Our brains appear uniquely tuned for musical pitch

In the eternal search for understanding what makes us human, scientists found that our brains are more sensitive to pitch, the harmonic sounds we hear when listening to music, than our evolutionary relative the macaque monkey. The study, funded in part by the National Institutes of Health, highlights the promise of Sound Health, a joint project between the NIH and the John F. Kennedy Center for the Performing Arts, in association with the National Endowment for the Arts, that aims to understand the role of music in health.

“We found that a certain region of our brains has a stronger preference for sounds with pitch than macaque monkey brains,” said Bevil Conway, Ph.D., investigator in the NIH’s Intramural Research Program and a senior author of the study published in Nature Neuroscience. “The results raise the possibility that these sounds, which are embedded in speech and music, may have shaped the basic organization of the human brain.”

The study started with a friendly bet between Dr. Conway and Sam Norman-Haignere, Ph.D., a post-doctoral fellow at Columbia University’s Zuckerman Institute for Mind, Brain, and Behavior and the first author of the paper.

At the time, both were working at the Massachusetts Institute of Technology (MIT). Dr. Conway’s team had been searching for differences between how human and monkey brains control vision only to discover that there are very few. Their brain mapping studies suggested that humans and monkeys see the world in very similar ways. But then, Dr. Conway heard about some studies on hearing being done by Dr. Norman-Haignere, who, at the time, was a post-doctoral fellow in the laboratory of Josh H. McDermott, Ph.D., associate professor at MIT.

“I told Bevil that we had a method for reliably identifying a region in the human brain that selectively responds to sounds with pitch,” said Dr. Norman-Haignere, That is when they got the idea to compare humans with monkeys. Based on his studies, Dr. Conway bet that they would see no differences.

To test this, the researchers played a series of harmonic sounds, or tones, to healthy volunteers and monkeys. Meanwhile, functional magnetic resonance imaging (fMRI) was used to monitor brain activity in response to the sounds. The researchers also monitored brain activity in response to sounds of toneless noises that were designed to match the frequency levels of each tone played.

At first glance, the scans looked similar and confirmed previous studies. Maps of the auditory cortex of human and monkey brains had similar hot spots of activity regardless of whether the sounds contained tones.

However, when the researchers looked more closely at the data, they found evidence suggesting the human brain was highly sensitive to tones. The human auditory cortex was much more responsive than the monkey cortex when they looked at the relative activity between tones and equivalent noisy sounds.

“We found that human and monkey brains had very similar responses to sounds in any given frequency range. It’s when we added tonal structure to the sounds that some of these same regions of the human brain became more responsive,” said Dr. Conway. “These results suggest the macaque monkey may experience music and other sounds differently. In contrast, the macaque’s experience of the visual world is probably very similar to our own. It makes one wonder what kind of sounds our evolutionary ancestors experienced.”

Further experiments supported these results. Slightly raising the volume of the tonal sounds had little effect on the tone sensitivity observed in the brains of two monkeys.

Finally, the researchers saw similar results when they used sounds that contained more natural harmonies for monkeys by playing recordings of macaque calls. Brain scans showed that the human auditory cortex was much more responsive than the monkey cortex when they compared relative activity between the calls and toneless, noisy versions of the calls.

“This finding suggests that speech and music may have fundamentally changed the way our brain processes pitch,” said Dr. Conway. “It may also help explain why it has been so hard for scientists to train monkeys to perform auditory tasks that humans find relatively effortless.”

Earlier this year, other scientists from around the U.S. applied for the first round of NIH Sound Health research grants. Some of these grants may eventually support scientists who plan to explore how music turns on the circuitry of the auditory cortex that make our brains sensitive to musical pitch.

This study was supported by the NINDS, NEI, NIMH, and NIA Intramural Research Programs and grants from the NIH (EY13455; EY023322; EB015896; RR021110), the National Science Foundation (Grant 1353571; CCF-1231216), the McDonnell Foundation, the Howard Hughes Medical Institute.

Can we think without language?

As part of our Ask the Brain series, Anna Ivanova, a graduate student who studies how the brain processes language in the labs of Nancy Kanwisher and Evelina Fedorenko, answers the question, “Can we think without language?”

Anna Ivanova headshot
Graduate student Anna Ivanova studies language processing in the brain.

_____

Imagine a woman – let’s call her Sue. One day Sue gets a stroke that destroys large areas of brain tissue within her left hemisphere. As a result, she develops a condition known as global aphasia, meaning she can no longer produce or understand phrases and sentences. The question is: to what extent are Sue’s thinking abilities preserved?

Many writers and philosophers have drawn a strong connection between language and thought. Oscar Wilde called language “the parent, and not the child, of thought.” Ludwig Wittgenstein claimed that “the limits of my language mean the limits of my world.” And Bertrand Russell stated that the role of language is “to make possible thoughts which could not exist without it.” Given this view, Sue should have irreparable damage to her cognitive abilities when she loses access to language. Do neuroscientists agree? Not quite.

Neuroimaging evidence has revealed a specialized set of regions within the human brain that respond strongly and selectively to language.

This language system seems to be distinct from regions that are linked to our ability to plan, remember, reminisce on past and future, reason in social situations, experience empathy, make moral decisions, and construct one’s self-image. Thus, vast portions of our everyday cognitive experiences appear to be unrelated to language per se.

But what about Sue? Can she really think the way we do?

While we cannot directly measure what it’s like to think like a neurotypical adult, we can probe Sue’s cognitive abilities by asking her to perform a variety of different tasks. Turns out, patients with global aphasia can solve arithmetic problems, reason about intentions of others, and engage in complex causal reasoning tasks. They can tell whether a drawing depicts a real-life event and laugh when in doesn’t. Some of them play chess in their spare time. Some even engage in creative tasks – a composer Vissarion Shebalin continued to write music even after a stroke that left him severely aphasic.

