PhD student Wei-Chen Wang is moved to help people heal

This story originally appeared in the Spring 2023 issue of Spectrum.

___

When he turned his ankle five years ago as an undergraduate playing pickup basketball at the University of Illinois, Wei-Chen (Eric) Wang SM ’22 knew his life would change in certain ways. For one thing, Wang, then a computer science major, wouldn’t be playing basketball anytime soon. He also assumed, correctly, that he might require physical therapy (PT).

What he did not foresee was that this minor injury would influence his career trajectory. While lying on the PT bench, Wang began to wonder: “Can I replicate what the therapist is doing using a robot?” It was an idle thought at the time. Today, however, his research involves robots and movement, closely related to what had seemed a passing fancy.

Wang continued his focus on computer science as an MIT graduate student, receiving his master’s in 2022 before deciding to pursue work of a more applied nature. He met Nidhi Seethapathi, who had joined MIT’s faculty as an assistant professor in electrical engineering and computer science and brain and cognitive science a few months earlier, and was intrigued by the notion of creating robots that could illuminate the key principles of movement—knowledge that might someday help people regain the ability to move comfortably after suffering from injury, stroke, or disease.

As the first PhD student in Seethapathi’s group and a MathWorks Fellow, Wang is charged with building machine learning-based models that can accurately predict and reproduce human movements. He will then use computer-simulated environments to visualize and evaluate the performance of these models.

To begin, he needs to gather data about specific human movements. One potential data collection method involves the placement of sensors or markers on different parts of the body to pinpoint their precise positions at any given moment. He can then try to calculate those positions in the future, as dictated by the equations of motion in physics.

The other method relies on computer vision-powered software that can automatically convert video footage to motion data. Wang prefers the latter approach, which he considers more natural. “We just look at what humans are doing and try to learn from that directly,” he explains. That’s also where machine learning comes in. “We use machine-learning tools to extract data from the video, and those data become the input to our model,” he adds. The model, in this case, is just another term for the robot brain.

The near-term goal is not to make robots more natural, Wang notes. “We’re using [simulated] robots to understand how humans are moving and eventually to explain any kind of movement—or at least that’s the hope. That said, based on the general principles we’re able to abstract, we might someday build robots that can move more naturally.”

Wang is also collaborating on a project headed by postdoctoral fellow Antoine De Comité that focuses on robotic retrieval of objects—the movements required to remove books from a library shelf, for example, or to grab a drink from a refrigerator. While robots routinely excel at tasks such as grasping an object on a tabletop, performing naturalistic movements in three dimensions remains challenging.

Wang describes a video shown by a Stanford University scientist in which a robot destroyed a refrigerator while attempting to extract a beer. He and De Comité hope for better results with robots that have undergone reinforcement learning—an approach using deep learning in which desired motions are rewarded or reinforced whereas unwanted motions are discouraged.

If they succeed in designing a robot that can safely retrieve a beer, Wang says, then more important and delicate tasks could be within reach. Someday, a robot at PT might guide a patient through knee exercises or apply ultrasound to an arthritic elbow.

Modeling the marvelous journey from A to B

This story originally appeared in the Spring 2023 issue of Spectrum.

___

Nidhi Seethapathi was first drawn to using powerful yet simple models to understand elaborate patterns when she learned about Newton’s laws of motion as a high school student in India. She was fascinated by the idea that wonderfully complex behaviors can arise from a set of objects that follow a few elementary rules.

Now an assistant professor at MIT, Seethapathi seeks to capture the intricacies of movement in the real world, using computational modeling as well as input from theory and experimentation. “[Theoretical physicist and Nobel laureate] Richard Feynman ’39 once said, ‘What I cannot create, I do not understand,’” Seethapathi says. “In that same spirit, the way I try to understand movement is by building models that move the way we do.”

Models of locomotion in the real world

Seethapathi—who holds a shared faculty position between the Department of Brain and Cognitive Sciences and the Department of Electrical Engineering and Computer Science’s Faculty of Artificial Intelligence + Decision- Making, which is housed in the Schwarzman College of Computing and the School of Engineering—recalls a moment during her undergraduate years studying mechanical engineering in Mumbai when a professor asked students to pick an aspect of movement to examine in detail. While most of her peers chose to analyze machines, Seethapathi selected the human hand. She was astounded by its versatility, she says, and by the number of variables, referred to by scientists as “degrees of freedom,” that are needed to characterize routine manual tasks. The assignment made her realize that she wanted to explore the diverse ways in which the entire human body can move.

