McGovern lab manager creates art inspired by science

Michal De-Medonsa, technical associate and manager of the Jazayeri lab, created a large wood mosaic for her lab. We asked Michal to tell us a bit about the mosaic, her inspiration, and how in the world she found the time to create such an exquisitely detailed piece of art.

______

Jazayeri lab manager Michal De-Medonsa holds her wood mosaic entitled “JazLab.” Photo: Caitlin Cunningham

Describe this piece of art for us.

To make a piece this big (63″ x 15″), I needed several boards of padauk wood. I could have just etched each board as a whole unit and glued the 13 or so boards to each other, but I didn’t like the aesthetic. The grain and color within each board would look beautiful, but the line between each board would become obvious, segmented, and jarring when contrasted with the uniformity within each board. Instead, I cut out about 18 separate squares out of each board, shuffled all 217 pieces around, and glued them to one another in a mosaic style with a larger pattern (inspired by my grandfather’s work in granite mosaics).

What does this mosaic mean to you?

Once every piece was shuffled, the lines between single squares were certainly visible, but as a feature, were far less salient than had the full boards been glued to one another. As I was working on the piece, I was thinking about how the same concept holds true in society. Even if there is diversity within a larger piece (an institution, for example), there is a tendency for groups to form within the larger piece (like a full board), diversity becomes separated. This isn’t a criticism of any institution, it is human nature to form in-groups. It’s subconscious (so perhaps the criticism is that we, as a society, don’t give that behavior enough thought and try to ameliorate our reflex to group with those who are “like us”). The grain of the wood is uniform, oriented in the same direction, the two different cutting patterns create a larger pattern within the piece, and there are smaller patterns between and within single pieces. I love creating and finding patterns in my art (and life). Alfred North Whitehead wrote that “understanding is the apperception of pattern as such.” True, I believe, in science, art, and the humanities. What a great goal – to understand.​

Tell us about the name of this piece.

Every large piece I make is inspired by the people I make it for, and is therefore named after them. This piece is called JazLab. Having lived around the world, and being a descendant of a nomadic people, I don’t consider any one place home, but am inspired by every place I’ve lived. In all of my work, you can see elements of my Jewish heritage, antiquity, the Middle East, Africa, and now MIT.

How has MIT influenced your art?

MIT has influenced me in the most obvious way MIT could influence anyone – technology. Before this series, I made very small versions of this type of work, designing everything on a piece of paper with a pencil and a ruler, and making every cut by hand. Each of those small squares would take ~2 hours (depending on the design), and I was limited to softer woods.

Since coming to MIT, I learned that I had access to the Hobby Shop with a huge array of power tools and software. I began designing my patterns on the computer and used power tools to make the cuts. I actually struggled a lot with using the tech – not because it was hard (which, it really is when you just start out), but rather because it felt like I was somehow “cheating.” How is this still art? And although this is something I still think about often, I’ve tried to look at it in this way: every generation, in their time, used the most advanced technology. The beauty and value of the piece doesn’t come from how many bruises, cuts, and blisters your machinery gave you, or whether you scraped the wood out with your nails, but rather, once you were given a tool, what did you decide to do with it? My pieces still have a huge hand-on-material work, but I am working on accepting that using technology in no way devalues the work.

Given your busy schedule with the Jazayeri lab, how did you find the time to create this piece of art?

I took advantage of any free hour I could. Two days out of the week, the hobby shop is open until 9pm, and I would additionally go every Saturday. For the parts that didn’t require the shop (adjusting each piece individually with a carving knife, assembling them, even most of the glueing) I would just work  at home – often very late into the night.

______

JazLab is on display in the Jazayeri lab in MIT Bldg 46.

Controlling our internal world

Olympic skaters can launch, perform multiple aerial turns, and land gracefully, anticipating imperfections and reacting quickly to correct course. To make such elegant movements, the brain must have an internal model of the body to control, predict, and make almost instantaneous adjustments to motor commands. So-called “internal models” are a fundamental concept in engineering and have long been suggested to underlie control of movement by the brain, but what about processes that occur in the absence of movement, such as contemplation, anticipation, planning?

Using a novel combination of task design, data analysis, and modeling, MIT neuroscientist Mehrdad Jazayeri and colleagues now provide compelling evidence that the core elements of an internal model also control purely mental processes in a study published in Nature Neuroscience.

“During my thesis I realized that I’m interested, not so much in how our senses react to sensory inputs, but instead in how my internal model of the world helps me make sense of those inputs,”says Jazayeri, the Robert A. Swanson Career Development Professor of Life Sciences, a member of MIT’s McGovern Institute for Brain Research, and the senior author of the study.

Indeed, understanding the building blocks exerting control of such mental processes could help to paint a better picture of disruptions in mental disorders, such as schizophrenia.

Internal models for mental processes

Scientists working on the motor system have long theorized that the brain overcomes noisy and slow signals using an accurate internal model of the body. This internal model serves three critical functions: it provides motor to control movement, simulates upcoming movement to overcome delays, and uses feedback to make real-time adjustments.