Some readers might find these results surprising, given that their own thoughts seem to be tied to language so closely. If you find yourself in that category, I have a surprise for you – research has established that not everybody has inner speech experiences. A bilingual friend of mine sometimes gets asked if she thinks in English or Polish, but she doesn’t quite get the question (“how can you think in a language?”). Another friend of mine claims that he “thinks in landscapes,” a sentiment that conveys the pictorial nature of some people’s thoughts. Therefore, even inner speech does not appear to be necessary for thought.

Have we solved the mystery then? Can we claim that language and thought are completely independent and Bertrand Russell was wrong? Only to some extent. We have shown that damage to the language system within an adult human brain leaves most other cognitive functions intact. However, when it comes to the language-thought link across the entire lifespan, the picture is far less clear. While available evidence is scarce, it does indicate that some of the cognitive functions discussed above are, at least to some extent, acquired through language.

Perhaps the clearest case is numbers. There are certain tribes around the world whose languages do not have number words – some might only have words for one through five (Munduruku), and some won’t even have those (Pirahã). Speakers of Pirahã have been shown to make mistakes on one-to-one matching tasks (“get as many sticks as there are balls”), suggesting that language plays an important role in bootstrapping exact number manipulations.

Another way to examine the influence of language on cognition over time is by studying cases when language access is delayed. Deaf children born into hearing families often do not get exposure to sign languages for the first few months or even years of life; such language deprivation has been shown to impair their ability to engage in social interactions and reason about the intentions of others. Thus, while the language system may not be directly involved in the process of thinking, it is crucial for acquiring enough information to properly set up various cognitive domains.

Even after her stroke, our patient Sue will have access to a wide range of cognitive abilities. She will be able to think by drawing on neural systems underlying many non-linguistic skills, such as numerical cognition, planning, and social reasoning. It is worth bearing in mind, however, that at least some of those systems might have relied on language back when Sue was a child. While the static view of the human mind suggests that language and thought are largely disconnected, the dynamic view hints at a rich nature of language-thought interactions across development.

_____

Do you have a question for The Brain? Ask it here.

3Q: The interface between art and neuroscience

CBMM postdoc Sarah Schwettman

Computational neuroscientist Sarah Schwettmann, who works in the Center for Brains, Minds, and Machines at the McGovern Institute, is one of three instructors behind the cross-disciplinary course 9.S52/9.S916 (Vision in Art and Neuroscience), which introduces students to core concepts in visual perception through the lenses of art and neuroscience.

Supported by a faculty grant from the Center for Art, Science and Technology at MIT (CAST) for the past two years, the class is led by Pawan Sinha, a professor of vision and computational neuroscience in the Department of Brain and Cognitive Sciences. They are joined in the course by Seth Riskin SM ’89, a light artist and the manager of the MIT Museum Studio and Compton Gallery, where the course is taught. Schwettman discussed the combination of art and science in an educational setting.

Q: How have the three of you approached this cross-disciplinary class in art and neuroscience?

A: Discussions around this intersection often consider what each field has to offer the other. We take a different approach, one I refer to as occupying the gap, or positioning ourselves between the two fields and asking what essential questions underlie them both. One question addresses the nature of the human relationship to the world. The course suggests one answer: This relationship is fundamentally creative, from the brain’s interpretation of incoming sensory data in perception, to the explicit construction of experiential worlds in art.

Neuroscience and art, therefore, each provide a set of tools for investigating different levels of the constructive process. Through neuroscience, we develop a specific understanding of the models of the world that the brain uses to make sense of incoming visual data. With articulation of those models, we can engineer types of inputs that interact with visual processing architecture in particularly exquisite ways, and do so reliably, giving artists a toolkit for remixing and modulating experience. In the studio component of the course, we experiment with this toolkit and collectively move it forward.

While designing the course, Pawan, Seth, and I found that we were each addressing a similar set of questions, the same that motivate the class, through our own research and practice. In parallel to computational vision research, Professor Sinha leads a humanitarian initiative called Project Prakash, which provides treatment to blind children in India and explores the development of vision following the restoration of sight. Where does structure in perception originate? As an artist in the MIT Museum Studio, Seth works with articulated light to sculpt structured visual worlds out of darkness. I also live on this interface where the brain meets the world — my research in the Department of Brain and Cognitive Sciences examines the neural basis of mental models for simulating physics. Linking our work in the course is an experiment in synthesis.

Q: What current research in vision, neuroscience, and art are being explored at MIT, and how does the class connect it to hands-on practice?

A: Our brains build a rich world of experience and expectation from limited and noisy sensory data with infinite potential interpretations. In perception research, we seek to discover how the brain finds more meaning in incoming data than is explained by the signal alone. Work being done at MIT around generative models addresses this, for instance in the labs of Josh Tenenbaum and Josh McDermott in the Department of Brain and Cognitive Sciences. Researchers present an ambiguous visual or auditory stimulus and by probing someone’s perceptual interpretation, they get a handle on the structures that the mind generates to interpret incoming data, and they can begin to build computational models of the process.

In Vision in Art and Neuroscience, we focus on the experiential as well as the experimental, probing the perceiver’s experience of structure-generating process—perceiving perception itself.