Also an investigator at the McGovern Institute for Brain Research, Seethapathi pursued graduate research at The Ohio State University Movement Lab, where her goal was to identify the key elements of human locomotion. At that time, most people in the field were analyzing simple movements, she says, “but I was interested in broadening the scope of my models to include real-world behavior. Given that movement is so ubiquitous, I wondered: What can this model say about everyday life?”

After earning her PhD from Ohio State in 2018, Seethapathi continued this line of research as a postdoctoral fellow at the University of Pennsylvania. New computer vision tools to track human movement from video footage had just entered the scene, and during her time at UPenn, Seethapathi sought to expand her skillset to include computer vision and applications to movement rehabilitation.

At MIT, Seethapathi continues to extend the range of her studies of human movement, looking at how locomotion can evolve as people grow and age, and how it can adapt to anatomical changes and even adjust to shifts in weather, which can alter ground conditions. Her investigations now encompass other species as part of an effort to determine how creatures with different morphologies and habitats regulate their movements.

The models Seethapathi and her team create make predictions about human movements that can later be verified or refuted by empirical tests. While relatively simple experiments can be carried out on treadmills, her group is developing measurement systems incorporating wearable sensors and video-based sensing to measure movement data that have traditionally been hard to obtain outside the laboratory.

Although Seethapathi says she is primarily driven to uncover the fundamental principles that govern movement behavior, she believes her work also has practical applications.

“When people are treated for a movement disorder, the goal is to impact their movements in the real world,” she says. “We can use our predictive models to see how a particular intervention will affect a person’s trajectory. The hope is that our models can help put the individual on the right track to recovery as early as possible.”

The ways we move

This story originally appeared in the Winter 2023 issue of BrainScan.
__

Many people barely consider how their bodies move — at least not until movement becomes more difficult due to injury or disease. But the McGovern scientists who are working to understand human movement and restore it after it has been lost know that the way we move is an engineering marvel.
Muscles, bones, brain, and nerves work together to navigate and interact with an ever-changing environment, making constant but often imperceptible adjustments to carry out our goals. It’s an efficient and highly adaptable system, and the way it’s put together is not at all intuitive, says Hugh Herr, a new associate investigator at the Institute.

That’s why Herr, who also co-directs MIT’s new K. Lisa Yang Center for Bionics, looks to biology to guide the development of artificial limbs that aim to give people the same agency, control, and comfort of natural limbs. McGovern Associate Investigator Nidhi Seethapathi, who like Herr joined the Institute in September, is also interested in understanding human movement in all its complexity. She is coming at the problem from a different direction, using computational modeling to predict how and why we move the way we do.

Moving through change

The computational models that Seethapathi builds in her lab aim to predict how humans will move under different conditions. If a person is placed in an unfamiliar environment and asked to navigate a course under time pressure, what path will they take? How will they move their limbs, and what forces will they exert? How will their movements change as they become more comfortable on the terrain?

McGovern Associate Investigator Nidhi Seethapathi with lab members (from left to right) Inseung Kang, Nikasha Patel, Antoine De Comite, Eric Wang, and Crista Falk. Photo: Steph Stevens

Seethapathi uses the principles of robotics to build models that answer these questions, then tests them by placing real people in the same scenarios and monitoring their movements. So far, that has mostly meant inviting study subjects to her lab, but as she expands her models to predict more complex movements, she will begin monitoring people’s activity in the real world, over longer time periods than laboratory experiments typically allow.

Seethapathi’s hope is that her findings will inform the way doctors, therapists, and engineers help patients regain control over their movements after an injury or stroke, or learn to live with movement disorders like Parkinson’s disease. To make a real difference, she stresses, it’s important to bring studies of human movement out of the lab, where subjects are often limited to simple tasks like walking on a treadmill, into more natural settings. “When we’re talking about doing physical therapy, neuromotor rehabilitation, robotic exoskeletons — any way of helping people move better — we want to do it in the real world, for everyday, complex tasks,” she says.

When we’re talking about helping people move better — we want to do it in the real world, for everyday, complex tasks,” says Seethapathi.

Seethapathi’s work is already revealing how the brain directs movement in the face of competing priorities. For example, she has found that when people are given a time constraint for traveling a particular distance, they walk faster than their usual, comfortable pace — so much so that they often expend more energy than necessary and arrive at their destination a bit early. Her models suggest that people pick up their pace more than they need to because humans’ internal estimations of time are imprecise.