“The framework that we currently use to think about how the brain controls our actions is one that we have borrowed from robotics: we use controllers, simulators, and sensory measurements to control machines and train operators,” explains Reza Shadmehr, a professor at the Johns Hopkins School of Medicine who was not involved with the study. “That framework has largely influenced how we imagine our brain controlling our movements.”

Jazazyeri and colleagues wondered whether the same framework might explain the control principles governing mental states in the absence of any movement.

“When we’re simply sitting, thoughts and images run through our heads and, fundamental to intellect, we can control them,” explains lead author Seth Egger, a former postdoctoral associate in the Jazayeri lab and now at Duke University.

“We wanted to find out what’s happening between our ears when we are engaged in thinking,” says Egger.

Imagine, for example, a sign language interpreter keeping up with a fast speaker. To track speech accurately, the translator continuously anticipates where the speech is going, rapidly adjusting when the actual words deviate from the prediction. The interpreter could be using an internal model to anticipate upcoming words, and use feedback to make adjustments on the fly.

1-2-3…Go

Hypothesizing about how the components of an internal model function in scenarios such as translation is one thing. Cleanly measuring and proving the existence of these elements is much more complicated as the activity of the controller, simulator, and feedback are intertwined. To tackle this problem, Jazayeri and colleagues devised a clever task with primate models in which the controller, simulator, and feedback act at distinct times.

In this task, called “1-2-3-Go,” the animal sees three consecutive flashes (1, 2, and 3) that form a regular beat, and learns to make an eye movement (Go) when they anticipate the 4th flash should occur. During the task, researchers measured neural activity in a region of the frontal cortex they had previously linked to the timing of movement.

Jazayeri and colleagues had clear predictions about when the controller would act (between the third flash and “Go”) and when feedback would be engaged (with each flash of light). The key surprise came when researchers saw evidence for the simulator anticipating the third flash. This unexpected neural activity has dynamics that resemble the controller, but was not associated with a response. In other words, the researchers uncovered a covert plan that functions as the simulator, thus uncovering all three elements of an internal model for a mental process, the planning and anticipation of “Go” in the “1-2-3-Go” sequence.

“Jazayeri’s work is important because it demonstrates how to study mental simulation in animals,” explains Shadmehr, “and where in the brain that simulation is taking place.”

Having found how and where to measure an internal model in action, Jazayeri and colleagues now plan to ask whether these control strategies can explain how primates effortlessly generalize their knowledge from one behavioral context to another. For example, how does an interpreter rapidly adjust when someone with widely different speech habits takes the podium? This line of investigation promises to shed light on high-level mental capacities of the primate brain that simpler animals seem to lack, that go awry in mental disorders, and that designers of artificial intelligence systems so fondly seek.

Mehrdad Jazayeri and Hazel Sive awarded 2019 School of Science teaching prizes

The School of Science has announced that the recipients of the school’s 2019 Teaching Prizes for Graduate and Undergraduate Education are Mehrdad Jazayeri and Hazel Sive. Nominated by peers and students, the faculty members chosen to receive these prizes are selected to acknowledge their exemplary efforts in teaching graduate and undergraduate students.

Mehrdad Jazayeri, an associate professor in the Department of Brain and Cognitive Sciences and investigator at the McGovern Institute for Brain Research, is awarded the prize for graduate education for 9.014 (Quantitative Methods and Computational Models in Neuroscience). Earlier this year, he was recognized for excellence in graduate teaching by the Department of Brain and Cognitive Sciences and won a Graduate Student Council teaching award in 2016. In their nomination letters, peers and students alike remarked that he displays not only great knowledge, but extraordinary skill in teaching, most notably by ensuring everyone learns the material. Jazayeri does so by considering students’ diverse backgrounds and contextualizing subject material to relatable applications in various fields of science according to students’ interests. He also improves and adjusts the course content, pace, and intensity in response to student input via surveys administered throughout the semester.

Hazel Sive, a professor in the Department of Biology, member of the Whitehead Institute for Biomedical Research, and associate member of the Broad Institute of MIT and Harvard, is awarded the prize for undergraduate education. A MacVicar Faculty Fellow, she has been recognized with MIT’s highest undergraduate teaching award in the past, as well as the 2003 School of Science Teaching Prize for Graduate Education. Exemplified by her nominations, Sive’s laudable teaching career at MIT continues to receive praise from undergraduate students who take her classes. In recent post-course evaluations, students commended her exemplary and dedicated efforts to her field and to their education.

The School of Science welcomes nominations for the teaching prize in the spring semester of each academic year. Nominations can be submitted at the school’s website.

Do thoughts have mass?

As part of our Ask the Brain series, we received the question, “Do thoughts have mass?” The following is a guest blog post by Michal De-Medonsa, technical associate and manager of the Jazayeri lab, who tapped into her background in philosophy to answer this intriguing question.

_____

Portrat of Michal De-Medonsa
Jazayeri lab manager (and philosopher) Michal De-Medonsa.

To answer the question, “Do thoughts have mass?” we must, like any good philosopher, define something that already has a definition – “thoughts.”

