
“I admit that prior to these four days, I would’ve been indifferent to the inclusion of children’s voices in a discussion about technically complex ethical questions, simply because they have not yet had any opportunity to really understand how these technologies work,” says one researcher involved in the visit. “But hearing the students’ questions and ideas has changed my perspective. I now believe it is critically important that all age groups be given a voice when discussing socially relevant issues, such as the ethics of brain computer interfaces or artificial intelligence.”
For more information on the proposed MIT Center for Neuroscience and Society, visit the MIT Museum website.