Her team is also learning how movements change as a person becomes familiar with an environment or task. She says people find an efficient way to move through a lot of practice. “If you’re walking in a straight line for a very long time, then you seem to pick the movement that is optimal for that long-distance walk,” she explains. But in the real world, things are always changing — both in the body and in the environment. So Seethapathi models how people behave when they must move in a new way or navigate a new environment. “In these kinds of conditions, people eventually wind up on an energy-optimal solution,” she says. “But initially, they pick something that prevents them from falling down.”

To capture the complexity of human movement, Seethapathi and her team are devising new tools that will let them monitor people’s movements outside the lab. They are also drawing on data from other fields, from architecture to physical therapy, and even from studies of other animals. “If I have general principles, they should be able to tell me how modifications in the body or in how the brain is connected to the body would lead to different movements,” she says. “I’m really excited about generalizing these principles across timescales and species.”

Building new bodies

In Herr’s lab, a deepening understanding of human movement is helping drive the development of increasingly sophisticated artificial limbs and other wearable robots. The team designs devices that interface directly with a user’s nervous system, so they are not only guided by the brain’s motor control systems, but also send information back to the brain.

Herr, a double amputee with two artificial legs of his own, says prosthetic devices are getting better at replicating natural movements, guided by signals from the brain. Mimicking the design and neural signals found in biology can even give those devices much of the extraordinary adaptability of natural human movement. As an example, Herr notes that his legs effortlessly navigate varied terrain. “There’s adaptive, stabilizing features, and the machine doesn’t have to detect every pothole and pebble and banana peel on the ground, because the morphology and the nervous system control is so inherently adaptive,” he says.

McGovern Associate Investigator Hugh Herr at work in the K. Lisa Yang Center for Bionics at MIT. Photo: Jimmy Day/Media Lab

But, he notes, the field of bionics is in its infancy, and there’s lots of room for improvement. “It’s only a matter of time before a robotic knee, for example, can be as good as the biological knee or better,” he says. “But the problem is the human attached to that knee won’t feel it’s their knee until they can feel it, and until their central nervous system has complete agency over that knee,” he says. “So if you want to actually build new bodies and not just more and more powerful tools for humans, you have to link to the brain bidirectionally.”

Herr’s team has found that surgically restoring natural connections between pairs of muscles that normally work in opposition to move a limb, such as the arm’s biceps and triceps, gives the central nervous system signals about how that limb is moving, even when a natural limb is gone. The idea takes a cue from the work of McGovern Emeritus Investigator Emilio Bizzi, who found that the coordinated activation of groups of muscles by the nervous system, called muscle synergies, is important for motor control.

“It’s only a matter of time before a robotic knee can be as good as the biological knee or better,” says Herr.

“When a person thinks and moves their phantom limb, those muscle pairings move dynamically, so they feel, in a natural way, the limb moving — even though the limb is not there,” Herr explains. He adds that when those proprioceptive signals communicate instead how an artificial limb is moving, a person experiences “great agency and ownership” of that limb. Now, his group is working to develop sensors that detect and relay information usually processed by sensory neurons in the skin, so prosthetic devices can also perceive pressure and touch.

At the same time, they’re working to improve the mechanical interface between wearable robots and the body to optimize comfort and fit — whether that’s by using detailed anatomical imaging to guide the design of an individual’s device or by engineering devices that integrate directly with a person’s skeleton. There’s no “average” human, Herr says, and effective technologies must meet individual needs, not just for fit, but also for function. At that same time, he says it’s important to plan for cost-effective, mass production, because the need for these technologies is so great.

“The amount of human suffering caused by the lack of technology to address disability is really beyond comprehension,” he says. He expects tremendous progress in the growing field of bionics in the coming decades, but he’s impatient. “I think in 50 years, when scientists look back to this era, it’ll be laughable,” he says. “I’m always anxiously wanting to be in the future.”

Nidhi Seethapathi

Science in Motion

The computational models that Seethapathi builds in her lab aim to predict how humans will move under different conditions. If a person is placed in an unfamiliar environment and asked to navigate a course under time pressure, what path will they take? How will they move their limbs, and what forces will they exert? How will their movements change as they become more comfortable on the terrain?