Logically, we can assert that thoughts are either metaphysical or physical (beyond that, we run out of options). If our definition of thought is metaphysical, it is safe to say that metaphysical thoughts do not have mass since they are by definition not physical, and mass is a property of a physical things. However, if we define a thought as a physical thing, it becomes a little trickier to determine whether or not it has mass.

A physical definition of thoughts falls into (at least) two subgroups – physical processes and physical parts. Take driving a car, for example – a parts definition describes the doors, motor, etc. and has mass. A process definition of a car being driven, turning the wheel, moving from point A to point B, etc. does not have mass. The process of driving is a physical process that involves moving physical matter, but we wouldn’t say that the act of driving has mass. The car itself, however, is an example of physical matter, and as any cyclist in the city of Boston is well aware  – cars have mass. It’s clear that if we define a thought as a process, it does not have mass, and if we define a thought as physical parts, it does have mass – so, which one is it? In order to resolve our issue, we have to be incredibly precise with our definition. Is a thought a process or parts? That is, is a thought more like driving or more like a car?

In order to resolve our issue, we have to be incredibly precise with our definition of the word thought.

Both physical definitions (process and parts) have merit. For a parts definition, we can look at what is required for a thought – neurons, electrical signals, and neurochemicals, etc. This type of definition becomes quite imprecise and limiting. It doesn’t seem too problematic to say that the neurons, neurochemicals, etc. are themselves the thought, but this style of definition starts to fall apart when we try to include all the parts involved (e.g. blood flow, connective tissue, outside stimuli). When we look at a face, the stimuli received by the visual cortex is part of the thought – is the face part of a thought? When we look at our phone, is the phone itself part of a thought? A parts definition either needs an arbitrary limit, or we end up having to include all possible parts involved in the thought, ending up with an incredibly convoluted and effectively useless definition.

A process definition is more versatile and precise, and it allows us to include all the physical parts in a more elegant way. We can now say that all the moving parts are included in the process without saying that they themselves are the thought. That is, we can say blood flow is included in the process without saying that blood flow itself is part of the thought. It doesn’t sound ridiculous to say that a phone is part of the thought process. If we subscribe to the parts definition, however, we’re forced to say that part of the mass of a thought comes from the mass of a phone. A process definition allows us to be precise without being convoluted, and allows us to include outside influences without committing to absurd definitions.

Typical of a philosophical endeavor, we’re left with more questions and no simple answer. However, we can walk away with three conclusions.

  1. A process definition of “thought” allows for elegance and the involvement of factors outside the “vacuum” of our physical body, however, we lose out on some function by not describing a thought by its physical parts.
  2. The colloquial definition of “thought” breaks down once we invite a philosopher over to break it down, but this is to be expected – when we try to break something down, sometimes, it will break down. What we should be aware of is that if we want to use the word in a rigorous scientific framework, we need a rigorous scientific definition.
  3. Most importantly, it’s clear that we need to put a lot of work into defining exactly what we mean by “thought” – a job well suited to a scientifically-informed philosopher.

Michal De-Medonsa earned her bachelor’s degree in neuroscience and philosophy from Johns Hopkins University in 2012 and went on to receive her master’s degree in history and philosophy of science at the University of Pittsburgh in 2015. She joined the Jazayeri lab in 2018 as a lab manager/technician and spends most of her free time rock climbing, doing standup comedy, and woodworking at the MIT Hobby Shop. 

_____

Do you have a question for The Brain? Ask it here.

How expectation influences perception

For decades, research has shown that our perception of the world is influenced by our expectations. These expectations, also called “prior beliefs,” help us make sense of what we are perceiving in the present, based on similar past experiences. Consider, for instance, how a shadow on a patient’s X-ray image, easily missed by a less experienced intern, jumps out at a seasoned physician. The physician’s prior experience helps her arrive at the most probable interpretation of a weak signal.

The process of combining prior knowledge with uncertain evidence is known as Bayesian integration and is believed to widely impact our perceptions, thoughts, and actions. Now, MIT neuroscientists have discovered distinctive brain signals that encode these prior beliefs. They have also found how the brain uses these signals to make judicious decisions in the face of uncertainty.

“How these beliefs come to influence brain activity and bias our perceptions was the question we wanted to answer,” says Mehrdad Jazayeri, the Robert A. Swanson Career Development Professor of Life Sciences, a member of MIT’s McGovern Institute for Brain Research, and the senior author of the study.

The researchers trained animals to perform a timing task in which they had to reproduce different time intervals. Performing this task is challenging because our sense of time is imperfect and can go too fast or too slow. However, when intervals are consistently within a fixed range, the best strategy is to bias responses toward the middle of the range. This is exactly what animals did. Moreover, recording from neurons in the frontal cortex revealed a simple mechanism for Bayesian integration: Prior experience warped the representation of time in the brain so that patterns of neural activity associated with different intervals were biased toward those that were within the expected range.

MIT postdoc Hansem Sohn, former postdoc Devika Narain, and graduate student Nicolas Meirhaeghe are the lead authors of the study, which appears in the July 15 issue of Neuron.