As instructors, we face the pedagogical question: what exercises, in the studio, can evoke so striking an experience of students’ own perception that cutting edge research takes on new meaning, understood in the immediacy of seeing? Later in the semester, students face a similar question as artists: How can one create visual environments where viewers experience their own perceptual processing at work? Done well, this experience becomes the artwork itself. Early in the course, students explore the Ganzfeld effect, popularized by artist James Turrell, where the viewer is exposed to an unstructured visual field of uniform illumination. In this experience, one feels the mind struggling to fit models of the world to unstructured input, and attempting this over and over again — an interpretation process which often goes unnoticed when input structure is expected by visual processing architecture. The progression of the course modules follows the hierarchy of visual processing in the brain, which builds increasingly complex interpretations of visual inputs, from brightness and edges to depth, color, and recognizable form.

MIT students first encounter those concepts in the seminar component of the course at the beginning of each week. Later in the week, students translate findings into experimental approaches in the studio. We work with light directly, from introducing a single pinpoint of light into an otherwise completely dark room, to building intricate environments using programmable electronics. Students begin to take this work into their own hands, in small groups and individually, culminating in final projects for exhibition. These exhibitions are truly a highlight of the course. They’re often one of the first times that students have built and shown artworks. That’s been a gift to share with the broader MIT community, and a great learning experience for students and instructors alike.

Q: How has that approach been received by the MIT community?

A: What we’re doing has resonated across disciplines: In addition to neuroscience, we have students and researchers joining us from computer science, mechanical engineering, mathematics, the Media Lab, and ACT (the Program in Art, Culture, and Technology). The course is growing into something larger, a community of practice interested in applying the scientific methodology we develop to study the world, to probe experience, and to articulate models for its generation and replication.

With a mix of undergraduates, graduates, faculty, and artists, we’ve put together installations and symposia — including three on campus so far. The first of these, “Perceiving Perception,” also led to a weekly open studio night where students and collaborators convene for project work. Our second exhibition, “Dessert of the Real,” is on display this spring in the Compton Gallery. This April we’re organizing a symposium in the studio featuring neuroscientists, computer scientists, artists and researchers from MIT and Harvard. We’re reaching beyond campus as well, through off-site installations, collaborations with museums — including the Metropolitan Museum of Art and the Peabody Essex Museum — and a partnership with the ZERO Group in Germany.

We’re eager to involve a broad network of collaborators. It’s an exciting moment in the fields of neuroscience and computing; there is great energy to build technologies that perceive the world like humans do. We stress on the first day of class that perception is a fundamentally creative act. We see the potential for models of perception to themselves be tools for scaling and translating creativity across domains, and for building a deeply creative relationship to our environment.

How the brain decodes familiar faces

Our brains are incredibly good at processing faces, and even have specific regions specialized for this function. But what face dimensions are we observing? Do we observe general properties first, then look at the details? Or are dimensions such as gender or other identity details decoded interdependently? In a study published today in Nature Communications, the Kanwisher lab measured the response of the brain to faces in real time, and found that the brain first decodes properties such as gender and age before drilling down to the specific identity of the face itself.

While functional magnetic resonance imaging (fMRI) has revealed an incredible level of detail about which regions of the brain respond to faces, the technology is less effective at telling us when these brain regions become activated. This is because fMRI measures brain activity by detecting changes in blood flow; when neurons become active, local blood flow to those brain regions increases. However, fMRI works too slowly to keep up with the brain’s millisecond-by-millisecond dynamics. Enter magnetoencephalography (MEG), a technique developed by MIT physicist David Cohen that detects the minuscule fluctuations in magnetic field that occur with the electrical activity of neurons. This allows better temporal resolution of neural activity.

McGovern Investigator Nancy Kanwisher and postdoc Katharina Dobs, along with their co-authors Leyla Isik and Dimitrios Pantazis, selected this temporally precise approach to measure the time it takes for the brain to respond to different dimensional features of faces.

“From a brief glimpse of a face, we quickly extract all this rich multidimensional information about a person, such as their sex, age, and identity,” explains Dobs. “I wanted to understand how the brain accomplishes this impressive feat, and what the neural mechanisms are that underlie this effect, but no one had measured the time scales of responses to these features in the same study.”

Previous studies have shown that people with prosopagnosia, a condition characterized by the inability to identify familiar faces, have no trouble determining gender, suggesting these features may be independent. “But examining when the brain recognizes gender and identity, and whether these are interdependent features is less clear,” explains Dobs.

By recording the brain activity of subjects in the MEG, Dobs and her co-authors found that the brain responds to coarse features, such as the gender of a face, much faster than the identity of the face itself. Their data showed that, in as little as 60-70 milliseconds, the brain begins to decode the age and gender of a person. Roughly 30 milliseconds later — at around 90 milliseconds — the brain begins processing the identity of the face.

After establishing a paradigm for measuring responses to these face dimensions, the authors then decided to test the effect of familiarity. It’s generally understood that the brain processes information about “familiar faces” more robustly than unfamiliar faces. For example, our brains are adept at recognizing actress Scarlett Johansson across multiple photographs, even if her hairstyle is different in each picture. Our brains have a much harder time, however, recognizing two images of the same person if the face is unfamiliar.

“Actually, for unfamiliar faces the brain is easily fooled,” Dobs explains, “variations in images, shadows, changes in hair color or style, quickly lead us to think we are looking at a different person. Conversely, we have no problem if a familiar face is in shadow, or a friend changes their hair style. But we didn’t know why familiar face perception is much more robust, whether this is due to better feed forward processing, or based on later memory retrieval.”

Familiar and unfamiliar celebrity faces side by side
Perception of a familiar face, Scarlett Johansson, is more robust than for unfamiliar faces, in this study German celebrity Karoline Herfurth (images: Wikimedia commons).