Seethapathi uses the principles of robotics to build models that answer these questions, then tests them by placing real people in the same scenarios and monitoring their movements. Currently, most of these tests take place in her lab, where subjects are often limited to simple tasks like walking on a treadmill. As she expands her models to predict more complex movements, she will begin monitoring people’s activity in the real world, over longer time periods than laboratory experiments typically allow. Ultimately, Seethapathi hopes her findings will inform the way doctors, therapists, and engineers help patients regain control over their movements after an injury or due to a movement disorder.

School of Engineering welcomes new faculty

The School of Engineering is welcoming 17 new faculty members to its departments, institutes, labs, and centers. With research and teaching activities ranging from the development of robotics and machine learning technologies to modeling the impact of elevated carbon dioxide levels on vegetation, they are poised to make significant contributions in new directions across the school and to a wide range of research efforts around the Institute.

“I am delighted to welcome our wonderful new faculty,” says Anantha Chandrakasan, dean of the MIT School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “Their impact as talented educators, researchers, collaborators, and mentors will be felt across the School of Engineering and beyond as they strengthen our engineering community.”

Among the new faculty members are four from the Department of Electrical Engineering and Computer Science (EECS), which jointly reports into the School of Engineering and the MIT Stephen A. Schwarzman College of Computing.

Iwnetim “Tim” Abate will join the Department of Materials Science and Engineering in July 2023. He is currently both a Miller and Presidential Postdoctoral Fellow at the University of California at Berkeley. He received his MS and PhD in materials science and engineering from Stanford University and BS in physics from Minnesota State University at Moorhead. He also has research experience in industry (IBM) and at national labs (Los Alamos and SLAC National Accelerator Laboratories). Utilizing computational and experimental approaches in tandem, his research program at MIT will focus on the intersection of material chemistry, electrochemistry, and condensed matter physics to develop solutions for climate change and smart agriculture, including next-generation battery and sensor devices. Abate is also a co-founder and president of a nonprofit organization, SciFro Inc., working on empowering the African youth and underrepresented minorities in the United States to solve local problems through scientific research and innovation. He will continue working on expanding the vision and impact of SciFro with the MIT community. Abate received the Dan Cubicciotti Award of the Electrochemical Society, the EDGE and DARE graduate fellowships, the United Technologies Research Center fellowship, the John Stevens Jr. Memorial Award and the Justice, Equity, Diversity and Inclusion Graduation Award from Stanford University. He will hold the Toyota Career Development Professorship at MIT.

Kaitlyn Becker will join the Department of Mechanical Engineering as an assistant professor in August 2022. Becker received her PhD in materials science and mechanical engineering from Harvard University in 2021 and previously worked in industry as a manufacturing engineer at Cameron Health and a senior engineer for Nano Terra, Inc. She is a postdoc at the Harvard University School of Engineering and Applied Sciences and is also currently a senior glassblowing instructor in the Department of Materials Science and Engineering at MIT. Becker works on adaptive soft robots for grasping and manipulation of delicate structures from the desktop to the deep sea. Her research focuses on novel soft robotic platforms, adding functionality through innovations at the intersection of design and fabrication. She has developed novel fabrication methodologies and mechanical programming methods for large integrated arrays of soft actuators capable of collective manipulation and locomotion, and demonstrated integration of microfluidic circuits to control arrays of multichannel, two-degrees-of-freedom soft actuators. Becker received the National Science Foundation Graduate Research Fellowship in 2015, the Microsoft Graduate Women’s Scholarship in 2015, the Winston Chen Graduate Fellowship in 2015, and the Courtlandt S. Gross Memorial Scholarship in 2014.

Brandon J. DeKosky joined the Department of Chemical Engineering as an assistant professor in a newly introduced joint faculty position between the department and the Ragon Institute of MGH, MIT, and Harvard in September 2021. He received his BS in chemical engineering from University of Kansas and his PhD in chemical engineering from the University of Texas at Austin. He then did postdoctoral research at the Vaccine Research Center of the National Institute of Infectious Diseases. In 2017, Brandon launched his independent academic career as an assistant professor at the University of Kansas in a joint position with the Department of Chemical Engineering and the Department of Pharmaceutical Chemistry. He was also a member of the bioengineering graduate program. His research program focuses on developing and applying a suite of new high-throughput experimental and computational platforms for molecular analysis of adaptive immune responses, to accelerate precision drug discovery. He has received several notable recognitions, which include receipt of the NIH K99 Path to Independence and NIH DP5 Early Independence awards, the Cellular and Molecular Bioengineering Rising Star Award from the Biomedical Engineering Society, and the Career Development Award from the Congressionally Directed Medical Research Program’s Peer Reviewed Cancer Research Program.