Ready, set, go

Statisticians have known for centuries that Bayesian integration is the optimal strategy for handling uncertain information. When we are uncertain about something, we automatically rely on our prior experiences to optimize behavior.

“If you can’t quite tell what something is, but from your prior experience you have some expectation of what it ought to be, then you will use that information to guide your judgment,” Jazayeri says. “We do this all the time.”

In this new study, Jazayeri and his team wanted to understand how the brain encodes prior beliefs, and put those beliefs to use in the control of behavior. To that end, the researchers trained animals to reproduce a time interval, using a task called “ready-set-go.” In this task, animals measure the time between two flashes of light (“ready” and “set”) and then generate a “go” signal by making a delayed response after the same amount of time has elapsed.

They trained the animals to perform this task in two contexts. In the “Short” scenario, intervals varied between 480 and 800 milliseconds, and in the “Long” context, intervals were between 800 and 1,200 milliseconds. At the beginning of the task, the animals were given the information about the context (via a visual cue), and therefore knew to expect intervals from either the shorter or longer range.

Jazayeri had previously shown that humans performing this task tend to bias their responses toward the middle of the range. Here, they found that animals do the same. For example, if animals believed the interval would be short, and were given an interval of 800 milliseconds, the interval they produced was a little shorter than 800 milliseconds. Conversely, if they believed it would be longer, and were given the same 800-millisecond interval, they produced an interval a bit longer than 800 milliseconds.

“Trials that were identical in almost every possible way, except the animal’s belief led to different behaviors,” Jazayeri says. “That was compelling experimental evidence that the animal is relying on its own belief.”

Once they had established that the animals relied on their prior beliefs, the researchers set out to find how the brain encodes prior beliefs to guide behavior. They recorded activity from about 1,400 neurons in a region of the frontal cortex, which they have previously shown is involved in timing.

During the “ready-set” epoch, the activity profile of each neuron evolved in its own way, and about 60 percent of the neurons had different activity patterns depending on the context (Short versus Long). To make sense of these signals, the researchers analyzed the evolution of neural activity across the entire population over time, and found that prior beliefs bias behavioral responses by warping the neural representation of time toward the middle of the expected range.

“We have never seen such a concrete example of how the brain uses prior experience to modify the neural dynamics by which it generates sequences of neural activities, to correct for its own imprecision. This is the unique strength of this paper: bringing together perception, neural dynamics, and Bayesian computation into a coherent framework, supported by both theory and measurements of behavior and neural activities,” says Mate Lengyel, a professor of computational neuroscience at Cambridge University, who was not involved in the study.

Embedded knowledge

Researchers believe that prior experiences change the strength of connections between neurons. The strength of these connections, also known as synapses, determines how neurons act upon one another and constrains the patterns of activity that a network of interconnected neurons can generate. The finding that prior experiences warp the patterns of neural activity provides a window onto how experience alters synaptic connections. “The brain seems to embed prior experiences into synaptic connections so that patterns of brain activity are appropriately biased,” Jazayeri says.

As an independent test of these ideas, the researchers developed a computer model consisting of a network of neurons that could perform the same ready-set-go task. Using techniques borrowed from machine learning, they were able to modify the synaptic connections and create a model that behaved like the animals.

These models are extremely valuable as they provide a substrate for the detailed analysis of the underlying mechanisms, a procedure that is known as “reverse-engineering.” Remarkably, reverse-engineering the model revealed that it solved the task the same way the monkeys’ brain did. The model also had a warped representation of time according to prior experience.

The researchers used the computer model to further dissect the underlying mechanisms using perturbation experiments that are currently impossible to do in the brain. Using this approach, they were able to show that unwarping the neural representations removes the bias in the behavior. This important finding validated the critical role of warping in Bayesian integration of prior knowledge.

The researchers now plan to study how the brain builds up and slowly fine-tunes the synaptic connections that encode prior beliefs as an animal is learning to perform the timing task.

The research was funded by the Center for Sensorimotor Neural Engineering, the Netherlands Scientific Organization, the Marie Sklodowska Curie Reintegration Grant, the National Institutes of Health, the Sloan Foundation, the Klingenstein Foundation, the Simons Foundation, the McKnight Foundation, and the McGovern Institute.

How we make complex decisions

When making a complex decision, we often break the problem down into a series of smaller decisions. For example, when deciding how to treat a patient, a doctor may go through a hierarchy of steps — choosing a diagnostic test, interpreting the results, and then prescribing a medication.

Making hierarchical decisions is straightforward when the sequence of choices leads to the desired outcome. But when the result is unfavorable, it can be tough to decipher what went wrong. For example, if a patient doesn’t improve after treatment, there are many possible reasons why: Maybe the diagnostic test is accurate only 75 percent of the time, or perhaps the medication only works for 50 percent of the patients. To decide what do to next, the doctor must take these probabilities into account.

In a new study, MIT neuroscientists explored how the brain reasons about probable causes of failure after a hierarchy of decisions. They discovered that the brain performs two computations using a distributed network of areas in the frontal cortex. First, the brain computes confidence over the outcome of each decision to figure out the most likely cause of a failure, and second, when it is not easy to discern the cause, the brain makes additional attempts to gain more confidence.