To test the effect of familiarity, the authors measured brain responses while the subjects viewed familiar faces (American celebrities) and unfamiliar faces (German celebrities) in the MEG. Surprisingly, they found that subjects recognize gender more quickly in familiar faces than unfamiliar faces. For example our brains decode that actor Scarlett Johansson is female, before we even realize she is Scarlett Johansson. And for the less familiar German actor, Karoline Herfurth, our brains unpack the same information less well.

Dobs and co-authors argue that better gender and identity recognition is not “top-down” for familiar faces, meaning that improved responses to familiar faces is not about retrieval of information from memory, but rather, a feed-forward mechanism. They found that the brain responds to facial familiarity at a much slower time scale (400 milliseconds) than it responds to gender, suggesting that the brain may be remembering associations related to the face (Johansson = Lost in Translation movie) in that longer timeframe.

This is good news for artificial intelligence. “We are interested in whether feed-forward deep learning systems can learn faces using similar mechanisms,” explains Dobs, “and help us to understand how the brain can process faces it has seen before in the absence of pulling on memory.”

When it comes to immediate next steps, Dobs would like to explore where in the brain these facial dimensions are extracted, how prior experience affects the general processing of objects, and whether computational models of face processing can capture these complex human characteristics.

 

Nancy Kanwisher

Architecture of the Mind

What is the nature of the human mind? Philosophers have debated this question for centuries, but Nancy Kanwisher approaches this question empirically, using brain imaging to look for components of the human mind that reside in particular regions of the brain. Her lab has identified cortical regions that are selectively engaged in the perception of faces, places, and bodies, and other regions specialized for uniquely human functions including the music, language, and thinking about other people’s thoughts. More recently, her lab has begun using artificial neural networks to unpack these findings and examine why, from a computational standpoint, the brain exhibits functional specification in the first place.

Nancy Kanwisher receives 2018 Heineken Prize

Nancy Kanwisher, the Walter A. Rosenblith Professor of Cognitive Neuroscience at MIT, has been named a recipient of the 2018 Heineken Prize — the Netherlands’ most prestigious scientific prize — for her work on the functional organization of the human brain.

Kanwisher, who is a professor of brain and cognitive sciences and a member of MIT’s McGovern Institute for Brain Research, uses neuroimaging to study the functional organization of the human brain. Over the last 20 years her lab has played a central role in the identification of regions of the human brain that are engaged in particular components of perception and cognition. Many of these regions are very specifically engaged in a single mental function such as perceiving faces, places, bodies, or words, or understanding the meanings of sentences or the mental states of others. These regions form a “neural portrait of the human mind,” according to Kanwisher, who has assembled dozens of videos for the general public on her website, NancysBrainTalks.

“Nancy Kanwisher is an exceptionally innovative and influential researcher in cognitive neuropsychology and the neurosciences,” according to the Royal Netherlands Academy of Arts and Sciences, the organization that selects the prizewinners. “She is being recognized with the 2018 C.L. de Carvalho-Heineken Prize for Cognitive Science for her highly original, meticulous and cogent research on the functional organization of the human brain.”

Kanwisher is among five international scientists who have been recognized by the academy with the biennial award. The other winners include biomedical scientist Peter Carmeliet  of the University of Leuven, biologist Paul Hebert of the University of Guelph, historian John R. McNeill of Georgetown University, and biophysicist Xiaowei Zhuang of Harvard University.

The Heineken Prizes, each worth $200,000, are named after Henry P. Heineken (1886-1971); Alfred H. Heineken (1923-2002) and Charlene de Carvalho-Heineken (1954), chair of the Dr H.P. Heineken Foundation and the Alfred Heineken Fondsen Foundation, which fund the prizes. The laureates are selected by juries assembled by the academy and made up of leading Dutch and foreign scientists and scholars.

The Heineken Prizes will be presented at an award ceremony on Sept. 27 in Amsterdam.

Engineering intelligence

Go is an ancient board game that demands not only strategy and logic, but intuition, creativity, and subtlety—in other words, it’s a game of quintessentially human abilities. Or so it seemed, until Google’s DeepMind AI program, AlphaGo, roundly defeated the world’s top Go champion.

But ask it to read social cues or interpret what another person is thinking and it wouldn’t know where to start. It wouldn’t even understand that it didn’t know where to start. Outside of its game-playing milieu, AlphaGo is as smart as a rock.

“The problem of intelligence is the greatest problem in science,” says Tomaso Poggio, Eugene McDermott Professor of Brain and Cognitive Sciences at the McGovern Institute. One reason why? We still don’t really understand intelligence in ourselves.

Right now, most advanced AI developments are led by industry giants like Facebook, Google, Tesla and Apple, with an emphasis on engineering and computation, and very little work in humans. That has yielded enormous breakthroughs including Siri and Alexa, ever-better autonomous cars and AlphaGo.

But as Poggio points out, the algorithms behind most of these incredible technologies come right out of past neuroscience research–deep learning networks and reinforcement learning. “So it’s a good bet,” Poggio says, “that one of the next breakthroughs will also come from neuroscience.”

Five years ago, Poggio and a host of researchers at MIT and beyond took that bet when they applied for and won a $25 million Science and Technology Center award from the National Science Foundation to form the Center for Brains, Minds and Machines. The goal of the center was to take those computational approaches and blend them with basic, curiosity-driven research in neuroscience and cognition. They would knock down the divisions that traditionally separated these fields and not only unlock the secrets of human intelligence and develop smarter AIs, but found an entire new field—the science and engineering of intelligence.