Mohsen Ghaffari will join the Department of Electrical Engineering and Computer Science in April 2022. He received his BS from the Sharif University of Technology, and his MS and PhD in EECS from MIT. His research focuses on distributed and parallel algorithms for large graphs. Ghaffari received the ACM Doctoral Dissertation Honorable Mention Award, the ACM-EATCS Principles of Distributed Computing Doctoral Dissertation Award, and the George M. Sprowls Award for Best Computer Science PhD thesis at MIT. Before coming to MIT, he was on the faculty at ETH Zurich, where he received a prestigious European Research Council Starting Grant.

Aristide Gumyusenge joined the Department of Materials Science and Engineering in January. He is currently a postdoc at Stanford University working with Professor Zhenan Bao and Professor Alberto Salleo. He received a BS in chemistry from Wofford College in 2015 and a PhD in chemistry from Purdue University in 2019. His research background and interests are in semiconducting polymers, their processing and characterization, and their unique role in the future of electronics. Particularly, he has tackled longstanding challenges in operation stability of semiconducting polymers under extreme heat and has pioneered high-temperature plastic electronics. He has been selected as a PMSE Future Faculty Scholar (2021), the GLAM Postdoctoral Fellow (2020-22), and the MRS Arthur Nowick and Graduate Student Gold Awardee (2019), among other recognitions. At MIT, he will lead the Laboratory of Organic Materials for Smart Electronics (OMSE Lab). Through polymer design, novel processing strategies, and large-area manufacturing of electronic devices, he is interested in relating molecular design to device performance, especially transistor devices able to mimic and interface with biological systems. He will hold the Merton C. Flemings Career Development Professorship.

Mina Konakovic Lukovic will join the Department of Electrical Engineering and Computer Science as an assistant professor in July 2022. She received her BS and MS from the University of Belgrade, Faculty of Mathematics. She earned her PhD in 2019 in the School of Computer and Communication Sciences at the Swiss Federal Institute of Technology Lausanne, advised by Professor Mark Pauly. Currently a Schmidt Science Postdoctoral Fellow in MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), she has been mentored by Professor Wojciech Matusik. Her research focuses on computer graphics, computational fabrication, 3D geometry processing, and machine learning, including architectural geometry and the design of programmable materials. She received the ACM SIGGRAPH Outstanding Doctoral Dissertation Honorable Mention, the Eurographics PhD Award, and was recently awarded the 2021 SIAM Activity Group on Geometric Design Early Career Prize.

Darcy McRose will join the Department of Civil and Environmental Engineering as an assistant professor in August 2022. She completed a BS in Earth systems at Stanford and a PhD in geosciences at Princeton University. Darcy is currently conducting postdoctoral work at Caltech, where she is mentored by Professor Dianne Newman in the divisions of Biology and Biological Engineering and Geological and Planetary Sciences. Her research program focuses on microbe-environment interactions and their effects on biogeochemical cycles, and incorporates techniques ranging from microbial physiology and genetics to geochemistry. A particular emphasis for this work is the production and use of secondary metabolites and small molecules in soils and sediments. McRose received the Caltech BBE Division postdoctoral fellowship in 2019 and is currently a Simons Foundation Marine Microbial Ecology postdoctoral fellow as well as a L’Oréal USA for Women in Science fellow.

Qin (Maggie) Qi joined the Department of Chemical Engineering as an assistant professor in January 2022. She received two BS degrees in chemical engineering and in operations research from Cornell University, before moving on to Stanford for her PhD. She then took on a postdoc position at Harvard University School of Engineering and Applied Sciences and the Wyss Institute. Maggie’s proposed research includes combining extensive theoretical and computational work on predictive models that guide experimental design. She seeks to investigate particle-cell biomechanics and function for better targeted cell-based therapies. She also plans to design microphysiological systems that elucidate hydrodynamics in complex organs, including delivery of drugs to the eye, and to examine ionic liquids as complex fluids for biomaterial design. She aims to push the boundaries of fluid mechanics, transport phenomena, and soft matter for human health and to innovate precision health care solutions. Maggie received the T.S. Lo Graduate Fellowship and the Stanford Graduate Fellowship in Science and Engineering. Among her accomplishments, Maggie was a participant in the inaugural class of the MIT Rising Stars in ChemE Program in 2018.