“Creating a hierarchy in one’s mind and navigating that hierarchy while reasoning about outcomes is one of the exciting frontiers of cognitive neuroscience,” says Mehrdad Jazayeri, the Robert A. Swanson Career Development Professor of Life Sciences, a member of MIT’s McGovern Institute for Brain Research, and the senior author of the study.

MIT graduate student Morteza Sarafyzad is the lead author of the paper, which appears in Science on May 16.

Hierarchical reasoning

Previous studies of decision-making in animal models have focused on relatively simple tasks. One line of research has focused on how the brain makes rapid decisions by evaluating momentary evidence. For example, a large body of work has characterized the neural substrates and mechanisms that allow animals to categorize unreliable stimuli on a trial-by-trial basis. Other research has focused on how the brain chooses among multiple options by relying on previous outcomes across multiple trials.

“These have been very fruitful lines of work,” Jazayeri says. “However, they really are the tip of the iceberg of what humans do when they make decisions. As soon as you put yourself in any real decision-making situation, be it choosing a partner, choosing a car, deciding whether to take this drug or not, these become really complicated decisions. Oftentimes there are many factors that influence the decision, and those factors can operate at different timescales.”

The MIT team devised a behavioral task that allowed them to study how the brain processes information at multiple timescales to make decisions. The basic design was that animals would make one of two eye movements depending on whether the time interval between two flashes of light was shorter or longer than 850 milliseconds.

A twist required the animals to solve the task through hierarchical reasoning: The rule that determined which of the two eye movements had to be made switched covertly after 10 to 28 trials. Therefore, to receive reward, the animals had to choose the correct rule, and then make the correct eye movement depending on the rule and interval. However, because the animals were not instructed about the rule switches, they could not straightforwardly determine whether an error was caused because they chose the wrong rule or because they misjudged the interval.

The researchers used this experimental design to probe the computational principles and neural mechanisms that support hierarchical reasoning. Theory and behavioral experiments in humans suggest that reasoning about the potential causes of errors depends in large part on the brain’s ability to measure the degree of confidence in each step of the process. “One of the things that is thought to be critical for hierarchical reasoning is to have some level of confidence about how likely it is that different nodes [of a hierarchy] could have led to the negative outcome,” Jazayeri says.

The researchers were able to study the effect of confidence by adjusting the difficulty of the task. In some trials, the interval between the two flashes was much shorter or longer than 850 milliseconds. These trials were relatively easy and afforded a high degree of confidence. In other trials, the animals were less confident in their judgments because the interval was closer to the boundary and difficult to discriminate.

As they had hypothesized, the researchers found that the animals’ behavior was influenced by their confidence in their performance. When the interval was easy to judge, the animals were much quicker to switch to the other rule when they found out they were wrong. When the interval was harder to judge, the animals were less confident in their performance and applied the same rule a few more times before switching.

“They know that they’re not confident, and they know that if they’re not confident, it’s not necessarily the case that the rule has changed. They know they might have made a mistake [in their interval judgment],” Jazayeri says.

Decision-making circuit

By recording neural activity in the frontal cortex just after each trial was finished, the researchers were able to identify two regions that are key to hierarchical decision-making. They found that both of these regions, known as the anterior cingulate cortex (ACC) and dorsomedial frontal cortex (DMFC), became active after the animals were informed about an incorrect response. When the researchers analyzed the neural activity in relation to the animals’ behavior, it became clear that neurons in both areas signaled the animals’ belief about a possible rule switch. Notably, the activity related to animals’ belief was “louder” when animals made a mistake after an easy trial, and after consecutive mistakes.

The researchers also found that while these areas showed similar patterns of activity, it was activity in the ACC in particular that predicted when the animal would switch rules, suggesting that ACC plays a central role in switching decision strategies. Indeed, the researchers found that direct manipulation of neural activity in ACC was sufficient to interfere with the animals’ rational behavior.

“There exists a distributed circuit in the frontal cortex involving these two areas, and they seem to be hierarchically organized, just like the task would demand,” Jazayeri says.

Daeyeol Lee, a professor of neuroscience, psychology, and psychiatry at Yale School of Medicine, says the study overcomes what has been a major obstacle in studying this kind of decision-making, namely, a lack of animal models to study the dynamics of brain activity at single-neuron resolution.

“Sarafyazd and Jazayeri have developed an elegant decision-making task that required animals to evaluate multiple types of evidence, and identified how the two separate regions in the medial frontal cortex are critically involved in handling different sources of errors in decision making,” says Lee, who was not involved in the research. “This study is a tour de force in both rigor and creativity, and peels off another layer of mystery about the prefrontal cortex.”

Mehrdad Jazayeri

The long-term objective of the Jazayeri lab is to develop a mathematical framework for understanding the link between the brain and the mind. To tackle this problem, the lab records and perturbs brain signals in animal models while they perform mental computations. They use normative theories, computational models, and artificial neural networks to understand the building blocks of the mind in terms of the mechanisms and algorithms implemented by the brain.

The lab currently focuses on the following mental computations: (1) anticipation and planning, (2) integration and inference, (3) hierarchical and counterfactual reasoning, and (4) mental navigation.