A collaborative foundation

CBMM is a sprawling research initiative headquartered at the McGovern Institute, encompassing faculty at Harvard, Johns Hopkins, Rockefeller and Stanford; over a dozen industry collaborators including Siemens, Google, Toyota, Microsoft, Schlumberger and IBM; and partner institutions such as Howard University, Wellesley College and the University of Puerto Rico. The effort has already churned out 397 publications and has just been renewed for five more years and another $25 million.

For the first few years, collaboration in such a complex center posed a challenge. Research efforts were still divided into traditional silos—one research thrust for cognitive science, another for computation, and so on. But as the center grew, colleagues found themselves talking more and a new common language emerged. Immersed in each other’s research, the divisions began to fade.

“It became more than just a center in name,” says Matthew Wilson, associate director of CBMM and the Sherman Fairchild Professor of Neuroscience at MIT’s Department of Brain and Cognitive Sciences (BCS). “It really was trying to drive a new way of thinking about research and motivating intellectual curiosity that was motivated by this shared vision that all the participants had.”

New questioning

Today, the center is structured around four interconnected modules grounded around the problem of visual intelligence—vision, because it is the most understood and easily traced of our senses. The first module, co-directed by Poggio himself, unravels the visual operations that begin within that first few milliseconds of visual recognition as the information travels through the eye and to the visual cortex. Gabriel Kreiman, who studies visual comprehension at Harvard Medical School and Children’s Hospital, leads the second module which takes on the subsequent events as the brain directs the eye where to go next, what it is seeing and what to pay attention to, and then integrates this information into a holistic picture of the world that we experience. His research questions have grown as a result of CBMM’s cross-disciplinary influence.

Leyla Isik, a postdoc in Kreiman’s lab, is now tackling one of his new research initiatives: social intelligence. “So much of what we do and see as humans are social interactions between people. But even the best machines have trouble with it,” she explains.

To reveal the underlying computations of social intelligence, Isik is using data gathered from epilepsy patients as they watch full-length movies. (Certain epileptics spend several weeks before surgery with monitoring electrodes in their brains, providing a rare opportunity for scientists to see inside the brain of a living, thinking human). Isik hopes to be able to pick out reliable patterns in their neural activity that indicate when the patient is processing certain social cues such as faces. “It’s a pretty big challenge, so to start out we’ve tried to simplify the problem a little bit and just look at basic social visual phenomenon,” she explains.

In true CBMM spirit, Isik is co-advised by another McGovern investigator, Nancy Kanwisher, who helps lead CBMM’s third module with BCS Professor of Computational Cognitive Science, Josh Tenenbaum. That module picks up where the second leaves off, asking still deeper questions about how the brain understands complex scenes, and how infants and children develop the ability to piece together the physics and psychology of new events. In Kanwisher’s lab, instead of a stimulus-heavy movie, Isik shows simple stick figures to subjects in an MRI scanner. She’s looking for specific regions of the brain that engage only when the subjects view the “social interactions” between the figures. “I like the approach of tackling this problem both from very controlled experiments as well as something that’s much more naturalistic in terms of what people and machines would see,” Isik explains.

Built-in teamwork

Such complementary approaches are the norm at CBMM. Postdocs and graduate students are required to have at least two advisors in two different labs. The NSF money is even assigned directly to postdoc and graduate student projects. This ensures that collaborations are baked into the center, Wilson explains. “If the idea is to create a new field in the science of intelligence, you can’t continue to support work the way it was done in the old fields—you have to create a new model.”

In other labs, students and postdocs blend imaging with cognitive science to understand how the brain represents physics—like the mass of an object it sees. Or they’re combining human, primate, mouse and computational experiments to better understand how the living brain represents new objects it encounters, and then building algorithms to test the resulting theories.

Boris Katz’s lab is in the fourth and final module, which focuses on figuring out how the brain’s visual intelligence ties into higher-level thinking, like goal planning, language, and abstract concepts. One project, led by MIT research scientist Andrei Barbu and Yen-Ling Kuo, in collaboration with Harvard cognitive scientist Liz Spelke, is attempting to uncover how humans and machines devise plans to navigate around complex and dangerous environments.

“CBMM gives us the opportunity to close the loop between machine learning, cognitive science, and neuroscience,” says Barbu. “The cognitive science informs better machine learning, which helps us understand how humans behave and that in turn points the way toward understanding the structure of the brain. All of this feeds back into creating more capable machines.”

A new field

Every summer, CBMM heads down to Woods Hole, Massachusetts, to deliver an intensive crash course on the science of intelligence to graduate students from across the country. It’s one of many education initiatives designed to spread CBMM’s approach and key to the goal of establishing a new field. The students who come to learn from these courses often find it as transformative as the CBMM faculty did when the center began.

Candace Ross was an undergraduate at Howard University when she got her first taste of CBMM at a summer course with Kreiman trying to model human memory in machine learning algorithms. “It was the best summer of my life,” she says. “There were so many concepts I didn’t know about and didn’t understand. We’d get back to the dorm at night and just sit around talking about science.”

Ross loved it so much that she spent a second summer at CBMM, and is now a third-year graduate student working with Katz and Barbu, teaching computers how to use vision and language to learn more like children. She’s since gone back to the summer programs, now as a teaching assistant. “CBMM is a research center,” says Ellen Hildreth, a computer scientist at Wellesley College who coordinates CBMM’s education programs. “But it also fosters a strong commitment to education, and that effort is helping to create a community of researchers around this new field.”

Quest for intelligence

CBMM has far to go in its mission to understand the mind, but there is good reason to believe that what CBMM started will continue well beyond the NSF-funded ten years.