Manish Raghavan will join the MIT Sloan School of Management and the Department of Electrical Engineering and Computer Science as an assistant professor in September 2022. He shares a joint appointment with the MIT Schwarzman College of Computing. He received a bachelor’s degree in electrical engineering and computer science from the University of California at Berkeley, and PhD from the Computer Science department at Cornell University. Prior to joining MIT, he was a postdoc at the Harvard Center for Research on Computation and Society. His research interests lie in the application of computational techniques to domains of social concern, including algorithmic fairness and behavioral economics, with a particular focus on the use of algorithmic tools in the hiring pipeline. He is also a member of Cornell’s Artificial Intelligence, Policy, and Practice initiative and Mechanism Design for Social Good.

Ritu Raman joined the Department of Mechanical Engineering as an assistant professor and Brit and Alex d’Arbeloff Career Development Chair in August 2021. Raman received her PhD in mechanical engineering from the University of Illinois at Urbana-Champaign as an NSF Graduate Research Fellow in 2016 and completed a postdoctoral fellowship with Professor Robert Langer at MIT, funded by a NASEM Ford Foundation Fellowship and a L’Oréal USA For Women in Science Fellowship. Raman’s lab designs adaptive living materials powered by assemblies of living cells for applications ranging from medicine to machines. Currently, she is focused on using biological materials and engineering tools to build living neuromuscular tissues. Her goal is to help restore mobility to those who have lost it after disease or trauma and to deploy biological actuators as functional components in machines. Raman published the book Biofrabrication with MIT Press in September 2021. She was in the MIT Technology Review “35 Innovators Under 35” 2019 class, the Forbes “30 Under 30” 2018 class, and has received numerous awards including being named a National Academy of Sciences Kavli Frontiers of Science Fellow in 2020 and receiving the Science and Sartorius Prize for Regenerative Medicine and Cell Therapy in 2019. Ritu has championed many initiatives to empower women in science, including being named an AAAS IF/THEN ambassador and founding the Women in Innovation and Stem Database at MIT (WISDM).

Nidhi Seethapathi joined the Department of Brain and Cognitive Sciences and the Department of Electrical Engineering and Computer Science in January 2022. She shares a joint appointment with the MIT Schwarzman College of Computing. She received a bachelor’s degree in mechanical engineering from Veermata Jijabai Technological Institute and a PhD from the Movement Lab at Ohio State University. Her research interests include building computational predictive models of human movement with applications to autonomous and robot-aided neuromotor rehabilitation. In her work, she uses a combination of tools and approaches from dynamics, control theory, and machine learning. During her PhD, she was a Schlumberger Foundation Faculty for the Future Fellow. She then worked as a postdoc in the Kording Lab at University of Pennsylvania, developing data-driven tools for autonomous neuromotor rehabilitation, in collaboration with the Rehabilitation Robotics Lab.

Vincent Sitzmann will join the Department of Electrical Engineering and Computer Science as an assistant professor in July 2022. He earned his BS from the Technical University of Munich in 2015, his MS from Stanford in 2017, and his PhD from Stanford in 2020. At MIT, he will be the principal investigator of the Scene Representation Group, where he will lead research at the intersection of machine learning, graphics, neural rendering, and computer vision to build algorithms that learn to reconstruct, understand, and interact with 3D environments from incomplete observations the way humans can. Currently, Vincent is a postdoc at the MIT Computer Science and Artificial Intelligence Laboratory with Josh Tenenbaum, Bill Freeman, and Fredo Durand. Along with multiple scholarships and fellowships, he has been recognized with the NeurIPS Honorable Mention: Outstanding New Directions in 2019.

Tess Smidt joined the Department of Electrical Engineering and Computer Science as an assistant professor in September 2021. She earned her SB in physics from MIT in 2012 and her PhD in physics from the University of California at Berkeley in 2018. She is the principal investigator of the Atomic Architects group at the Research Laboratory of Electronics, where she works at the intersection of physics, geometry, and machine learning to design algorithms that aid in the understanding and design of physical systems. Her research focuses on machine learning that incorporates physical and geometric constraints, with applications to materials design. Prior to joining the MIT EECS faculty, she was the 2018 Alvarez Postdoctoral Fellow in Computing Sciences at Lawrence Berkeley National Laboratory and a software engineering intern on the Google Accelerated Sciences team, where she developed Euclidean symmetry equivariant neural networks which naturally handle 3D geometry and geometric tensor data.