Meeting of the minds

In the summer of 2006, before their teenage years began, Mahdi Ramadan and Alexi Choueiri were spirited from their homes amid political unrest in Lebanon. Evacuated on short notice by the U.S. Marines, they were among 2,000 refugees transported to the U.S. on the aircraft carrier USS Nashville.

The two never met in their homeland, nor on the transatlantic journey, and after arriving in the U.S. they went their separate ways. Ramadan and his family moved to Seattle, Washington. Choueiri’s family settled in Chandler, Arizona, where they already had some extended family.

Yet their paths converged 11 years later as graduate students in MIT’s Department of Brain and Cognitive Sciences (BCS). One day last fall, on a walk across campus, Ramadan and Choueiri slowly unraveled their connection. With increasing excitement, they narrowed it down by year, by month, and eventually, by boat, to discover just how closely their lives had once come to one another.

Lebanon, the only Middle Eastern country without a desert, enjoys a lush, Mediterranean climate. Amid this natural beauty, though, the country struggles under the weight of deep political and cultural divides that sometimes erupt into conflict.

Despite different Lebanese cultural backgrounds — Ramadan’s family is Muslim and Choueiri’s Christian — they have had remarkably similar experiences as refugees from Lebanon. Both credit those experiences with motivating their interest in neuroscience. Questions about human behavior — How do people form beliefs about the world? Can those beliefs really change? — led them to graduate work at MIT.

In pursuit of knowledge

When they first immigrated to the U.S., school symbolized survival for Ramadan and Choueiri. Not only was education a mode of improving their lives and supporting their families, it was a search for objectivity in their recently upended worlds.

As the family’s primary English speaker, Ramadan became a bulwark for his family in their new country, especially in medical matters; his little sister, Ghida, has cerebral palsy. Though his family has limited financial resources, he emphasizes that both he and his sister have been constantly supported by their parents in pursuit of their educations.

In fact, Ramadan feels motivated by Ghida’s determination to complete her degree in occupational therapy: “That to me is really inspirational, her resilience in the face of her disability and in the face of assumptions that people make about capability. She’s really sassy, she’s really witty, she’s really funny, she’s really intelligent, and she doesn’t see her disability as a disability. She actually thinks it’s an advantage — it actually motivated her to pursue [her education] even more.”

Ramadan hopes his own educational journey, from a low-income evacuee to a neuroscience PhD, can show others like him that success is possible.

Choueiri also relied on academics to adapt to his new world in Arizona. Even in Lebanon, he remembers taking solace from a chaotic world in his education, and once in the U.S., he dove headfirst into his studies.

Choueiri’s hometown in Arizona sometimes felt homogenous, so coming to MIT has been a staggering — and welcome — experience. “The diversity here is phenomenal: meeting people from different cultures, upbringings, countries,” he says. “I love making friends from all over and learning their stories. Being a neuroscientist, I like to know how they were brought up and how their ideas were formed. … It’s like Disneyland for me. I feel like I’m coming to Disneyland every day and high-fiving Mickey Mouse.”

At home at MIT

Ramadan and Choueiri revel in the freedom of thought they have found in their academic home here. They say they feel taken seriously as students and, more importantly, as thinkers. The BCS department values interdisciplinary thought, and cultivates extracurricular student activities like philosophy discussion groups, the development of neuroscience podcasts, and independent, student-led lectures on myriad neuroscience-adjacent topics.

Both students were drawn to neuroscience not only by their experiences as Lebanese-Americans, but by trying to make sense of what happened to them at a young age.

Ramadan became interested in neuroplasticity through self-observation. “You know that feeling of childhood you have where everything is magical and you’re not really aware of things around you? I feel like when I immigrated to the U.S., that feeling went away and I had to become extra-aware of everything because I had to adapt so quickly. So, something that intrigued me about neuroscience is how the brain is able to adapt so quickly and how different experiences can shape and rewire your brain.”

Now in his second year, Ramadan plans to pursue his interest in neuroplasticity in Professor Mehrdad Jazayeri’s lab at the McGovern Institute by investigating how learning changes the brain’s underlying neural circuits; understanding the physical mechanism of plasticity has application to both disease states and artificial intelligence.

Choueiri, a third-year student in the program, is a member of Professor Ed Boyden’s lab at the McGovern Institute. While his interest in neuroscience was similarly driven by his experience as an evacuee, his approach is outward-looking, focused on making sense of people’s choices. Ultimately, the brain controls human ability to perceive, learn, and choose through physiological changes; Choueiri wants to understand not just the human brain, but also the human condition — and to use that understanding to alleviate pain and suffering.

“Growing up in Lebanon, with different religions and war … I became fundamentally interested in human behavior, irrationality, and conflict, and how can we resolve those things … and maybe there’s an objective way to really make sense of where these differences are coming from,” he says. In the Synthetic Neurobiology Group, Choueiri’s research involves developing neurotechnologies to map the molecular interactions of the brain, to reveal the fundamental mechanisms of brain function and repair dysfunction.