This February, MIT announced a new institute-wide initiative called the MIT Intelligence Quest, or MIT IQ. It’s a massive interdisciplinary push to study human intelligence and create new tools based on that knowledge. It is also, says McGovern Institute Director Robert Desimone, a sign of the institute’s faith in what CBMM itself has so far accomplished. “The fact that MIT has made this big commitment in this area is an endorsement of the kind of view we’ve been promoting through CBMM,” he says.

MIT IQ consists of two linked entities: “The Core” and “The Bridge.” CBMM is part of the Core, which will advance the science and engineering of both human and machine intelligence. “This combination is unique to MIT,” explains Poggio, “and is designed to win not only Turing but also Nobel prizes.”

And more than that, points out BCS Department Head Jim DiCarlo, it’s also a return to CBMM’s very first mission. Before CBMM began, Poggio and a few other MIT scientists had tested the waters with a small, Institute-funded collaboration called the Intelligence Initiative (I^2), that welcomed all types of intelligence research–even business and organizational intelligence. MIT IQ re-opens that broader door. “In practice, we want to build a bigger tent now around the science of intelligence,” DiCarlo says.

For his part, Poggio finds the name particularly apt. “Because it is going to be a long-term quest,” he says. “Remember, if I’m right, this is the greatest problem in science. Understanding the mind is understanding the very tool we use to try to solve every other problem.”

Finding a way in

Our perception of the world arises within the brain, based on sensory information that is sometimes ambiguous, allowing more than one interpretation. Familiar demonstrations of this point include the famous Necker cube and the “duck-rabbit” drawing (right) in which two different interpretations flip back and forth over time.

Another example is binocular rivalry, in which the two eyes are presented with different images that are perceived in alternation. Several years ago, this phenomenon caught the eye of Caroline Robertson, who is now a Harvard Fellow working in the lab of McGovern Investigator Nancy Kanwisher. Back when she was a graduate student at Cambridge University, Robertson realized that binocular rivalry might be used to probe the basis of autism, among the most mysterious of all brain disorders.

Robertson’s idea was based on the hypothesis that autism involves an imbalance between excitation and inhibition within the brain. Although widely supported by indirect evidence, this has been very difficult to test directly in human patients. Robertson realized that binocular rivalry might provide a way to perform such a test. The perceptual switches that occur during rivalry are thought to involve competition between different groups of neurons in the visual cortex, each group reinforcing its own interpretation via excitatory connections while suppressing the alternative interpretation through inhibitory connections. Thus, if the balance is altered in the brains of people with autism, the frequency of switching might also be different, providing a simple and easily measurable marker of the disease state.

To test this idea, Robertson recruited adults with and without autism, and presented them with two distinct and differently colored images in each eye. As expected, their perceptions switched back and forth between the two images, with short periods of mixed perception in between. This was true for both groups, but when she measured the timing of these switches, Robertson found that individuals with autism do indeed see the world in a measurably different way than people without the disorder. Individuals with autism cycle between the left and right images more slowly, with the intervening periods of mixed perception lasting longer than in people without autism. The more severe their autistic symptoms, as determined by a standard clinical behavioral evaluation, the greater the difference.

Robertson had found a marker for autism that is more objective than current methods that involve one person assessing the behavior of another. The measure is immediate and relies on brain activity that happens automatically, without people thinking about it. “Sensation is a very simple place to probe,” she says.

A top-down approach

When she arrived in Kanwisher’s lab, Robertson wanted to use brain imaging to probe the basis for the perceptual phenomenon that she had discovered. With Kanwisher’s encouragement, she began by repeating the behavioral experiment with a new group of subjects, to check that her previous results were not a fluke. Having confirmed that the finding was real, she then scanned the subjects using an imaging method called Magnetic Resonance Spectroscopy (MRS), in which an MRI scanner is reprogrammed to measure concentrations of neurotransmitters and other chemicals in the brain. Kanwisher had never used MRS before, but when Robertson proposed the experiment, she was happy to try it. “Nancy’s the kind of mentor who could support the idea of using a new technique and guide me to approach it rigorously,” says Robertson.

For each of her subjects, Robertson scanned their brains to measure the amounts of two key neurotransmitters, glutamate, which is the main excitatory transmitter in the brain, and GABA, which is the main source of inhibition. When she compared the brain chemistry to the behavioral results in the binocular rivalry task, she saw something intriguing and unexpected. In people without autism, the amount of GABA in the visual cortex was correlated with the strength of the suppression, consistent with the idea that GABA enables signals from one eye to inhibit those from the other eye. But surprisingly, there was no such correlation in the autistic individuals—suggesting that GABA was somehow unable to exert its normal suppressive effect. It isn’t yet clear exactly what is going wrong in the brains of these subjects, but it’s an early flag, says Robertson. “The next step is figuring out which part of the pathway is disrupted.”

A bottom-up approach

Robertson’s approach starts from the top-down, working backward from a measurable behavior to look for brain differences, but it isn’t the only way in. Another approach is to start with genes that are linked to autism in humans, and to understand how they affect neurons and brain circuits. This is the bottom-up approach of McGovern Investigator Guoping Feng, who studies a gene called Shank3 that codes for a protein that helps build synapses, the connections through which neurons send signals to each other. Several years ago Feng knocked out Shank3 in mice, and found that the mice exhibited behaviors reminiscent of human autism, including repetitive grooming, anxiety, and impaired social interaction and motor control.

These earlier studies involved a variety of different mutations that disabled the Shank3 gene. But when postdoc Yang Zhou joined Feng’s lab, he brought a new perspective. Zhou had come from a medical background and wanted to do an experiment more directly connected to human disease. So he suggested making a mouse version of a Shank3 mutation seen in human patients, and testing its effects.