Loza Tadesse will join the Department of Mechanical Engineering as an assistant professor in July 2023. She received her PhD in bioengineering from Stanford University in 2021 and previously was a medical student at St. Paul Hospital Millennium Medical College in Ethiopia. She is currently a postdoc at the University of California at Berkeley. Tadesse’s past research combines Raman spectroscopy and machine learning to develop a rapid, all-optical, and label-free bacterial diagnostic and antibiotic susceptibility testing system that aims to circumvent the time-consuming culturing step in “gold standard” methods. She aims to establish a research program that develops next-generation point-of-care diagnostic devices using spectroscopy, optical, and machine learning tools for application in resource limited clinical settings such as developing nations, military sites, and space exploration. Tadesse has been listed as a 2022 Forbes “30 Under 30” in health care, received many awards including the Biomedical Engineering Society (BMES) Career Development Award, the Stanford DARE Fellowship and the Gates Foundation “Call to Action” $200,000 grant for SciFro Inc., an educational nonprofit in Ethiopia, which she co-founded.

César Terrer joined the Department of Civil and Environmental Engineering as an assistant professor in July 2021. He obtained his PhD in ecosystem ecology and climate change from Imperial College London, where he started working at the interface between experiments and models to better understand the effects of elevated carbon dioxide on vegetation. His research has advanced the understanding on the effects of carbon dioxide in terrestrial ecosystems, the role of soil nutrients in a climate change context, and plant-soil interactions. Synthesizing observational data from carbon dioxide experiments and satellites through meta-analysis and machine learning, César has found that microbial interactions between plants and soils play a major role in the carbon cycle at a global scale, affecting the speed of global warming.

Haruko Wainwright joined the Department of Nuclear Science and Engineering as an assistant professor in January 2021. She received her BEng in engineering physics from Kyoto University, Japan in 2003, her MS in nuclear engineering in 2006, her MA in statistics in 2010, and her PhD in nuclear engineering in 2010 from University of California at Berkeley. Before joining MIT, she was a staff scientist in the Earth and Environmental Sciences Area at Lawrence Berkeley National Laboratory and an adjunct professor in nuclear engineering at UC Berkeley. Her research focuses on environmental modeling and monitoring technologies, with a particular emphasis on nuclear waste and nuclear-related contamination. She has been developing Bayesian methods for multi-type multiscale data integration and model-data integration. She leads and co-leads multiple interdisciplinary projects, including the U.S. Department of Energy’s Advanced Long-term Environmental Monitoring Systems (ALTEMIS) project, and the Artificial Intelligence for Earth System Predictability (AI4ESP) initiative.

Martin Wainwright will join the Department of Electrical Engineering and Computer Science in July 2022. He received a bachelor’s degree in mathematics from University of Waterloo, Canada, and PhD in EECS from MIT. Prior to joining MIT, he was the Chancellor’s Professor at the University of California at Berkeley, with a joint appointment between the Department of Statistics and the Department of EECS. His research interests include high-dimensional statistics, statistical machine learning, information theory, and optimization theory. Among other awards, he has received the COPSS Presidents’ Award (2014) from the Joint Statistical Societies, the David Blackwell Lectureship (2017), and Medallion Lectureship (2013) from the Institute of Mathematical Statistics, and Best Paper awards from the IEEE Signal Processing Society and IEEE Information Theory Society. He was a Section Lecturer at the International Congress of Mathematicians in 2014.

 

Seven new faculty join the MIT School of Science

This winter, seven new faculty members join the MIT School of Science in the departments of Biology and Brain and Cognitive Sciences.

Siniša Hrvatin studies how animals initiate, regulate, and survive states of stasis, such as torpor and hibernation. To survive extreme environments, many animals have evolved the ability to decrease metabolic rate and body temperature and enter dormant states. His long-term goal is to harness the potential of these biological adaptations to advance medicine. Previously, he identified the neurons that regulate mouse torpor and established a platform for the development of cell-type-specific viral drivers.
Hrvatin earned his bachelor’s degree in biochemical sciences in 2007 and his PhD in stem cell and regenerative medicine in 2013, both from Harvard University. He was then a postdoc in bioengineering at MIT and a postdoc in neurobiology at Harvard Medical School. Hrvatin returns to MIT as an assistant professor of biology and a member of the Whitehead Institute for Biomedical Research.

Sara Prescott investigates how sensory inputs from within the body control mammalian physiology and behavior. Specifically, she uses mammalian airways as a model system to explore how the cells that line the surface of the body communicate with parts of the nervous system. For example, what mechanisms elicit a reflexive cough? Prescott’s research considers the critical questions of how airway insults are detected, encoded, and adapted to mammalian airways with the ultimate goal of providing new ways to treat autonomic dysfunction.