Shared identities

As evacuees, Ramadan and Choueiri left their country without notice and without saying goodbye. However, in other ways, their experience was not unlike an immigrant experience. This sometimes makes identifying as a refugee in the current political climate complex, as refugees from Syria and other war-ravaged regions struggle to make a home in the U.S. Still, both believe that sharing their personal experience may help others in difficult positions to see that they do belong in the U.S., and at MIT.

Despite their American identity, Ramadan and Choueiri also share a palpable love for Lebanese culture. They extol the diversity of Lebanese cuisine, which is served mezze-style, making meals an experience full of variety, grilled food, and yogurt dishes. The Lebanese diaspora is another source of great pride for them. Though the population of Lebanon is less than 5 million, as many as 14 million live abroad.

It’s all the more remarkable, then, that Ramadan and Choueiri intersected at MIT, some 6,000 miles from their homeland. The bond they have forged since, through their common heritage, experiences, and interests, is deeply meaningful to both of them.

“I was so happy to find another student who has this story because it allows me to reflect back on those experiences and how they changed me,” says Ramadan. “It’s like a mirror image. … Was it a coincidence, or were our lives so similar that they led to this point?”

This story was written by Bridget E. Begg at MIT’s Office of Graduate Education.

Study reveals how the brain overcomes its own limitations

Imagine trying to write your name so that it can be read in a mirror. Your brain has all of the visual information you need, and you’re a pro at writing your own name. Still, this task is very difficult for most people. That’s because it requires the brain to perform a mental transformation that it’s not familiar with: using what it sees in the mirror to accurately guide your hand to write backward.

MIT neuroscientists have now discovered how the brain tries to compensate for its poor performance in tasks that require this kind of complicated transformation. As it also does in other types of situations where it has little confidence in its own judgments, the brain attempts to overcome its difficulties by relying on previous experiences.

“If you’re doing something that requires a harder mental transformation, and therefore creates more uncertainty and more variability, you rely on your prior beliefs and bias yourself toward what you know how to do well, in order to compensate for that variability,” says Mehrdad Jazayeri, the Robert A. Swanson Career Development Professor of Life Sciences, a member of MIT’s McGovern Institute for Brain Research, and the senior author of the study.

This strategy actually improves overall performance, the researchers report in their study, which appears in the Oct. 24 issue of the journal Nature Communications. Evan Remington, a McGovern Institute postdoc, is the paper’s lead author, and technical assistant Tiffany Parks is also an author on the paper.

Noisy computations

Neuroscientists have known for many decades that the brain does not faithfully reproduce exactly what the eyes see or what the ears hear. Instead, there is a great deal of “noise” — random fluctuations of electrical activity in the brain, which can come from uncertainty or ambiguity about what we are seeing or hearing. This uncertainty also comes into play in social interactions, as we try to interpret the motivations of other people, or when recalling memories of past events.

Previous research has revealed many strategies that help the brain to compensate for this uncertainty. Using a framework known as Bayesian integration, the brain combines multiple, potentially conflicting pieces of information and values them according to their reliability. For example, if given information by two sources, we’ll rely more on the one that we believe to be more credible.

In other cases, such as making movements when we’re uncertain exactly how to proceed, the brain will rely on an average of its past experiences. For example, when reaching for a light switch in a dark, unfamiliar room, we’ll move our hand toward a certain height and close to the doorframe, where past experience suggests a light switch might be located.

All of these strategies have been previously shown to work together to increase bias toward a particular outcome, which makes our overall performance better because it reduces variability, Jazayeri says.

Noise can also occur in the mental conversion of sensory information into a motor plan. In many cases, this is a straightforward task in which noise plays a minimal role — for example, reaching for a mug that you can see on your desk. However, for other tasks, such as the mirror-writing exercise, this conversion is much more complicated.

“Your performance will be variable, and it’s not because you don’t know where your hand is, and it’s not because you don’t know where the image is,” Jazayeri says. “It involves an entirely different form of uncertainty, which has to do with processing information. The act of performing mental transformations of information clearly induces variability.”

That type of mental conversion is what the researchers set out to explore in the new study. To do that, they asked subjects to perform three different tasks. For each one, they compared subjects’ performance in a version of the task where mapping sensory information to motor commands was easy, and a version where an extra mental transformation was required.

In one example, the researchers first asked participants to draw a line the same length as a line they were shown, which was always between 5 and 10 centimeters. In the more difficult version, they were asked to draw a line 1.5 times longer than the original line.

The results from this set of experiments, as well as the other two tasks, showed that in the version that required difficult mental transformations, people altered their performance using the same strategies that they use to overcome noise in sensory perception and other realms. For example, in the line-drawing task, in which the participants had to draw lines ranging from 7.5 to 15 centimeters, depending on the length of the original line, they tended to draw lines that were closer to the average length of all the lines they had previously drawn. This made their responses overall less variable and also more accurate.

“This regression to the mean is a very common strategy for making performance better when there is uncertainty,” Jazayeri says.

Noise reduction

The new findings led the researchers to hypothesize that when people get very good at a task that requires complex computation, the noise will become smaller and less detrimental to overall performance. That is, people will trust their computations more and stop relying on averages.