Zhou’s experiment would require precise editing of the mouse Shank3 gene, previously a difficult and time-consuming task. But help was at hand, in the form of a collaboration with McGovern Investigator Feng Zhang, a pioneer in the development of genome-editing methods.

Using Zhang’s techniques, Zhou was able to generate mice with two different mutations: one that had been linked to human autism, and another that had been discovered in a few patients with schizophrenia.

The researchers found that mice with the autism-related mutation exhibited behavioral changes at a young age that paralleled behaviors seen in children with autism. They also found early changes in synapses within a brain region called the striatum. In contrast, mice with the schizophrenia-related gene appeared normal until adolescence, and then began to exhibit changes in behavior and also changes in the prefrontal cortex, a brain region that is implicated in human schizophrenia. “The consequences of the two different Shank3 mutations were quite different in certain aspects, which was very surprising to us,” says Zhou.

The fact that different mutations in just one gene can produce such different results illustrates exactly how complex these neuropsychiatric disorders can be. “Not only do we need to study different genes, but we also have to understand different mutations and which brain regions have what defects,” says Feng, who received funding from the Poitras Center for Affective Disorders research and the Simons Center for the Social Brain. Robertson and Kanwisher were also supported by the Simons Center.

Surprising plasticity

The brain alterations that lead to autism are thought to arise early in development, long before the condition is diagnosed, raising concerns that it may be difficult to reverse the effects once the damage is done. With the Shank3 knockout mice, Feng and his team were able to approach this question in a new way, asking what would happen if the missing gene were to be restored in adulthood.

To find the answer, lab members Yuan Mei and Patricia Monteiro, along with Zhou, studied another strain of mice, in which the Shank3 gene was switched off but could be reactivated at any time by adding a drug to their diet. When adult mice were tested six weeks after the gene was switched back on, they no longer showed repetitive grooming behaviors, and they also showed normal levels of social interaction with other mice, despite having grown up without a functioning Shank3 gene. Examination of their brains confirmed that many of the synaptic alterations were also rescued when the gene was restored.

Not every symptom was reversed by this treatment; even after six weeks or more of restored Shank3 expression, the mice continued to show heightened anxiety and impaired motor control. But even these deficits could be prevented if the Shank3 gene was restored earlier in life, soon after birth.

The results are encouraging because they indicate a surprising degree of brain plasticity, persisting into adulthood. If the results can be extrapolated to human patients, they suggest that even in adulthood, autism may be at least partially reversible if the right treatment can be found. “This shows us the possibility,” says Zhou. “If we could somehow put back the gene in patients who are missing it, it could help improve their life quality.”

Converging paths

Robertson and Feng are approaching the challenge of autism from different starting points, but already there are signs of convergence. Feng is finding early signs that his Shank3 mutant mice may have an altered balance of inhibitory and excitatory circuits, consistent with what Robertson and Kanwisher have found in humans.

Feng is continuing to study these mice, and he also hopes to study the effects of a similar mutation in non-human primates, whose brains and behaviors are more similar to those of humans than rodents. Robertson, meanwhile, is planning to establish a version of the binocular rivalry test in animal models, where it is possible to alter the balance between inhibition and excitation experimentally (for example, via a genetic mutation or a drug treatment). If this leads to changes in binocular rivalry, it would strongly support the link to the perceptual changes seen in humans.

One challenge, says Robertson, will be to develop new methods to measure the perceptions of mice and other animals. “The mice can’t tell us what they are seeing,” she says. “But it would also be useful in humans, because it would allow us to study young children and patients who are non-verbal.”

A multi-pronged approach

The imbalance hypothesis is a promising lead, but no single explanation is likely to encompass all of autism, according to McGovern director Bob Desimone. “Autism is a notoriously heterogeneous condition,” he explains. “We need to try multiple approaches in order to maximize the chance of success.”

McGovern researchers are doing exactly that, with projects underway that range from scanning children to developing new molecular and microscopic methods for examining brain changes in animal disease models. Although genetic studies provide some of the strongest clues, Desimone notes that there is also evidence for environmental contributions to autism and other brain disorders. “One that’s especially interesting to us is a maternal infection and inflammation, which in mice at least can affect brain development in ways we’re only beginning to understand.”

The ultimate goal, says Desimone, is to connect the dots and to understand how these diverse human risk factors affect brain function. “Ultimately, we want to know what these different pathways have in common,” he says. “Then we can come up with rational strategies for the development of new treatments.”

How the brain builds panoramic memory

When asked to visualize your childhood home, you can probably picture not only the house you lived in, but also the buildings next door and across the street. MIT neuroscientists have now identified two brain regions that are involved in creating these panoramic memories.

These brain regions help us to merge fleeting views of our surroundings into a seamless, 360-degree panorama, the researchers say.

“Our understanding of our environment is largely shaped by our memory for what’s currently out of sight,” says Caroline Robertson, a postdoc at MIT’s McGovern Institute for Brain Research and a junior fellow of the Harvard Society of Fellows. “What we were looking for are hubs in the brain where your memories for the panoramic environment are integrated with your current field of view.”

Robertson is the lead author of the study, which appears in the Sept. 8 issue of the journal Current Biology. Nancy Kanwisher, the Walter A. Rosenblith Professor of Brain and Cognitive Sciences and a member of the McGovern Institute, is the paper’s lead author.

Building memories

As we look at a scene, visual information flows from our retinas into the brain, which has regions that are responsible for processing different elements of what we see, such as faces or objects. The MIT team suspected that areas involved in processing scenes — the occipital place area (OPA), the retrosplenial complex (RSC), and parahippocampal place area (PPA) — might also be involved in generating panoramic memories of a place such as a street corner.