Prescott earned her bachelor’s degree in molecular biology from Princeton University in 2008 followed by her PhD in developmental biology from Stanford University in 2016. Prior to joining MIT, she was a postdoc at Harvard Medical School and Howard Hughes Medical Institute. The Department of Biology welcomes Prescott as an assistant professor.
Alison Ringel is a T-cell immunologist with a background in biochemistry, biophysics, and structural biology. She investigates how environmental factors such as aging, metabolism, and diet impact tumor progress and the immune responses that cause tumor control. By mapping the environment around a tumor on a cellular level, she seeks to gain a molecular understanding of cancer risk factors.

Ringel received a bachelor’s degree in molecular biology, biochemistry, and physics from Wesleyan University, then a PhD in molecular biophysics from John Hopkins University School of Medicine. Previously, Ringel was a postdoc in the Department of Cell Biology at Harvard Medical School. She joins MIT as an assistant professor in the Department of Biology and a core member of the Ragon Institute of MGH, MIT and Harvard.

Francisco J. Sánchez-Rivera PhD ’16 investigates genetic variation with a focus on cancer. He integrates genome engineering technologies, genetically-engineered mouse models (GEMMs), and single cell lineage tracing and omics approaches in order to understand the mechanics of cancer development and evolution. With state-of-the-art technologies — including a CRISPR-based genome editing system he developed as a graduate student at MIT — he hopes to make discoveries in cancer genetics that will shed light on disease progression and pave the way for better therapeutic treatments.

Sánchez-Rivera received his bachelor’s degree in microbiology from the University of Puerto Rico at Mayagüez followed by a PhD in biology from MIT. He then pursued postdoctoral studies at Memorial Sloan Kettering Cancer Center supported by a HHMI Hanna Gray Fellowship. Sánchez-Rivera returns to MIT as an assistant professor in the Department of Biology and a member of the Koch Institute for Integrative Cancer Research at MIT.

Nidhi Seethapathi builds predictive models to help understand human movement with a combination of theory, computational modeling, and experiments. Her research focuses on understanding the objectives that govern movement decisions, the strategies used to execute movement, and how new movements are learned. By studying movement in real-world contexts using creative approaches, Seethapathi aims to make discoveries and develop tools that could improve neuromotor rehabilitation.

Seethapathi earned her bachelor’s degree in mechanical engineering from the Veermata Jijabai Technological Institute followed by her PhD in mechanical engineering from Ohio State University. In 2018, she continued to the University of Pennsylvania where she was a postdoc. She joins MIT as an assistant professor in the Department of Brain and Cognitive Sciences with a shared appointment in the Department of Electrical Engineering and Computer Science at the MIT Schwarzman College of Computing.

Hernandez Moura Silva researches how the immune system supports tissue physiology. Silva focuses on macrophages, a type of immune cell involved in tissue homeostasis. He plans to establish new strategies to explore the effects and mechanisms of such immune-related pathways, his research ultimately leading to the development of therapeutic approaches to treat human diseases.

Silva earned a bachelor’s degree in biological sciences and a master’s degree in molecular biology from the University of Brasilia. He continued to complete a PhD in immunology at the University of São Paulo School of Medicine: Heart Institute. Most recently, he acted as the Bernard Levine Postdoctoral Fellow in immunology and immuno-metabolism at the New York University School of Medicine: Skirball Institute of Biomolecular Medicine. Silva joins MIT as an assistant professor in the Department of Biology and a core member of the Ragon Institute.

Yadira Soto-Feliciano PhD ’16 studies chromatin — the complex of DNA and proteins that make up chromosomes. She combines cancer biology and epigenetics to understand how certain proteins affect gene expression and, in turn, how they impact the development of cancer and other diseases. In decoding the chemical language of chromatin, Soto-Feliciano pursues a basic understanding of gene regulation that could improve the clinical management of diseases associated with their dysfunction.

Soto-Feliciano received her bachelor’s degree in chemistry from the University of Puerto Rico at Mayagüez followed by a PhD in biology from MIT, where she was also a research fellow with the Koch Institute. Most recently, she was the Damon Runyon-Sohn Pediatric Cancer Postdoctoral Fellow at The Rockefeller University. Soto-Feliciano returns to MIT as an assistant professor in the Department of Biology and a member of the Koch Institute.