“As it gets easier, our prediction is the bias will go away, because that computation is no longer a noisy computation,” Jazayeri says. “You believe in the computation; you know the computation is working well.”

The researchers now plan to further study whether people’s biases decrease as they learn to perform a complicated task better. In the experiments they performed for the Nature Communications study, they found some preliminary evidence that trained musicians performed better in a task that involved producing time intervals of a specific duration.

The research was funded by the Alfred P. Sloan Foundation, the Esther A. and Joseph Klingenstein Fund, the Simons Foundation, the McKnight Endowment Fund for Neuroscience, and the McGovern Institute.

How the brain performs flexible computations

Humans can perform a vast array of mental operations and adjust their behavioral responses based on external instructions and internal beliefs. For example, to tap your feet to a musical beat, your brain has to process the incoming sound and also use your internal knowledge of how the song goes.

MIT neuroscientists have now identified a strategy that the brain uses to rapidly select and flexibly perform different mental operations. To make this discovery, they applied a mathematical framework known as dynamical systems analysis to understand the logic that governs the evolution of neural activity across large populations of neurons.

“The brain can combine internal and external cues to perform novel computations on the fly,” says Mehrdad Jazayeri, the Robert A. Swanson Career Development Professor of Life Sciences, a member of MIT’s McGovern Institute for Brain Research, and the senior author of the study. “What makes this remarkable is that we can make adjustments to our behavior at a much faster time scale than the brain’s hardware can change. As it turns out, the same hardware can assume many different states, and the brain uses instructions and beliefs to select between those states.”

Previous work from Jazayeri’s group has found that the brain can control when it will initiate a movement by altering the speed at which patterns of neural activity evolve over time. Here, they found that the brain controls this speed flexibly based on two factors: external sensory inputs and adjustment of internal states, which correspond to knowledge about the rules of the task being performed.

Evan Remington, a McGovern Institute postdoc, is the lead author of the paper, which appears in the June 6 edition of Neuron. Other authors are former postdoc Devika Narain and MIT graduate student Eghbal Hosseini.

Ready, set, go

Neuroscientists believe that “cognitive flexibility,” or the ability to rapidly adapt to new information, resides in the brain’s higher cortical areas, but little is known about how the brain achieves this kind of flexibility.

To understand the new findings, it is useful to think of how switches and dials can be used to change the output of an electrical circuit. For example, in an amplifier, a switch may select the sound source by controlling the input to the circuit, and a dial may adjust the volume by controlling internal parameters such as a variable resistance. The MIT team theorized that the brain similarly transforms instructions and beliefs to inputs and internal states that control the behavior of neural circuits.

To test this, the researchers recorded neural activity in the frontal cortex of animals trained to perform a flexible timing task called “ready, set, go.” In this task, the animal sees two visual flashes — “ready” and “set” — that are separated by an interval anywhere between 0.5 and 1 second, and initiates a movement — “go” — some time after “set.” The animal has to initiate the movement such that the “set-go” interval is either the same as or 1.5 times the “ready-set” interval. The instruction for whether to use a multiplier of 1 or 1.5 is provided in each trial.

Neural signals recorded during the “set-go” interval clearly carried information about both the multiplier and the measured length of the “ready-set” interval, but the nature of these representations seemed bewilderingly complex. To decode the logic behind these representations, the researchers used the dynamical systems analysis framework. This analysis is used in the study of a wide range of physical systems, from simple electrical circuits to space shuttles.

The application of this approach to neural data in the “ready, set, go” task enabled Jazayeri and his colleagues to discover how the brain adjusts the inputs to and initial conditions of frontal cortex to control movement times flexibly. A switch-like operation sets the input associated with the correct multiplier, and a dial-like operation adjusts the state of neurons based on the “ready-set” interval. These two complementary control strategies allow the same hardware to produce different behaviors.

David Sussillo, a research scientist at Google Brain and an adjunct professor at Stanford University, says a key to the study was the research team’s development of new mathematical tools to analyze huge amounts of data from neuron recordings, allowing the researchers to uncover how a large population of neurons can work together to perform mental operations related to timing and rhythm.

“They have very rigorously brought the dynamical systems approach to the problem of timing,” says Sussillo, who was not involved in the research.

“A bridge between behavior and neurobiology”

Many unanswered questions remain about how the brain achieves this flexibility, the researchers say. They are now trying to find out what part of the brain sends information about the multiplier to the frontal cortex, and they also hope to study what happens in these neurons as they first learn tasks that require them to respond flexibly.

“We haven’t connected all the dots from behavioral flexibility to neurobiological details. But what we have done is to establish an algorithmic understanding based on the mathematics of dynamical systems that serves as a bridge between behavior and neurobiology,” Jazayeri says.

The researchers also hope to explore whether this type of model could help to explain behavior of other parts of the brain that have to perform computations flexibly.

The research was funded by the National Institutes of Health, the Sloan Foundation, the Klingenstein Foundation, the Simons Foundation, the McKnight Foundation, the Center for Sensorimotor Neural Engineering, and the McGovern Institute.