If this were true, when you saw two images of houses that you knew were across the street from each other, they would evoke similar patterns of activity in these specialized brain regions. Two houses from different streets would not induce similar patterns.

“Our hypothesis was that as we begin to build memory of the environment around us, there would be certain regions of the brain where the representation of a single image would start to overlap with representations of other views from the same scene,” Robertson says.

The researchers explored this hypothesis using immersive virtual reality headsets, which allowed them to show people many different panoramic scenes. In this study, the researchers showed participants images from 40 street corners in Boston’s Beacon Hill neighborhood. The images were presented in two ways: Half the time, participants saw a 100-degree stretch of a 360-degree scene, but the other half of the time, they saw two noncontinuous stretches of a 360-degree scene.

After showing participants these panoramic environments, the researchers then showed them 40 pairs of images and asked if they came from the same street corner. Participants were much better able to determine if pairs came from the same corner if they had seen the two scenes linked in the 100-degree image than if they had seen them unlinked.

Brain scans revealed that when participants saw two images that they knew were linked, the response patterns in the RSC and OPA regions were similar. However, this was not the case for image pairs that the participants had not seen as linked. This suggests that the RSC and OPA, but not the PPA, are involved in building panoramic memories of our surroundings, the researchers say.

Priming the brain

In another experiment, the researchers tested whether one image could “prime” the brain to recall an image from the same panoramic scene. To do this, they showed participants a scene and asked them whether it had been on their left or right when they first saw it. Before that, they showed them either another image from the same street corner or an unrelated image. Participants performed much better when primed with the related image.

“After you have seen a series of views of a panoramic environment, you have explicitly linked them in memory to a known place,” Robertson says. “They also evoke overlapping visual representations in certain regions of the brain, which is implicitly guiding your upcoming perceptual experience.”

The research was funded by the National Science Foundation Science and Technology Center for Brains, Minds, and Machines; and the Harvard Milton Fund.

Study finds brain connections key to learning

A new study from MIT reveals that a brain region dedicated to reading has connections for that skill even before children learn to read.

By scanning the brains of children before and after they learned to read, the researchers found that they could predict the precise location where each child’s visual word form area (VWFA) would develop, based on the connections of that region to other parts of the brain.

Neuroscientists have long wondered why the brain has a region exclusively dedicated to reading — a skill that is unique to humans and only developed about 5,400 years ago, which is not enough time for evolution to have reshaped the brain for that specific task. The new study suggests that the VWFA, located in an area that receives visual input, has pre-existing connections to brain regions associated with language processing, making it ideally suited to become devoted to reading.

“Long-range connections that allow this region to talk to other areas of the brain seem to drive function,” says Zeynep Saygin, a postdoc at MIT’s McGovern Institute for Brain Research. “As far as we can tell, within this larger fusiform region of the brain, only the reading area has these particular sets of connections, and that’s how it’s distinguished from adjacent cortex.”

Saygin is the lead author of the study, which appears in the Aug. 8 issue of Nature Neuroscience. Nancy Kanwisher, the Walter A. Rosenblith Professor of Brain and Cognitive Sciences and a member of the McGovern Institute, is the paper’s senior author.

Specialized for reading

The brain’s cortex, where most cognitive functions occur, has areas specialized for reading as well as face recognition, language comprehension, and many other tasks. Neuroscientists have hypothesized that the locations of these functions may be determined by prewired connections to other parts of the brain, but they have had few good opportunities to test this hypothesis.

Reading presents a unique opportunity to study this question because it is not learned right away, giving scientists a chance to examine the brain region that will become the VWFA before children know how to read. This region, located in the fusiform gyrus, at the base of the brain, is responsible for recognizing strings of letters.

Children participating in the study were scanned twice — at 5 years of age, before learning to read, and at 8 years, after they learned to read. In the scans at age 8, the researchers precisely defined the VWFA for each child by using functional magnetic resonance imaging (fMRI) to measure brain activity as the children read. They also used a technique called diffusion-weighted imaging to trace the connections between the VWFA and other parts of the brain.

The researchers saw no indication from fMRI scans that the VWFA was responding to words at age 5. However, the region that would become the VWFA was already different from adjacent cortex in its connectivity patterns. These patterns were so distinctive that they could be used to accurately predict the precise location where each child’s VWFA would later develop.

Although the area that will become the VWFA does not respond preferentially to letters at age 5, Saygin says it is likely that the region is involved in some kind of high-level object recognition before it gets taken over for word recognition as a child learns to read. Still unknown is how and why the brain forms those connections early in life.

Pre-existing connections

Kanwisher and Saygin have found that the VWFA is connected to language regions of the brain in adults, but the new findings in children offer strong evidence that those connections exist before reading is learned, and are not the result of learning to read, according to Stanislas Dehaene, a professor and the chair of experimental cognitive psychology at the College de France, who wrote a commentary on the paper for Nature Neuroscience.

“To genuinely test the hypothesis that the VWFA owes its specialization to a pre-existing connectivity pattern, it was necessary to measure brain connectivity in children before they learned to read,” wrote Dehaene, who was not involved in the study. “Although many children, at the age of 5, did not have a VWFA yet, the connections that were already in place could be used to anticipate where the VWFA would appear once they learned to read.”

The MIT team now plans to study whether this kind of brain imaging could help identify children who are at risk of developing dyslexia and other reading difficulties.

“It’s really powerful to be able to predict functional development three years ahead of time,” Saygin says. “This could be a way to use neuroimaging to try to actually help individuals even before any problems occur.”